博舍

《新一代人工智能伦理规范》发布 人工智能引起的伦理问题

《新一代人工智能伦理规范》发布

9月25日,国家新一代人工智能治理专业委员会发布了《新一代人工智能伦理规范》(以下简称《伦理规范》),旨在将伦理道德融入人工智能全生命周期,为从事人工智能相关活动的自然人、法人和其他相关机构等提供伦理指引。

《伦理规范》经过专题调研、集中起草、意见征询等环节,充分考虑当前社会各界有关隐私、偏见、歧视、公平等伦理关切,包括总则、特定活动伦理规范和组织实施等内容。《伦理规范》提出了增进人类福祉、促进公平公正、保护隐私安全、确保可控可信、强化责任担当、提升伦理素养等6项基本伦理要求。同时,提出人工智能管理、研发、供应、使用等特定活动的18项具体伦理要求。《伦理规范》全文如下:

新一代人工智能伦理规范为深入贯彻《新一代人工智能发展规划》,细化落实《新一代人工智能治理原则》,增强全社会的人工智能伦理意识与行为自觉,积极引导负责任的人工智能研发与应用活动,促进人工智能健康发展,制定本规范。

第一章 总则

第一条 本规范旨在将伦理道德融入人工智能全生命周期,促进公平、公正、和谐、安全,避免偏见、歧视、隐私和信息泄露等问题。

第二条 本规范适用于从事人工智能管理、研发、供应、使用等相关活动的自然人、法人和其他相关机构等。(一)管理活动主要指人工智能相关的战略规划、政策法规和技术标准制定实施,资源配置以及监督审查等。(二)研发活动主要指人工智能相关的科学研究、技术开发、产品研制等。(三)供应活动主要指人工智能产品与服务相关的生产、运营、销售等。(四)使用活动主要指人工智能产品与服务相关的采购、消费、操作等。

第三条 人工智能各类活动应遵循以下基本伦理规范。(一)增进人类福祉。坚持以人为本,遵循人类共同价值观,尊重人权和人类根本利益诉求,遵守国家或地区伦理道德。坚持公共利益优先,促进人机和谐友好,改善民生,增强获得感幸福感,推动经济、社会及生态可持续发展,共建人类命运共同体。(二)促进公平公正。坚持普惠性和包容性,切实保护各相关主体合法权益,推动全社会公平共享人工智能带来的益处,促进社会公平正义和机会均等。在提供人工智能产品和服务时,应充分尊重和帮助弱势群体、特殊群体,并根据需要提供相应替代方案。(三)保护隐私安全。充分尊重个人信息知情、同意等权利,依照合法、正当、必要和诚信原则处理个人信息,保障个人隐私与数据安全,不得损害个人合法数据权益,不得以窃取、篡改、泄露等方式非法收集利用个人信息,不得侵害个人隐私权。(四)确保可控可信。保障人类拥有充分自主决策权,有权选择是否接受人工智能提供的服务,有权随时退出与人工智能的交互,有权随时中止人工智能系统的运行,确保人工智能始终处于人类控制之下。(五)强化责任担当。坚持人类是最终责任主体,明确利益相关者的责任,全面增强责任意识,在人工智能全生命周期各环节自省自律,建立人工智能问责机制,不回避责任审查,不逃避应负责任。(六)提升伦理素养。积极学习和普及人工智能伦理知识,客观认识伦理问题,不低估不夸大伦理风险。主动开展或参与人工智能伦理问题讨论,深入推动人工智能伦理治理实践,提升应对能力。

第四条 人工智能特定活动应遵守的伦理规范包括管理规范、研发规范、供应规范和使用规范。

第二章 管理规范

第五条 推动敏捷治理。尊重人工智能发展规律,充分认识人工智能的潜力与局限,持续优化治理机制和方式,在战略决策、制度建设、资源配置过程中,不脱离实际、不急功近利,有序推动人工智能健康和可持续发展。

第六条 积极实践示范。遵守人工智能相关法规、政策和标准,主动将人工智能伦理道德融入管理全过程,率先成为人工智能伦理治理的实践者和推动者,及时总结推广人工智能治理经验,积极回应社会对人工智能的伦理关切。

第七条 正确行权用权。明确人工智能相关管理活动的职责和权力边界,规范权力运行条件和程序。充分尊重并保障相关主体的隐私、自由、尊严、安全等权利及其他合法权益,禁止权力不当行使对自然人、法人和其他组织合法权益造成侵害。

第八条 加强风险防范。增强底线思维和风险意识,加强人工智能发展的潜在风险研判,及时开展系统的风险监测和评估,建立有效的风险预警机制,提升人工智能伦理风险管控和处置能力。

