博舍

人工智能的历史、现状和未来 人工智能的主要研究领域有什么特点呢

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能的主要研究领域

自动定理证明

定理证明的实质是证明由前提P得到结论Q的永真性。1958年,王浩证明了有关命题演算的全部定理(220条)、谓词演算中150条定理的85%。1965年鲁宾逊(Robinson)提出了归结原理,使机器定理证明成为现实。我国著名数学家、中国科学院吴文俊院士把几何代数化,建立了一套机器证明方法,被称为“吴方法”。

博弈

如下棋、打牌、战争等一类竞争性的智能活动称为博弈。1956年,塞缪尔研制出跳棋程序。为什么许多是研究下棋、打牌?

棋类游戏的计算复杂性

棋局数量一字棋:9!西洋跳棋:1078国际象棋:10120围棋:10761国际象棋:10120国际象棋:假设每步可以搜索一个棋局,用极限并行速度(10-104年/步)来处理,搜索一遍的全部棋局也得1016年即1亿亿年才可以算完!

国际象棋比赛

1991年8月,IBM公司研制的DeepThought2计算机系统与澳大利亚象棋冠军约翰森(D.Johansen)举行了一场人机对抗赛,以1:1平局告终。1996.2.10-17,IBM公司的“深蓝”计算机系统与卡斯帕罗夫进行了六局比赛,号称人脑与电脑的世纪决战。卡斯帕罗夫以4:2获胜。1997.5.3-11深蓝再次挑战特级大师卡斯帕罗夫。1997年5月11日凌晨4时许,美国纽约公平保险公司大厦,深蓝和卡斯帕罗夫“最后决战”正在进行。4时50分,美联社、路透社、共同社、新华社…:在世纪末国际象棋“人机大战”的最后一局对弈中,“深蓝”仅用了1小时轻松击败卡斯帕罗夫,以3.5比2.5的总比分赢得了最终的胜利!此后十年,人机互有胜负,直到2006年棋王卡拉姆尼克被DeepFritz击败,人类再也没有赢过电脑。

围棋比赛

围棋:107612007年台北国际发明暨技术交易展览上,第三代智能机器人DOC现场表演下棋。

①2016.3,AlphaGo以4:1战胜韩国棋手李世石,成为第一个击败人类职业围棋选手的电脑程序。②2016.12,AlphaGo身披“Master”马甲,5天内横扫中日韩棋坛,以60场连胜纪录告退。③2017.5,AlphaGo在乌镇以3:0完胜柯洁。

模式识别

模式识别(patternrecognition):研究对象描述和分类方法的学科。分析和识别的模式可以是信号、图象或者普通数据。文字识别:邮政编码、车牌识别、汉字识别。人脸识别:反恐、商业。物体识别:导弹、机器人。

机器视觉

机器视觉(machinevision)或计算机视觉(computervision)是用机器代替人眼睛进行测量和判断。机器视觉系统是指通过图像摄取装置将被摄取的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和宽度、颜色等信息,转换成数字信号,抽取目标的特征,根据判别结果控制现场的设备动作。机器视觉应用在半导体及电子、汽车、冶金、制药、食品饮料、印刷、包装、零配件装配及制造质量检测等。机器视觉(machinevision)或计算机视觉(computervision)是用机器代替人眼睛进行测量和判断。机器视觉应用在半导体及电子、汽车、冶金、制药、食品饮料、印刷、包装、零配件装配及制造质量检测等。文字识别:邮政编码、车牌识别、手写体识别。计算机、手机等输入。人脸识别:反恐、商业。物体识别:导弹、机器人。

智慧医疗

医学影像识别:基于深度学习等人工智能技术的X光、核磁、CT、超声等医疗影像多模态大数据的分析技术,提取二维或三维医疗影像隐含的疾病特征。黑色素瘤识别:将1万张有标记的影象交给机器学习,然后让3名医生和计算机一起看另外的3000账。人的精度84%,计算机97%

