人工智能
人工智能(英文名:ArtificialIntelligence,英文缩写:AI)。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。[1]
人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。
新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
李开复AI五讲|人工智能的五个定义:哪个最不可取
编者按:从惊呼“人工智能来了”到察觉“人工智能无处不在”,人类社会才走过寥寥数年。在提出建设国家人工智能高地的上海,许多率先试水的应用在各行各业写下了“AI+”的故事。此时此刻,我们更加要冷静地思考自身与人工智能的关系。我们真的知道什么是人工智能吗?我们真的准备好与人工智能共同发展了吗?我们该如何规划人工智能时代的未来生活?
本月底,2019世界人工智能大会将在黄浦江畔揭开序幕。澎湃新闻特邀李开复、王咏刚将著作《人工智能》精编为系列短文,试析与AI相关的若干关键问题。
请抛开人工智能就是人形机器人的固有偏见,然后,打开你的手机。我们先来看一看,已经变成每个人生活的一部分的智能手机里,到底藏着多少人工智能的神奇魔术。谷歌最资深的计算机科学家与软件架构师、谷歌大脑开发团队的带头人杰夫•迪恩(JeffDean)说:“很多时候(人工智能)都是藏在底下,因此人们并不知道有很多东西已经是机器学习的系统在驱动。”
到底什么是人工智能?为什么我们说智能搜索引擎、智能助理、机器翻译、机器写作、机器视觉、自动驾驶、机器人等技术属于人工智能,而诸如手机操作系统、浏览器、媒体播放器等通常不被归入人工智能的范畴?人工智能究竟有没有一个容易把握和界定的科学定义?
这里,简要列举几种历史上有影响的,或目前仍流行的人工智能的定义。对这些定义的分析、讨论是一件相当有趣的事,这有些类似于古代哲学家们围坐在一起探讨“人何以为人”,或者,类似于科幻迷们对阿西莫夫的“机器人三定律”展开辩论。其实,很多实用主义者反对形而上的讨论,他们会大声说:“啊,管它什么是人工智能呢?只要机器能帮助人解决问题不就行了?”
定义一:Al就是让人觉得不可思议的计算机程序
人工智能就是机器可以完成人们不认为机器能胜任的事——这个定义非常主观,但也非常有趣。一个计算机程序是不是人工智能,完全由这个程序的所作所为是不是能让人目瞪口呆来界定。
这种唯经验论的定义显然缺乏一致性,但这一定义往往反映的是一个时代里大多数的普通人对人工智能的认知方式:每当一个新的人工智能热点出现时,新闻媒体和大众总是用自己的经验来判定人工智能技术的价值高低,而不管这种技术在本质上究竟有没有“智能”。
计算机下棋的历史就非常清楚地揭示了这一定义的反讽之处。
早期,碍于运行速度和存储空间的限制,计算机只能用来解决相对简单的棋类博弈问题,例如西洋跳棋,但这毫不妨碍当时的人们将一台会下棋的计算机称作智能机器,因为那时,普通计算机在大多数人心目中不过是一台能用飞快的速度做算术题的机器罢了。
1962年,IBM的阿瑟•塞缪尔的程序战胜了一位盲人跳棋高手,一时间成了不小的新闻事件,绝大多数媒体和公众都认为类似的西洋跳棋程序是不折不扣的人工智能。
随着PC的普及,每台个人电脑都可以运行一个水平相当高的西洋跳棋程序,会下棋的计算机逐渐褪去了神秘的光环。
当国际象棋、中国象棋逐渐被计算机玩得滚瓜烂熟,公众找到了维护人类智慧尊严的最后阵地——围棋。直到2016年年初,除了一个叫樊麾的职业围棋选手和谷歌DeepMind的一支规模不大的研发团队外,几乎所有地球人都说:“下象棋有什么了不起?真有智能的话,来跟世界冠军下盘围棋试试?”
很不幸,人类的自以为是又一次被快速发展的人工智能算法无情嘲笑了。2016年3月9日,随着AlphaGo在五番棋中以四比一大胜围棋世界冠军李世石,有关人工智能的热情和恐慌情绪同时在全世界蔓延开来,也因此引发了一拨人工智能的宣传热潮。
今天,没有人怀疑AlphaGo的核心算法是人工智能。但想一想曾经的西洋跳棋和国际象棋,当时的人们不是一样对战胜了人类世界冠军的程序敬若神明吗?