第九条 促进包容开放。充分重视人工智能各利益相关主体的权益与诉求,鼓励应用多样化的人工智能技术解决经济社会发展实际问题,鼓励跨学科、跨领域、跨地区、跨国界的交流与合作,推动形成具有广泛共识的人工智能治理框架和标准规范。

第三章 研发规范

第十条 强化自律意识。加强人工智能研发相关活动的自我约束,主动将人工智能伦理道德融入技术研发各环节,自觉开展自我审查,加强自我管理,不从事违背伦理道德的人工智能研发。

第十一条 提升数据质量。在数据收集、存储、使用、加工、传输、提供、公开等环节,严格遵守数据相关法律、标准与规范,提升数据的完整性、及时性、一致性、规范性和准确性等。

第十二条 增强安全透明。在算法设计、实现、应用等环节,提升透明性、可解释性、可理解性、可靠性、可控性,增强人工智能系统的韧性、自适应性和抗干扰能力,逐步实现可验证、可审核、可监督、可追溯、可预测、可信赖。

第十三条 避免偏见歧视。在数据采集和算法开发中,加强伦理审查,充分考虑差异化诉求,避免可能存在的数据与算法偏见,努力实现人工智能系统的普惠性、公平性和非歧视性。

第四章 供应规范

第十四条 尊重市场规则。严格遵守市场准入、竞争、交易等活动的各种规章制度,积极维护市场秩序,营造有利于人工智能发展的市场环境,不得以数据垄断、平台垄断等破坏市场有序竞争,禁止以任何手段侵犯其他主体的知识产权。

第十五条 加强质量管控。强化人工智能产品与服务的质量监测和使用评估,避免因设计和产品缺陷等问题导致的人身安全、财产安全、用户隐私等侵害,不得经营、销售或提供不符合质量标准的产品与服务。

第十六条 保障用户权益。在产品与服务中使用人工智能技术应明确告知用户,应标识人工智能产品与服务的功能与局限,保障用户知情、同意等权利。为用户选择使用或退出人工智能模式提供简便易懂的解决方案,不得为用户平等使用人工智能设置障碍。

第十七条 强化应急保障。研究制定应急机制和损失补偿方案或措施,及时监测人工智能系统,及时响应和处理用户的反馈信息,及时防范系统性故障,随时准备协助相关主体依法依规对人工智能系统进行干预,减少损失,规避风险。

第五章 使用规范

第十八条 提倡善意使用。加强人工智能产品与服务使用前的论证和评估,充分了解人工智能产品与服务带来的益处,充分考虑各利益相关主体的合法权益,更好促进经济繁荣、社会进步和可持续发展。

第十九条 避免误用滥用。充分了解人工智能产品与服务的适用范围和负面影响,切实尊重相关主体不使用人工智能产品或服务的权利,避免不当使用和滥用人工智能产品与服务,避免非故意造成对他人合法权益的损害。

第二十条 禁止违规恶用。禁止使用不符合法律法规、伦理道德和标准规范的人工智能产品与服务,禁止使用人工智能产品与服务从事不法活动,严禁危害国家安全、公共安全和生产安全,严禁损害社会公共利益等。

第二十一条 及时主动反馈。积极参与人工智能伦理治理实践,对使用人工智能产品与服务过程中发现的技术安全漏洞、政策法规真空、监管滞后等问题,应及时向相关主体反馈,并协助解决。

第二十二条 提高使用能力。积极学习人工智能相关知识,主动掌握人工智能产品与服务的运营、维护、应急处置等各使用环节所需技能,确保人工智能产品与服务安全使用和高效利用。

第六章 组织实施

第二十三条 本规范由国家新一代人工智能治理专业委员会发布,并负责解释和指导实施。

第二十四条 各级管理部门、企业、高校、科研院所、协会学会和其他相关机构可依据本规范,结合实际需求,制订更为具体的伦理规范和相关措施。

第二十五条 本规范自公布之日起施行,并根据经济社会发展需求和人工智能发展情况适时修订。

 

国家新一代人工智能治理专业委员会

2021年9月25日

人工智能迫切需要一个“伦理转向”

当前人工智能的发展主要受益于以深度学习为代表的机器学习技术,这让计算机可以从大量数据中自主学习与进化,从而作出比人类更高效、更精准、更廉价的预测与决策。正因如此,人工智能作为新的通用型技术,被认为将给经济和社会带来变革性影响,已被各国上升到国家战略和科技主权高度,成为不断升温的全球科技竞争的新焦点。

