中国人工智能创新处于什么发展水平
◎编辑|数字经济先锋号
◎来源|北京工业大学学报
◎作者|王山陈昌兵
人工智能作为新技术创新的代表与引领未来、重塑传统行业结构的前沿性与战略性技术,逐渐成为全球新一轮科技革命和产业变革的重要驱动力量。世界各国在以创新为主的人工智能新技术方面展开了激烈的角逐与残酷的竞争。
目前,我国人工智能技术创新水平如何?技术处于何种发展阶段?我国发展人工智能的优势在哪?未来我国人工智能发展趋势如何?本文即将告诉你答案。
指标体系的构建
基于技术创新大数据,本文创新性地构建多指标测度体系与技术创新综合发展指数;根据综合发展指数模拟各国人工智能技术创新S演化曲线,描绘动态演变轨迹并定位中美技术创新发展位置。重点结合五维度在不同阶段的权重分布,比较中美新技术创新发展差距,探讨影响我国人工智能新技术创新发展的主要因素。提出提高新技术创新水平的具体措施与发展建议,助力实现我国人工智能关键核心技术突破、摆脱被先发国家控制的劣势地位。
表1人工智能技术创新发展水平多指标测度体系
根据技术创新周期不同发展阶段可能呈现出的特征与各特征之间的内在逻辑关系,同时结合人工智能新技术创新发展影响因素与技术创新发展测度相关参考文献,我们选择了基础研究、技术创新、科技布局、产业规模与技术进步5个维度来测度人工智能技术创新发展水平(如表一所示)。
根据指标熵权计算式得到的人工智能技术创新水平各测度指标的权重值(Wj)(如表二所示)。从单个指标权重看,首先体现产业规模的人工智能技术融资规模指标权重最高,然后为人工智能新增企业数指标;其次为体现技术创新程度的人工智能技术优先权年专利申请量指标,研发课题数指标权重最低。从分析维度看,首先产业规模维度权重最大;其次为技术创新维度与科技布局维度,基础研究维度权重值最小。综上可知,产业规模与技术创新维度各参数动态变化对人工智能技术创新所处发展阶段的判断具有显著影响。
表2人工智能技术创新水平测度指标权重值
中美等国的对比与分析
根据分析,目前,我国人工智能技术正处于快速发展的技术成长期后期,技术创新十分活跃,未来将涌入更多的企业和科研机构,竞争也将越来越激烈。而美国人工智能技术萌芽于1990年,于2005年步入技术成长期,2020年开始走向成熟,并预计于2034年进入技术衰退期,目前正处于开展商业应用的技术成熟期,创新动力将持续增强。(拟合优度是指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R²。R²最大值为1,越接近1,说明回归直线对观测值的拟合程度越好,表三可见各国人工智能技术创新S演化曲线拟合优度R²均在0.9以上,拟合效果较为理想。——数字经济先锋号注)
表3中美等国人工智能技术创新发展阶段判定
日本、英国、法国与德国作为较早启动人工智能新技术研究开发与科研成果推广应用的主要发达国家,同样具有较大的先发优势,其技术创新发展水平早期均位列世界前沿且技术发展历程与演化轨迹比较相似,均在1990年左右进入技术创新萌芽期,后经技术不断地积累、发展与突破,分别于2005年与2019年左右步入技术创新成长期与成熟期,目前技术已经成熟。
图1中美等国人工智能技术创新周期S曲线
得益于雄厚的科技与经济实力,美国人工智能技术创新累计综合发展指数遥遥领先于其他各国,日英法德4国作为人工智能新技术创新发展早期的追随者与前期领导者,在人工智能技术领域,同样具有较高的发展水平与先发优势,鉴于人工智能技术创新是一个显著的动态累计过程,且发展周期较长,美日等世界主要发达国家并未因前期先发优势而形成技术发展垄断局面,因而为后发国家的技术追赶提供了巨大的机会窗口。
由图1技术创新演变曲线可预测出,在技术经验渐进性积累与自主创新能力不断提升的条件下,我国正逐步缩小与美国在人工智能新技术创新赛道上的发展差距,预计将在人工智能新技术创新发展的成熟期实现技术的追赶与超越。
目前,中国人工智能技术创新累计综合发展指数已超越英法德日4国,但与技术创新水平处于全球领先地位的美国相比仍有较大发展差距。本文从人工智能新技术创新累计综合发展指数增长率探索未来中国是否能反超美国并掌握创新发展的主导权,图2是各国人工智能技术创新累计综合发展指数增长率变化结果。
图2拟合中美等国人工智能技术创新累计综合发展指数增长率
由图2可知,1985-2003年,美国、英国、法国、德国与日本人工智能技术创新累计综合发展指数增长速率基本处于快速上升状态,尤其是美国。而我国的人工智能技术创新起步晚于美国,在基础研究原创性成果的不足或某些前沿领域的投入缺失的情况下错失了先发优势。但在国家大力扶持与自主创新能力不断提升的情况下,我国人工智能技术发展呈现出了非常强劲的增长态势。
因此,可以预见,在当前快速增长态势下,再加上后天技术的积累以及先发的数据优势,我国必将在人工智能新技术这一赛道上领跑全球。
影响因素动态分析
我国人工智能新技术创新发展速度较快,但关键核心技术水平与美国相比仍有差距。技术创新是一个多阶段过程,不同发展阶段因所需资源、条件不同而影响因素权重不同。本节创新性地引入技术创新不同阶段变量,动态分析不同阶段下人工智能技术创新的多指标测度体系中维度权重变化。进一步深入剖析我国人工智能新技术创新发展的影响因素。