定义二:Al就是与人类思考方式相似的计算机程序
这是人工智能发展早期非常流行的一种定义方式。从根本上讲,这是一种类似仿生学的直观思路。
但历史经验证明,仿生学的理路在科技发展中不一定可行。一个最好也最著名的例子就是飞机的发明。在几千年的时间里,人类一直梦想着按照鸟类扑打翅膀的方式飞上天空,但反讽的是,真正带着人类在长空朝翔,并打破了鸟类飞行速度、飞行高度纪录的,是飞行原理与鸟类差别极大的固定翼飞机。
人类思考方式?人究竟是怎样思考的?这本身就是一个复杂的技术和哲学问题。哲学家们试图通过反省与思辨,找到人类思维的逻辑法则,而科学家们则通过心理学和生物学实验,了解人类在思考时的身心变化规律。这两条道路都在人工智能的发展历史上起到过极为重要的作用。
世界上第一个专家系统程序Dendral是一个成功地用人类专家知识和逻辑推理规则解决一个特定领域问题的例子。这是一个由斯坦福大学的研究者用Lisp语言写成的,帮助有机化学家根据物质光谱推断未知有机分子结构的程序。
Dendral项目在20世纪60年代中期取得了令人瞩目的成功,带动了专家系统在人工智能各相关领域的广泛应用,从机器翻译到语音识别,从军事决策到资源勘探。一时间,专家系统似乎就是人工智能的代名词,其热度不亚于今天的深度学习。
但人们很快就发现了局限。一个解决特定的、狭小领域问题的专家系统很难被扩展到宽广一些的知识领域中,更别提扩展到基于世界知识的日常生活里了。
一个著名的例子是1957年苏联发射世界上第一颗人造卫星后,美国政府和军方急于使用机器翻译系统了解苏联的科技动态。但用语法规则和词汇对照表实现的俄语到英语的机器翻译系统笑话百出,曾把“心有余而力不足”(thespiritiswilingbutthefleshisweak)翻译为“伏特加不错而肉都烂掉了”(thevodkaisgoodbutthemeatisroten)。
另一方面,从心理学和生物学出发,科学家们试图弄清楚人的大脑到底是怎么工作的,并希望按照大脑的工作原理构建计算机程序,实现“真正”的人工智能。这条道路上同样布满荆棘。最跌宕起伏的例子,非神经网络莫属。
20世纪90年代开始,随着计算机运算能力的飞速发展,神经网络在人工智能领域重新变成研究热点。但直到2010年前后,支持深度神经网络的计算机集群才开始得到广泛应用,供深度学习系统训练使用的大规模数据集也越来越多。神经网络这一仿生学概念在人工智能的新一轮复兴中,真正扮演了至关重要的核心角色。
定义三:AI就是与人类行为相似的计算机程序
和仿生学派强调对人脑的研究与模仿不同,实用主义者从不觉得人工智能的实现必须遵循什么规则或理论框架。“黑猫白猫,逮住耗子的就是好猫。”在人工智能的语境下,这句话可以被改成:“简单程序,复杂程序,聪明管用的就是好程序。”
实用主义者推崇备至的一个例子是麻省理工学院于1964年到1966年开发的“智能”聊天程序ELIZA。这个程序看上去就像一个有无穷耐心的心理医生,可以和无聊的人或需要谈话治疗的精神病人你一句我一句永不停歇地脚下去。当年,ELIZA的聊天记录让许多人不敢相信自己的的眼睛。
可事实上,ELIZA所做的,不过是在用户输入的句子里,找到一些预先定义好的关键词,然后根据关键词从预定的回答中选择一句,或者简单将用户的输入做了人称替换后,再次输出,就像心理医生重复病人的话那样。ELIZA心里只有词表和映射规则,它才不懂用户说的话是什么意思呢。
这种实用主义的思想在今天仍有很强的现实意义。比如今天的深度学习模型在处理机器翻译、语音识别、主题抽取等自然语言相关的问题时,基本上都是将输入的文句看成由音素、音节、字或词组成的信号序列,然后将这些信号一股脑塞进深度神经网络里进行训练。
深度神经网络内部,每层神经元的输出信号可能相当复杂,复杂到编程者并不一定清楚这些中间信号在自然语言中的真实含义,但没有关系,只要整个模型的最终输出满足要求,这样的深度学习算法就可以工作得很好。
定义四:AI就是会学习的计算机程序
没有哪个完美主义者会喜欢这个定义。这一定义几乎将人工智能与机器学习等同了起来。但这的确是最近这拨人工智能热潮里,人工智能在许多人眼中的真实模样。谁让深度学习一枝独秀,几乎垄断了人工智能领域里所有流行的技术方向呢?