在应用层面,人工智能已经渗透到各行各业,算法帮我们过滤掉垃圾邮件,给我们推荐可能喜欢的歌曲,为我们翻译不同的语言文字,替我们驾驶汽车。新冠肺炎疫情暴发以来,人工智能在辅助医疗诊断与新药研发等方面崭露头角,无人物流配送、无人驾驶汽车等新模式助力非接触服务发展。总之,人工智能潜力巨大,可以成为一股向善的力量,不仅带来经济增长,增进社会福祉,还能促进可持续发展。

但与此同时,人工智能及其应用的负面影响与伦理问题也日益凸显,呼吁人们在技术及其产业化之外更加关注伦理视域。例如,人工智能模型训练及其应用离不开大量数据的支持,可能导致违法违规或过度收集、使用用户数据,加深人工智能与数据隐私保护之间的紧张关系;人脸识别技术在一些场景的应用也引发了国内外对该技术侵犯个人隐私的争议。人工智能技术也可能被不法分子滥用,例如用来从事网络犯罪,生产、传播假新闻,合成足以扰乱视听的虚假影像等。

随着算法歧视的不断发酵,人工智能参与决策的公平性问题也备受关注。有研究发现,很多商业化的人脸识别系统都存在种族、性别等偏见,这样的技术用于自动驾驶汽车,就可能导致黑人等深色皮肤的人更容易被自动驾驶汽车撞到。人工智能在招聘、广告投放、信贷、保险、医疗、教育、司法审判、犯罪量刑、公共服务等诸多方面的应用也伴随公平性争议。此外,人工智能的知识产权保护问题也日益浮现,目前人工智能已能够独立创造诗歌、小说、图片、视频等,知识产权制度将需要尽快回应人工智能创造物的保护问题。自动驾驶汽车、AI医疗产品等人工智能应用一旦发生事故,也面临谁来担责的难题。最后,人工智能的应用可能取代部分手工的、重复性的劳动,给劳动者就业带来一定冲击。

2020年被认为是人工智能监管元年,美欧采取的监管路径大相径庭。欧盟《人工智能白皮书》提出的“重监管”模式更多倚重事前的规制,考虑为技术开发与应用设置严苛条件;美国《人工智能应用监管指南》提出的“轻监管”模式更多倚重标准、指南等弹性手段,考虑为人工智能应用设置避风港、“监管沙箱”等。在全球科技竞争日趋激烈、数字经济日趋成为国家核心竞争力等背景下,考虑到我国科技行业发展实际,我国对人工智能需要创新治理,倚重敏捷监管、伦理治理、技术治理等多元手段来共同确保人工智能正向应用与向善发展。

首先,监管不仅需要对人工智能应用分级分类、以问题和风险防范为导向,而且需要具有敏捷性与适应性。人工智能技术的一个核心特征是快速发展迭代,制定强制性法律必然赶不上技术发展步伐,所以国外大都采取出台指南、伦理框架等“软法”。此外,自动驾驶汽车、智能医疗等人工智能应用的发展落地仍面临较多法规政策障碍,需要考虑修订阻碍性的法律法规,同时通过“数字沙箱”“安全港”“试点”等方式推动其试验与应用落地。

其次,采取伦理治理,把伦理原则转化为伦理实践。目前,国内外很多科技公司都出台了人工智能伦理原则,也在通过伦理审查委员会、伦理嵌入等方式落实其伦理原则。行业的这些伦理治理措施已在国内外获得较大共识,更能适应AI技术发展。

再次,以技术手段防范人工智能滥用。例如,深度合成作为一项人工智能应用,在影视制作、教育、医疗、娱乐等领域具有很大正向应用价值,但也可能被不法分子滥用来制造、传播虚假影像以从事欺诈欺骗活动。对此,行业内已在积极研发、部署内容鉴别与溯源技术,以对抗深度合成的滥用。面对复杂性与迭代速度不断增强的人工智能应用,技术治理将发挥越来越大的作用。

(作者:曹建峰,系腾讯研究院高级研究员)

(责编:杨光宇)

分享让更多人看到

人工智能的若干伦理问题思考

国内方面相关研究起步较晚,研究不如国外系统与全面。但是近些年来,相关学者也将重点放在人工智能的伦理方面。相关文献有《机器人技术的伦理边界》[7]、《人权:机器人能够获得吗?》[8]、《我们要给机器人以“人权”吗?》[9]、《给机器人做规矩了,要赶紧了?》[10]、《人工智能与法律问题初探》[11]等等。值得一提的是,从以上文献可以看出,我国学者已经从单纯的技术伦理问题转向人机交互关系中的伦理研究,这无疑是很大的进步。