自然语言理解

自然语言理解:研究如何让计算机理解人类自然语言,包括回答问题、生成摘要、翻译等。1957年,在苏联人造卫星成功发射的刺激下,美国国家研究会大力支持对俄科技论文的计算机翻译。人们最初以为机器翻译只要将双向词典及一些词法知识放进计算机就行了。后来发现有时会出现十分荒谬的错误。

1966年美国顾问委员会报告:还不存在通用的科学文本机器翻译,也没有很近的实现前景。英国、美国中断了大部分机器翻译项目的资助。

机器听觉

计算机语音输入:计算机、智能手机等的重要组成计算机语音录入、手机语音呼叫、机器人语音控制、语音锁、机器故障诊断等。语音识别用语音作为计算机的输入。语音识别的主要过程:语音信号采集、预处理(预滤波、采样、预加重、端点检测)、特征参数提取、向量量化、识别。

机器翻译

现在,机器翻译已经实用化、商品化。Pilot耳机是世界上首个具备自动翻译的智能耳机,进行实时翻译。2016年谷歌销售语音识别API,将80多种语言转换成文字。2016年谷歌推出商业级神经系统机器翻译,准确率达86%。Facebook使用CNN翻译速度比谷歌快9倍。阿里研发NMT,翻译质量大幅度提升。

智能信息检索

智能信息检索系统的功能:(1)能理解自然语言。(2)具有推理能力。(3)系统拥有一定的常识性知识。

数据挖掘与知识发现

数据挖掘的目的是从数据库中找出有意义的模式(一组规则、聚类、决策树、依赖网络或其他方式表示的知识)。数据挖掘过程:数据预处理、建模、模型评估及模型应用。

专家系统

1965年费根鲍姆研究小组开始研制第一个专家系统——分析化合物分子结构的DENDRAL,1968年完成并投入使用。1971年MIT开发成功求解一些数学问题的MYCSYMA专家系统。拉特格尔大学开发的清光眼诊断与治疗的专家系统CASNET。1972年斯坦福大学肖特里菲等人开始研制用于诊断和治疗感染性疾病的专家系统MYCIN。1976年斯坦福研究所开始开发探矿专家系统PROSPECTOR,1980年首次实地分析华盛顿某山区地质资料,发现了一个钼矿。1981年斯坦福大学研制成功专家系统AM,能模拟人类进行概括、抽象和归纳推理,发现某些数论的概念和定理。

自动程序设计

程序综合:用户只需要告诉计算机要“做什么”,无须说明“怎么做”,计算机就可自动实现程序的设计。程序正确性的验证:研究出一套理论和方法,通过运用这套理论和方法就可以证明程序的正确性。2014年2月新闻:麻省理工教授ArmandoSolar-Lezama开发的一种智能化编程语言“Sketch”,可以自动填补、修正代码内容,在几毫秒内修复代码,让程序员可以忽略许多繁琐的细节。

机器人

20世纪60年代初,研制出尤尼梅特和沃莎特兰两种机器人。机器人发展:程序控制机器人(第一代)、自适应机器人(第二代)、智能机器人(现代)。

无人驾驶

机器在感知上比人类强很多机器比人类精力充沛机器比人更理性

无人驾驶商业化的四个关键要素

硬件组件:摄像头、激光雷达、计算处理器等新型传感器和计算组件,发动机、车身等传统汽车组件;软件组件:无人驾驶操作系统(感知、规划、控制以及汽车互联、数据平台接口等),高精度地图等;整车制造:超级复杂、重资产、且利润率不高的工程;网络:类似滴滴、Uber、Lyft这样的出行网络。

达芬奇手术机器人

这是以500年前意大利文艺复兴时期的伟大艺术家达芬奇在图纸上画的机器人雏形而设计的。正式名称:内窥镜手术器械控制系统技术来源:斯坦福研究院(SRI)生产销售:直觉手术机器人公司(1995年成立)1996、2006、2009、2014年第一、二、三、四代

广汽菲亚特白车身生产线

生产线上分布着250个机器人

组合优化问题

组合优化问题:旅行商问题、生产计划与调度、物流中的车辆调度、智能交通、通信中的路由调度、计算机网络信息调度等NP完全问题:用目前知道的最好的方法求解,问题求解需要花费的时间是随问题规模增大以指数关系增长。