由表四可以看出,中美两国在人工智能技术的发展阶段、技术创新和技术进步等方面存在差异。美国在人工智能新技术基础研究投入、技术创新布局、技术产业链上游的占据等方面具有较为显著的优势,而我国在科技布局、产业规模和融资份额等方面具有一定优势。但是,我国与美国相比,技术进步较为缓慢,尤其是在芯片领域存在较大差距,这将对我国的人工智能产业化形成不利影响。
因此,我们应该着眼于加强人工智能领域的基础研究,不断提升自主创新能力,积极推动技术创新和进步,在技术产业链上游抢占制高点,实现由技术跟随到技术引领的转变。同时,也需要加强与市场的有效结合,促进技术产业化的发展,让科技创新更好地服务于经济社会的发展,实现以科技创新驱动高质量发展的目标。
表4人工智能技术不同发展阶段影响因素权重分布
通过与美国的比较不难看出,我国人工智能新技术创新在基础研究、技术创新与技术进步维度,仍有相当发展空间,由于缺乏占据世界产业制高点的核心技术,存在若干被他国“卡脖子”的领域。
图3中美等国人工智能技术创新逐年发展指数
虽然我国人工智能新技术研发起步较晚,基础研究薄弱,技术创新累计综合发展指数与美国存在较大差距,但由技术创新逐年综合发展指数(图3)可知,我国人工智能新技术创新发展指数自2003年开始逐年上升,正不断缩小与美国人工智能技术创新累计综合发展指数的差距。作为后起之秀,在经历长期以技术跟随为主的技术潜伏期与萌芽期,以及二次创新为主的技术成长期后,依靠后发优势,我国于2017年反超自2003年以来技术创新逐年发展指数呈逐步下降态势的美国,跃居全球首位。
结论及建议
本文基于人工智能技术创新科研大数据,提出了人工智能技术创新水平多指标测度体系与技术创新综合发展指数计算模型,并通过绘制技术创新生命周期S演化曲线,对我国与世界主要发达国家在人工智能技术创新方面的发展阶段进行了评估与预测,深度剖析了我国与美国等国之间在技术创新、科技布局、产业规模、技术进步等方面的差距。
基于这些结论,本文提出了几点建议。首先,要强化基础研究,加大对基础研究长期稳定的支持力度,同时引导企业增加基础研究投入,提高我国基础研究水平和源头创新能力。
其次,要推动应用研究与基础研究的融合贯通,坚持问题导向、目标导向,设立重大科技计划项目,支持设立联合攻关团队(校企联合或校校联合等),或以企业为主导并协调高校和有关科研院所的资源,对有关人工智能的应用技术进行研究开发(委托研究、联合研究等形式)。
此外,还建议要产业化市场化发展,中国目前以高校为主、各自为战的人工智能研发体系不利于中国人工智能产业对前沿技术的把握和整体技术创新水平的进一步提升,也不利于技术的快速转化应用。建议培育一批技术先进、世界领先的企业,并带动产业上下游协同发展,形成持续创新能力、技术全球领先的产业集群。
最后,要完善技术创新机制,应鼓励企业培育和引进掌握关键核心技术的科技领军人才和团队,为产业发展提供智力支持;建立综合的关键核心技术突破与创新机制,将短期与中长期科技积累相结合,建立国家基础研究、产业科技等方面的公私结合的综合创新体系,将产业发展创新需求、国家战略创新需求、科研好奇创新需求等三大方面的创新动力综合起来,并重结合,实现“远水”和“近渴”的融合。
综上所述,通过实施这些建议,我国在人工智能技术创新方面可以进一步提升自身的科技水平和创新能力,缩小与美国等发达国家的差距,加速我国在人工智能领域的发展进程。
原文来源:王山,陈昌兵.中美人工智能技术创新的动态比较——基于人工智能技术创新大数据的多S曲线模型分析[J/OL].北京工业大学学报(社会科学版)。(因篇幅原因,本文有部分删减)
关于我们
「数字经济先锋号」是成都数联产服科技有限公司旗下数字经济研究交流平台。围绕数字产业、数字基建、数字治理、数字生态等数字应用领域,揭示与记录数字经济发展点滴与脉络。
数联产服是一家数字经济行业智库、产业大数据服务商,具备全流程大数据治理-分析-决策支撑服务能力,面向各级政府和产业运营机构提供基于大数据的产业经济发展解决方案和综合服务。
如何认识人工智能对未来经济社会的影响
原标题:如何认识人工智能对未来经济社会的影响人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。
人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。
总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。
作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。
一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。
另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。
当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。
(作者单位:国务院发展研究中心创新发展研究部)
(责编:赵超、吕骞)分享让更多人看到
人工智能的发展与未来
随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。