不过,遗憾的是,无论是在国内还是国外,现在仍然很少有成型的法律法规来对人工智能技术与产品进行约束,随着人们将注意力转向该方向,相信在不远的将来,有关政府部门会出台一套通用的人工智能伦理规范条例,来为整个行业作出表范。

三、人工智能是否会取代人类

有关人工智能与人的关系,很多人进行过质疑与讨论。1967年,《机器的神话》[12]作者就对机器工作提出了强烈的反对意见,认为机器的诞生使得人类丧失个性,从而使社会变得机械化。而近些年来,奇点理论的提出与宣传[13],更加使得人们担忧机器是否将会全面替代人类,该理论的核心思想即认为机器的智能很快就将超过人类。

笔者认为,人工智能不断进步,这是个不争的事实。机器的感觉,运动、计算机能都将会远远超过人类。这是机器的强项。但是不会从根本上冲击人类的岗位与职业。这是出于以下几方面的考虑:首先机器有自己的优势,人类也有自己的优势,且这个优势是机器在短期无法比拟与模仿的。人类具有思维能力,能够从小数据中迅速提炼归纳出规律,并且可以在资源有限的情况下进行非理性决策。人类拥有直觉能够将无关的事物相关化。人类还具有与机器不尽相同的内部处理方式,一些在人类看来轻而易举的事情,可能对于机器而言就要耗费巨大的资源。2012年,google训练机器从一千万张的图片自发的识别出猫。2016年,谷歌大脑团队训练机器,根据物体的材质不同,来自动调整抓握的力量。这对于一个小孩子来说,是很简单的任务,但在人工智能领域,确正好相反。也许正如莫桑维克悖论所阐述的,高级推理所需要的计算量不大,反倒是低级的感觉运动技能需要庞大的计算资源。

其次,目前人类和机器还没有达到同步对称的交互,仍然存在着交互的时间差。目前为止,仍然是人类占据主动,而且对机器产生不可逆的优势。皮埃罗·斯加鲁菲在《智能的本质》[14]一书中曾经提出:人们在杂乱无章中的大自然中建立规则和秩序,因为这样的环境中人类更容易生存和繁衍不息。而环境的结构化程度越高,制造在其中的机器就越容易,相反,环境的结构化程度越低,机器取代的可能性越小。由此可见,机器的产生与发展是建立在人们对其环境的了解与改造上的。反过来,机器的发展进一步促进了人们的改造与认知活动。这就如天平的两端,单纯的去掉任何一方都会导致天平的失衡。如果没有人类的指引与改造作用,机器只能停留在低端的机械重复工作层次。而机器在一个较低端层次工作的同时也会使得人们不断追求更高层次的结构化,从而使得机器向更高层次迈进。这就像一个迭代上升的过程,人-机器-人-机器,以此循环,人类在这段过程中总是处于领先的地位。所以机器可以取代人类的工作,而不是人类。

再次,人工智能的高速发展同时带来了机遇。诚然,技术的发展会带来一些负面影响,但是如果从全局来看,是利大于弊的。新技术的发展带来的机遇就是全方位的。乘法效应就是说明的这个道理:在高科技领域每增加一份工作,相应的在其它行业增加至少4份工作,相应的,传统制造业为1:1.4[14].我们应该看到,如今伴随着人工智能业的飞速发展,相关企业如雨后春笋般诞生,整体拉动了相关产业(服务业、金融业)的发展,带来了更多的就业机会。

而且,任何一项技术的发展都不是一蹴而的,而是循序渐进的过程。无论是最早期的类人猿的工具制造、还是后来的电力发展、再到现在的互联网时代,技术的发展与运用是需要时间来保证的。现在社会上有些人担心人工智能的发展会立即冲击自己的工作,实则是有些“杞人忧天”的意味。以史可以明鉴,历史上大的技术突破并没有对人类的工作产生毁灭性的打击。蒸汽机的诞生替代了传统的骡马、印刷机的诞生取代了传统的抄写员、农业自动化设施的产生替代了很多农民的工作,但这都没有致使大量的工人流离失所,相反,人们找到了原本属于人类的工作。新兴技术创造的工作机会要高于所替代的工作机会。所以,我们不必过分担心机器取代人类工作的问题。

四、谁来为事故负责

2016年7月,特斯拉无人驾驶汽车发生重大事故,造成了一名司机当场死亡。这件事故很快成为了新闻媒体的焦点。人们不仅仅关注这件事情本身所带来的影响,更加担心机器作为行为执行主体,发生事故后责任的承担机制。究竟是应该惩罚那些做出实际行为的机器(并不知道自己在做什么),还是那些设计或下达命令的人,或者两者兼而有之。如果机器应当受罚,那究竟如何处置呢?是应当像西部世界中将所有记忆全部清空,还是直接销毁呢?目前还没有相关法律对其进行规范与制约。