这一定义似乎也符合人类认知的特点一—没有哪个人是不需要学习,从小就懂得所有事情的。因此,今天最典型的人工智能系统通过学习大量数据训练经验模型的方法,其实可以被看成是模拟了人类学习和成长的全过程。
如果说人工智能未来可以突破到强人工智能甚至超人工智能的层次,那从逻辑上说,在所有人工智能技术中,机器学习最有可能扮演核心推动者的角色。
当然,机器目前的主流学习方法和人类的学习还存在很大的差别。举个最简单的例子:目前的计算机视觉系统在看过数百万张或更多自行车的照片后,很容易辨别出什么是自行车,什么不是自行车,这种需要大量训练照片的学习方式看上去还比较笨拙。反观人类,给一个三四岁的小孩子看一辆自行车之后,再见到哪怕外观完全不同的自行车,小孩子也十有八九能做出那是一辆自行车的判断。也就是说,人类的学习过程往往不需要大规模的训练数据。
最近,尽管研究者提出了迁移学习等新的解决方案,但从总体上说,计算机的学习水平还远远达不到人类的境界。
如果人工智能是一种会学习的机器,那未来需要着重提高的,就是让机器在学习时的抽象或归纳能力向人类看齐。
定义五:Al就是根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序
维基百科的人工智能词条采用的是斯图亚特•罗素(StuartRussell)与彼得•诺维格(PeterNorvig)在《人工智能:一种现代的方法》一书中的定义,他们认为:
人工智能是有关“智能主体(Intelligentagent)的研究与设计”的学问,而“智能主体是指一个可以观察周遭环境并做出行动以达致目标的系统”。
基本上,这个定义将前面几个实用主义的定义都涵盖了进去,既强调人工智能可以根据环境感知做出主动反应,又强调人工智能所做出的反应必须达致目标,同时,不再强调人工智能对人类思维方式或人类总结的思维法则的模仿。
以上,我们列举了五种常见的人工智能的定义。其中,第二种定义(与人类思考方式相似)特别不可取。人们对大脑工作机理的认识尚浅,而计算机走的是几乎完全不同的技术道路。
第一种定义(让人觉得不可思议)揭示的是大众看待人工智能的视角直观易懂,但主观性太强,不利于科学讨论。
第三种定义(与人类行为相似)是计算机科学界的主流观点,也是一种从实用主义出发,简洁、明了的定义,但缺乏周密的逻辑。
第四种定义(会学习)反映的是机器学习特别是深度学习流行后,人工智能世界的技术趋势,虽失之狭隘,但最有时代精神。第五种定义(维基百科使用的综合定义)是学术界的教科书式定义,全面均衡,偏重实证。
人工智能的三次浪潮与三种模式
■史爱武
谈到人工智能,人工智能的定义到底是什么?