CIMS的结构与功能

智慧物流

推广射频识别(RFID)、多维条码、卫星定位、货物跟踪、电子商务等信息技术在物流行业中的应用;加快基于物联网的物流信息平台建设,整合物流资源,实现物流政务服务和物流商务服务的一体化;推动信息化、标准化、智能化的物流企业和物流产业发展。

人工神经网络

人工神经网络:一个用大量简单处理单元经广泛连接而组成的人工网络,用来模拟大脑神经系统的结构和功能。神经元模型的研究(20世纪50年代中期------)1943年,麦克洛奇和皮兹提出M-P模型,开创了人工神经网络研究。1957年,罗森勃拉特提出感知器模型。1969年,明斯基和佩珀特发表了《Perceptron》,对神经元模型的研究作出了悲观的论断。

机器学习的第二次浪潮:深度学习

诺贝尔医学奖获得者美国神经生物学家DavidHubel和TorstenWiesel发现:人的视觉系统的信息处理是分级的。

生成对抗网络

分布式人工智能与多智能体

分布式人工智能系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中,具有交换信息和协同工作的能力。分布式问题求解:把一个具体的求解问题划分为多个相互合作和知识共享的模块或者结点。多智能体系统:研究各智能体之间行为的协调。

智能控制

国际知名美籍华裔科学家傅京孙(KS.Fu)在1965年首先把人工智能的启发式推理规则用于学习控制系统。智能控制的两个显著特点:第一,智能控制是同时具有知识表示的非数学广义世界模型和传统数学模型混合表示的控制过程。第二,智能控制的核心在高层控制,其任务在于实际环境或过程进行组织,即决策与规划,以实现广义问题求解。智能控制的基本类型:(1)专家智能控制(2)模糊控制(3)神经网络控制

智能仿真

智能仿真是将AI引入仿真领域,建立智能仿真系统。仿真是对动态模型的实验,即行为产生器在规定的实验条件下驱动模型,从而产生模型行为。仿真是在描述性知识、目的性知识及处理知识的基础上产生结论性知识。利用AI对整个仿真过程(建模、实验运行及结果分析)进行指导,在仿真模型中引进知识表示,改善仿真模型的描述能力,为研究面向目标的建模语言打下基础,提高仿真工具面向用户、面向问题的能力,使仿真更有效地用于决策,更好地用于分析、设计及评价知识库系统。

智能CAD

智能CAD(简称ICAD)就是把人工智能技术引入计算机辅助设计领域,建立智能CAD系统。AI几乎可以应用到CAD技术的各个方面。从目前发展的趋势来看,至少有下述四个方面:(1)设计自动化。(2)智能交互。(3)智能图形学。(4)自动数据采集。

智能CAI

智能CAI就是把AI引入计算机辅助教学领域。ICAI系统一般分成专门知识、教导策略和学生模型和自然语言的智能接口。ICAI应具备下列智能特征:(1)自动生成各种问题与练习。(2)根据学生的学习情况自动选择与调整教学内容与进度。(3)在理解教学内容的基础上自动解决问题生成解答。(4)具有自然语言生成和理解能力。(5)对教学内容有理解咨询能力。(6)能诊断学生错误,分析原因并采取纠正措施。(7)能评价学生的学习行为。(8)能不断地在教学中改善教学策略。

智能管理与智能决策

智能管理就是把人工智能技术引入管理领域,建立智能管理系统,研究如何提高计算机管理系统的智能水平,以及智能管理系统的设计理论、方法与实现技术。智能决策就是把人工智能技术引入决策过程,建立智能决策支持系统。智能决策支持系统是由传统决策支持系统再加上相应的智能部件就构成了智能决策支持系统。智能部件可以是专家系统模式、知识库模式等。

智能多媒体系统

多媒体计算机系统就是能综合处理文字、图形、图像和声音等多种媒体信息的计算机系统。智能多媒体就是将人工智能技术引入多媒体系统,使其功能和性能得到进一步发展和提高。多媒体技术与人工智能所研究的机器感知、机器理解等技术不谋而合。人工智能的计算机视听觉、语音识别与理解、语音对译、信息智能压缩等技术运用于多媒体系统,将会使现在的多媒体系统产生质的飞跃。