随着智能产品的逐渐普及,我们对它们的依赖也越来越深。在人机环境交互中,我们对其容忍度也逐渐增加。于是,当系统出现一些小错误时,我们往往将其归因于外界因素,无视这些微小错误的积累,我们总是希望其能自动修复,并恢复到正常的工作状态。遗憾的是,机器黑箱状态并没有呈现出其自身的工作状态,从而造成了人机交互中人的认知空白期。当机器不能自行修复时,往往会将主动权转交给人类,人类就被迫参与到循环中,而这时人们并不知道发生了什么,也不知道该怎样处理。据相关调查与研究,如果人们在时间与任务压力下,往往会产生认知负荷过大的情况,从而导致本可以避免的错误。如果恰巧这时关键部分出了差错,就会产生很大的危险。事后,人们往往会责怪有关人员的不作为,往往忽视机器一方的责任,这样做是有失偏颇的。也许正如佩罗所说:百分之60到80的错误可以归因于操作员的失误。但当我们回顾一次次错误之时,会发现操作员面临的往往是系统故障中未知甚至诡异的行为方式。我们过去的经验帮不上忙,我们只是事后诸葛亮[15]。

其实,笔者认为人工智能存在三种交互模式,即人在环内、人在环外与以上两者相结合。人在环内即控制,这个时候人的主动权较大,从而人们对整个系统产生了操纵感。人在环外即自动,这时候,人的主动权就完全归于机器。第三种情况就是人可以主动/被动进入系统中。目前大多数所谓的无人产品都会有主动模式/自动模式切换。其中被动模式并不可取,这就像之前讨论的那样,无论是时间还是空间上,被动模式对于系统都是不稳定的,很容易造成不必要的事故。

还有一种特殊情况,那就是事故是由设计者/操纵者蓄意操纵的,最典型的就是军事无人机这种武器,军方为了减少己方伤亡,试图以无人机代替有人机进行军事活动。无人机的产生将操作员与责任之间的距离越拉越远,而且随着无人机任务的愈加复杂,幕后操纵者也越来越多,每个人只是完成“事故”的一小部分。所以人们的责任被逐渐淡化,人们对这种“杀戮”变得心安理得。而且很多人也相信,无人机足够智能,与军人相比,能够尽可能减少对无辜平民的伤害。可具有讽刺意义的是,美国的无人机已经夺去了2500至4000人的性命。其中约1000位平民,且有200名儿童[14]。2012年,人权观察在一份报告中强调,完全自主性武器会增加对平民的伤害,不符合人道主义精神[16]。不过,目前对于军事智能武器伦理的研究仍然停留在理论层面,要想在实际军事战争中实践,还需要更加做出更多的努力。

综上可以看出,在一些复杂的人机环境系统中,事故的责任是很难界定的。每个人(机器)都是系统的一部分,完成了系统的一部分功能,但是整体却产生了不可挽回的错误。至于人工智能中人与机器究竟应该以何种方式共处,笔者将在下面一节中给出自己的一些观点。

五、笔者的一些思考

通过以上的讨论与分析,笔者认为,人工智能还远没有伦理的概念(至少是现在),有的只是相应的人对于伦理的概念,是人类将伦理的概念强加在机器身上。在潜意识中,人们总是将机器视之合作的人类,所以赋予机器很多原本不属于它的词汇,如机器智能、机器伦理、机器情感等。在笔者看来,这些词汇本身无可厚非,因为这反映出人们对机器很高的期望,期望其能够像人一样理解他人的想法,并能够与人类进行自然的交互。但是,现在的当务之急,是弄清楚人的伦理中可以进行结构化处理的部分,因为这样下一步才可以让机器学习,形成自己的伦理体系。而且伦理,正如第一部分讨论的,是由伦和理组成的,每一部分都有自己的含义,而“伦”,即人伦,更是人类在长期进化发展中所逐渐形成的,具有很大的文化依赖性。更重要的是,伦理是具有情景性的,在一个情景下的伦理是可以接受的,而换到另一种情景,就变得难以理解,所以,如何解决伦理的跨情景问题,也是需要考虑的问题。