达特茅斯会议上对人工智能的定义是:使一部机器的反应方式就像是一个人在行动时所依据的智能。
百度百科上对人工智能的定义是:它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
尽管人工智能现在还没有非常严格准确或者所有人都接受的定义,但是有一些约定俗成的说法。通常人工智能是指机器智能,让机器达到人智能所实现的一些功能。人工智能既然是机器智能,就不是机械智能,那么这个机器是指什么呢?是指计算机,用计算机仿真出来的人的智能行为就可以叫作人工智能。
2017年7月,国务院印发了《新一代人工智能发展规划》。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。这一国家级战略和社会流行趋势标志着,人工智能发展进入了新阶段,我国要抢抓人工智能发展的重大战略机遇,构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。
人工智能的三次浪潮
自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。
第一次浪潮(1956-1976年,20年),最核心的是逻辑主义
逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。
早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。
在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好地完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。
虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。
第二次浪潮(1976—2006年,30年),联结主义盛行
在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义相比,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。
在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。
这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。
第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破
如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就是深度学习取得突破。这里既有硬件的进步,也有卷积神经网络模型与参数训练技巧的进步。
若观察脑的内部,会发现有大量称为“神经元”的神经细胞彼此相连。一个神经元从其他神经元那里接收的电气信号量达某一定值以上,就会兴奋(神经冲动);在某一定值以下,就不会兴奋。兴奋起来的神经元,会将电气信号传送给下一个相连的神经元。下一个神经元同样会因此兴奋或不兴奋。简单来说,彼此相连的神经元,会形成联合传递行为。我们透过将这种相连的结构来数学模型化,便形成了人工神经网络。
经模型化的人工神经网络,是由“输入层”“隐藏层”及“输出层”等三层构成。深度学习往往意味着有多个隐藏层,也就是多层神经网络。另外,学习数据则是由输入数据以及相对应的正确解答来组成。
为了让输出层的值跟各个输入数据所对应的正解数据相等,会对各个神经元的输入计算出适当的“权重”值。通过神经网络,深度学习便成为了“只要将数据输入神经网络,它就能自行抽出特征”的人工智能。
伴随着高性能计算机、云计算、大数据、传感器的普及,以及计算成本的下降,“深度学习”随之兴起。它通过模仿人脑的“神经网络”来学习大量数据的方法,使它可以像人类一样辨识声音及影像,或是针对问题做出合适的判断。在第三次浪潮中,人工智能技术及应用有了很大的提高,深度学习算法的突破居功至伟。
深度学习最擅长的是能辨识图像数据或波形数据这类无法符号化的数据。自2010年以来,Apple、Microsoft及Google等国际知名IT企业,都投入大量人力物力财力开展深度学习的研究。例如AppleSiri的语音识别,Microsoft搜索引擎Bing的影像搜寻等等,而Google的深度学习项目也已超过1500项。
深度学习如此快速的成长和应用,也要归功于硬件设备的提升。图形处理器(GPU)大厂英伟达(NVIDIA)利用该公司的图形适配器、连接库(Library)和框架(Frame⁃work)产品来提升深度学习的性能,并积极开设研讨课程。另外,Google也公开了框架TensorFlow,可以将深度学习应用于大数据分析。
人工智能的3种模式
人工智能的概念很宽泛,根据人工智能的实力可以分成3大类,也称为3种模式。
(1)弱人工智能:擅长于单个方面的人工智能,也叫专业人工智能。比如战胜世界围棋冠军的人工智能AlphaGo,它只会下围棋,如果让它下国际象棋或分辨一下人脸,它可能就会犯迷糊,就不知道怎么做了。当前我们实现的几乎全是弱人工智能。
(2)强人工智能:是指在各方面都能和人类比肩的人工智能,这是类似人类级别的人工智能,也叫通用人工智能。人类能干的脑力活,它都能干,创造强人工智能比创造弱人工智能难得多,目前我们还做不到。
(3)超人工智能:知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强点,也可以是各方面都比人类强很多倍。超人工智能现在还不存在,很多人也希望它永远不要存在。否则,可能像好莱坞大片里面的超级智能机器一样,对人类也会带来一些威胁或者颠覆。
我们现在处于一个充满弱人工智能的世界。比如,垃圾邮件分类系统是个帮助我们筛选垃圾邮件的弱人工智能;Google翻译是可以帮助我们翻译英文的弱人工智能等等。这些弱人工智能算法不断地加强创新,每一个弱人工智能的创新,都是迈向强人工智能和超人工智能的进步。正如人工智能科学家AaronSaenz所说,现在的弱人工智能就像地球早期软泥中的氨基酸,可能突然之间就形成了生命。如世界发展的规律看来,超人工智能也是未来可期的!