智能操作系统

智能操作系统的基本模型:以智能机为基础,能支撑外层的AI应用程序,实现多用户的知识处理和并行推理。智能操作系统三大特点:并行性:支持多用户、多进程,同时进行逻辑推理等;分布性:把计算机硬件和软件资源分散而又有联系地组织起来,能支持局域网和远程网处理;智能性:一是操作系统处理的是知识对象,具有并行推理功能,支持智能应用程序运行;二是操作系统的绝大部分程序使用AI程序编制,充分利用硬件并行推理功能;三是具有较高智能程序的自动管理维护功能,如故障的监控分析等,帮助维护人员决策。

智能计算机系统

智能计算机系统就是人们正在研制的新一代计算机系统。智能计算机系统从基本元件到体系结构,从处理对象到编程语言,从使用方法到应用范围,同当前的诺依曼型计算机相比,都有质的飞跃和提高,它将全面支持智能应用开发,且自身就具有智能。

智能通信

智能通信就是把人工智能技术引入通信领域,建立智能通信系统。智能通信就是在通信系统的各个层次和环节上实现智能化。例如在通信网的构建、网管与网控、转接、信息传输与转换等环节,都可实现智能化。这样,网络就可运行在最佳状态,具有自适应、自组织、自学习、自修复等功能。

智能网络系统

智能网络系统就是将人工智能技术引入计算机网络系统。如在网络构建、网络管理与控制、信息检索与转换、人机接口等环节,运用AI的技术与成果。AI的专家系统、模糊技术和神经网络技术可用于网络的连接接纳控制、业务量管制、业务量预测、资源动态分配、业务流量控制、动态路由选择、动态缓冲资源调度等许多方面。

人工生命

人工生命是以计算机为研究工具,模拟自然界的生命现象,生成表现自然生命系统行为特点的仿真系统。AL是首先由计算机科学家ChristopherLangton在1987年在"生成以及模拟生命系统的国际会议"上提出。研究进化的模式和方式、人工仿生学、进化博弈、分子进化、免疫系统进化、学习等;研究具有自治性、智能性、反应性、预动性和社会性的智能主体的形式化模型、通信方式、协作策略;研究生物感悟的机器人、自治和自适应机器人、进化机器人、人工脑。

人工智能应用如雨后春笋

欢迎大家加我微信交流讨论(请备注csdn上添加)

人工智能的研究领域

 

人工智能的研究领域

人工智能的研究更多的是结合具体领域进行的,主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计,机器人学,博弈,智能决定支持系统和人工神经网络。

人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。

因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。因此我们可以从许多的应用领域中挑选几个有代表性的方面来看看人工智能的发展需要进行哪些方面的工作。

下面我们就具体的应用方面专家系统来看看人工智能的主要研究领域是什么。

专家系统是目前人工智能中最活跃,最有成效的一个研究领域,它是一种基于知识的系统,它从人类专家那里获得知识,并用来解决只有专家才能解决的困难问题。这样定义专家系统:专家系统是一种具有特定领域内大量知识与经验的程序系统,它应用人工智能技术、模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过人类专家的水平。专家系统是在关于人工智能的研究处于低潮时提出来的,由它的出现及其所显示出来的巨大潜能不仅使人工智能摆脱了困境,而且走上了发展时期。

2023年人工智能领域发展七大趋势

2022年人工智能领域发展七大趋势

有望在网络安全和智能驾驶等领域“大显身手”

人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。

美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。

增强人类的劳动技能

人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。

比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。

总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。

更大更好的语言建模

语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。

2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。

众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。

网络安全领域的人工智能

今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。

随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。

人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。

人工智能与元宇宙

元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。

人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。

低代码和无代码人工智能

2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。

美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。

自动驾驶交通工具

数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。

特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。

此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。

创造性人工智能

在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。

2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)

【纠错】【责任编辑:吴咏玲】

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