而且值得一提的是,就人机环境交互而言,机指而不仅仅是机器,更不是单纯的计算机,而且还包括机制与机理。而环境不仅仅单指自然环境、社会环境,更要涉及到人的心理环境。单纯的关注某一个方面,总会做到以偏概全。人工智能技术的发展,不仅仅是技术的发展与进步,更加关键的是机制与机理的与时俱进。因为两者的发展是相辅相成的,技术发展过快,而机制并不完善,就会制约技术的发展。现在的人工智能伦理研究就有点这个意味。现在的人类智能的机理尚不清楚,更不要提机器的智能机理了。而且,目前机器大多数关注人的外在环境,即自然环境与社会环境,机器从传感器得到的环境数据来综合分析人所处的外在环境,但是却很难有相应的算法来分析人的内部心理环境,人的心理活动具有意向性,具有动机性,这也是目前机器所不具备的,也是不能理解的。所以对于人工智能的发展而言,机器的发展不仅仅是技术的发展,更是机制上的不断完善。研究出试图理解人的内隐行为的机器,则是进一步的目标。只有达到这个目标,人机环境交互才能达到更高的层次。

六、发展与展望

人工智能伦理研究是人工智能技术发展到一定程度的产物,它既包括人工智能的技术研究,也包括机器与人、机器与环境及人、机、环境之间关系的探索。与很多新兴学科一致,它的历史不长,但发展速度很快。尤其是近些年,依托着深度学习的兴起,以及一些大事件(AlphaGo战胜李世石)的产生,人们对人工智能本身,以及人工智能伦理研究的兴趣陡然上升,对其相关研究与著作也相对增多。但是,可以预期到的是,人工智能技术本身离我们设想的智能程度还相去甚远,且自发的将人的伦理迁移到机器中的想法本身实现难度就极大。而且如果回顾过去的话,人工智能总是在起伏中前进,怎样保证无论是在高峰还是低谷的周期中,政府的资助力度与人们的热情保持在同一水平线,这也是一个很难回避的问题。这些都需要目前的人工智能伦理专家做进一步的研究。

总之,人工智能伦理研究不仅仅要考虑机器技术的高速发展,更要考虑交互主体-人类的思维与认知方式,让机器与人类各司其职,互相促进,这才是人工智能伦理研究的前景与趋势。

参考文献:

[1][法]斯特凡·东希厄,徐寒易译.会做梦的机器人[J].环球科学.2017(4):48-49.

[2]毕彦华.何谓伦理学[M].中央编译出版社,2010.

[3][美]维纳,陈步译.人有人的用处:控制论与社会[M].北京大学出版社,2010.

[4][美]哈里亨德森,侯然译.人工智能-大脑的镜子[M].上海科学技术文献出版社,2011.

[5]M.Anderson,S.Anderson,C.Armen,TowardsMachineEthics:ImplementingTwoAction-BasedEthicalTheories[C].InM.Anderson,S.Anderson,C.Armen(Eds.),MachineEthics:AAAIFallSymposium,TechnicalReportFS-05-06.MenloPark,CA:AAAIPress,2005:1-7.

[6]王绍源,崔文芊.国外机器人伦理学的兴起及其问题域分析[J].未来与发展,2013,(06):48-52.

[7]迟萌.机器人技术的伦理边界机器人技术与应用[J].2009,(03).

[8]江晓原.人权:机器人能够获得吗?--从《机械公敌》想到的问题[N].中华读书报,2004-12-l.

[9]黄建民.我们要给机器人以"人权"吗?读书与评论[J].2009(06):55-58.

[10]姜潘.给机器人做规矩,要赶紧了[N].文汇报,2011-6-7.

[11]唐昊沫,舒心.人工智能与法律问题初探[J].哈尔滨学院学报,2007(01)

[12][美]刘易斯.芒福德,宋俊岭等译.机器的神话[M].北京:中国建筑工业出版社,2009.

[13][美]库兹韦尔,李庆诚,董振华,田源译.奇点降临.北京:机械工业出版社.2011.

[14][美]皮埃罗斯加鲁菲,任莉张建宇译.智能的本质[M].北京:人民邮电出版社,2017.

[15]JamesReason.Humanerror[M].:CambridgeUniversityPress.1990.

[16]杜严勇.关于机器人应用的伦理问题[J].2015,vol5(2):25-34.

摘自《科学与社会》2018.1返回搜狐,查看更多

人工智能伦理之争

当人工智能越来越多地渗透到我们日常生活中的方方面面,人类社会在加速迈向智能化、数字化的同时,科技伦理问题也接踵而来。从AlphaGo击败人类围棋世界冠军,到人脸识别带来隐私安全问题,再到特斯拉自动驾驶事故频发问责难,以及虚拟人大热引起职场焦虑,不少学者都表达了对伦理治理问题的担忧。

近日,中共中央办公厅、国务院办公厅印发的《关于加强科技伦理治理的意见》(以下简称“意见”)指出,重点加强生命科学、医学、人工智能等领域的科技伦理立法研究。这是我国发布的首个国家层面科技伦理治理指导性文件,为新兴技术伦理治理设置了“红绿灯”。

人工智能的真正价值不是取代人

“祝贺‘崔筱盼’获得2021年万科总部最佳新人奖!作为万科首位数字化员工,‘崔筱盼’今年2月1日正式‘入职’......她催办的预付应收逾期单据核销率达到91.44%。”今年年初,万科集团董事会主席郁亮发布的一条微信在朋友圈刷屏。据悉,这位名叫“崔筱盼”的虚拟人已经工作多日,而不少万科员工甚至不知道天天与其邮件往来的同事并不是真人,直到“最佳新人奖”揭晓,一切才真相大白。

伴随人工智能技术的飞速发展,虚拟人快步走向商业化落地。而眼看着一个个身怀绝技的虚拟人走进职场,“打工人”愈发担心自己的“饭碗”会不会被抢走。要知道这些虚拟人可不止能做到“996”,还能“007”,甚至可以全年无休,连工资都不用给。

然而,正如硬币的两面,人工智能的出现也填补了一些高危岗位的空缺,比如作业环境有毒有害或危险性较高的工作,抑或是需要长期远离市区的工作,人工智能对人力资源起到了很好的补充作用。这一方面,帮助很多企业解决了“用工难”问题;另一方面,在日趋严重的老龄化趋势下,有效缓解了劳动力短缺现象。

作为太空探索技术公司(SpaceX)CEO兼CTO、特斯拉公司CEO,马斯克对待人工智能的态度是复杂的。他一边警告说人工智能“脱轨”发展是人类当前面临的三大威胁之一,要避免彻底开发人工智能;另一边又在积极开发与人友好的人工智能,通过脑机接口技术寻求人类和人工智能共生之道,其麾下公司也几乎都与人工智能相关。

“人工智能伦理之争探讨的是人机关系,更重要的是以人工智能为媒介,人与人之间的关系。”中国社科院科学技术和社会研究中心主任段伟文对《中国电子报》记者说:“目前,人工智能伦理治理主要涉及四大难点:一是可控性和安全性;二是可靠性、精确性和稳定性;三是可解释性和透明度;四是问责追责问题。”在他看来,机器智能发展的每一步都是在学习人类智能,离不开人类智能的帮助,实际上是人类智能更智能、更智慧,而不是机器智能。

“人工智能的真正价值不是取代人,而是以人为本、造福于人。人工智能技术和伦理之间的关系,也不是此消彼长或者你强我弱的关系,而是相辅相成的。”旷视人工智能治理研究院院长张慧在接受《中国电子报》记者采访时表示,“其实对于任何技术来说,都不能脱离开法律法规、社会道德、行业规范等约束条件无序发展。在这一点上,人工智能也不例外。在合法合规、合情合理的框架下,人工智能只会发展地更好、更健康。”

全球人工智能伦理治理趋向同频

目前,全球至少已有60多个国家制定和实施了人工智能治理政策,可见世界范围内人工智能领域的规则秩序正处于形成期,伦理治理发展趋于同频。段伟文指出:“国外关于机器人的伦理治理应该是最为成熟的,像英国、新加坡、欧盟等都有相关伦理设计规范。”比如英国出台了历史上首个关于机器人伦理的设计标准——《机器人和机器系统的伦理设计和应用指南》。英国金融稳定委员会(FBS)制定了人工智能和机器学习在金融服务领域的应用规范,强调可靠性问责制、透明度、公平性以及道德标准等。

美国希望能够确保和增强在人工智能领域的优势地位,因此更强调监管的科学性和灵活性,也更重视实际应用领域的科技伦理治理,比如对大规模的生物特征识别技术的使用管理严格。美国证券与交易委员会(SEC)要求企业删除一些人脸数据库,甚至包括相关算法。

欧盟的监管风格则趋向于强硬,先后出台了《欧盟人工智能》《可信AI伦理指南》《算法责任与透明治理框架》等指导性文件,期望通过高标准的立法和监管来重塑全球数字发展模式。

微软、谷歌等国外科技公司在人工智能伦理治理方面也积极探索。比如,微软内设三大机构,包括负责任人工智能办公室(OfficeofResponsibleAI)、人工智能、伦理与工程研究委员会(AIandethicsinengineeringandresearchcommittee)、负责任AI战略管理团队(ResponsibleAIStrategyinEngineering),分别负责AI规则制定、案例研究、落地监督等,并研发了一系列技术解决方案。

谷歌是从积极方面和消极方面规定了人工智能设计、使用的原则,并承诺愿意随着时间的推移而及时调整这些原则。它还成立了负责任创新中央团队,推动伦理治理实践落地,比如,为避免加重算法不公平或偏见,暂停开发与信贷有关的人工智能产品;基于技术问题与政策考虑,拒绝通过面部识别审提案;涉及大型语言模型的研究谨慎继续,在进行全面的人工智能原则审查之前,不能正式推出。

在人工智能伦理研究方面,国外较为积极。全球私募股权巨头美国的黑石(Blackstone)集团联合创始人、全球主席兼首席执行官斯蒂芬·施瓦兹曼为牛津大学捐赠了1.88亿美元,用于资助人工智能伦理方面的研究。马斯克也曾向生命未来研究所(FutureofLifeInstitute)捐赠1000万美元,教导机器人“伦理道德”。

张慧指出:“各国的政府、企业和相关社会组织、行业组织之间正在逐步加强对话与合作,联合国也在国际人工智能治理规则制定等方面发挥日趋重要作用。可以说,人工智能治理已经成为全球共识,且已从理念层面进入到建章立制、落地实施的阶段。”

“还有一点值得关注,对人工智能技术的动态治理,其实反过来也会促进人工智能技术本身的发展。”段伟文表示。如人脸识别技术在某些场景中被禁用的情况只是暂时的,治理力度加大会推动相关技术短板更快地被补上。

人工智能伦理治理还是一个新命题

人工智能已经对整个人类社会产生了深刻影响。张慧谈道:“能力越大的技术,越是需要妥善治理好。人工智能既是我们创造美好生活的重要手段,也是需要进行妥善治理的对象。”

我国人工智能技术领域走在世界前列,在人工智能伦理治理实践方面也处于前沿探索者的位置,一些好的做法也在被海外讨论和借鉴。比如,政策层面,《关于加强互联网信息服务算法综合治理的指导意见》《新一代人工智能伦理规范》《关于加强科技伦理治理的意见》等的出台为科技伦理治理提供了顶层设计指导,一些发展较快的领域也出现了细分规范要求。

同时,国内如旷视、京东、科大讯飞等一些科技企业相继成立AI道德委员会、AI治理研究院等专门组织,从企业内部开始、从自身开始大力推动AI治理工作落实。腾讯研究院和腾讯AILab联合发布人工智能伦理报告《智能时代的技术伦理观——重塑数字社会的信任》,倡导建立面向人工智能的新技术伦理观。阿里安全探索“用AI治理AI”,促进人工智能可持续发展。旷视最早发布《人工智能应用准则》,并连续三年发起“全球十大人工智能治理事件”评选。

然而,截至目前,人工智能伦理治理还是一个新命题,没有太多历史经验可以参考,整个行业也在“边发展边治理”,逐步完善法律法规和凝聚道德伦理的共识。

“人工智能企业面临‘技术陷阱’。”段伟文指出,“人工智能技术在赋能社会的同时也会带来社会价值和伦理方面的冲击,而且短期内,负面影响可能会被放大。一些企业在早期发展中如果不重视伦理问题,就会导致社会对它的不信任。比如Facebook改名Meta,转型去做元宇宙就招来了一片质疑,尤其是对隐私安全方面的诟病。这时候就需要进行‘伦理回调’,通过企业一系列行为让人工智能变得‘可信’。”

他认为,科技发展过程中带来的伦理问题要进行主动回应。比如数据伦理问题,要加强数据隐私保护、信息安全保护;再比如算法伦理问题,要督促平台消除偏见和歧视,尽可能维护公正公平;信息传播伦理问题,内容平台运用人工智能技术分发内容时需思考如何保证内容健康、减少虚假信息等。“仅是制定伦理规范是不够的,人工智能企业应该通过这些举措,把握好一个‘度’,谋求SocialLicense(社会许可证),这样才能找到技术与伦理之间的最大公约数。”

寻找“最大公约数”一定是一个多方协同的过程。张慧表示:“人工智能的应用链条很长,有技术提供方、系统集成方、应用软件开发方、个人开发者等企业和从业者,也有不同行业的AI产品和应用的使用者、受益者等。目前国家各方面的法律法规正在逐步完善对不同相关方的权责说明,随着行业的发展,相信未来人工智能的伦理治理路径会越来越清晰。企业在推动AI技术创新和应用的每一个过程和环节也要严格遵守法律法规,这是所有工作的红线和底线。”

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