现如今,各种AI产品已经逐步进入了我们的生活|Pixabay
19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。
20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。
至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。
智能,是一种特殊的物质构造形式。
就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?
图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。
英国数学家,计算机学家图灵
这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。
虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。
1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。
而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。
而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。
而这之后,人工智能的发展也与图灵的想象有所不同。
现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。
但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。
人工智能让芯片的处理能力得以提升|Pixabay
从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。
虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。
参考文献
[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.
[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.
[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.
[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.
[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.
[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987
作者:张雨晨
编辑:韩越扬
[责编:赵宇豪]新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
作者:徐云峰
catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]人工智能时代需培养学生怎样能力
“未来人工智能环境下的课堂,可能是‘双师型’的课堂,人机交互、人机结合将成为主要形态。一堂课可能由一名教师和一个机器人共同来上,布置和批改作业、知识点训练、监督学习、学习情况的分析等工作可能由机器人来完成。”在日前召开的第四次全国数据驱动教育改进专题研讨会上,北京师范大学中国教育创新研究院院长刘坚这样描述人工智能时代的课堂。
人工智能不能代替学习
面对席卷而来、被称为人类“第二次零点革命”的人工智能浪潮,互联网时代的教育界,也不那么淡定了。“因为人工智能不是信息化的延续,技术对教育的影响,正在由‘革新’发展为‘革命’。”中关村学院学术委员会原负责人吕文清说,“高级阶段的人工智能具有类人脑的学习力和思考力,将来还能进化到自适应学习,在这个意义上,人工智能拓展了人的思维。人工智能改变的,不仅是教育的边界和方式,整个教育样态也将面临重塑。”
不过,科大讯飞教育研究院院长孙曙辉认为,人工智能不能代替人的思维,不能代替学习,技术也改变不了教育的本质。因此,在当前热炒人工智能概念的大背景下,一定要认清技术与教育的关系,搞清楚哪些是教育本身的问题,哪些是技术可以解决的问题。
高阶认知能力的重要性将更加凸显
在人工智能时代,学生应该具备怎样的能力,才能适应社会需求,在竞争中立于不败之地?
教育部副部长杜占元在去年12月召开的2017未来教育大会上提出,在机器能够思考的时代,教育应着重培养学生的5种能力,即自主学习能力、提出问题的能力、人际交往的能力、创新思维的能力及筹划未来的能力。
教育部科技发展中心原主任李志民说,今天我们说知识就是力量,讲的是如何学习、记忆和掌握更多的知识,讲究知识的系统性,而在人工智能时代,知识是开放的,随时随地可查找、可检索,因此,记忆知识以及知识的系统性不再像今天这样重要了,学生更需要学习如何从已有的知识中挖掘出新应用、新知识,通过已有知识学习新知识,与之对应的知识结构或学习过程就是思维的训练。
“低阶认知技能的重要性会下降,如记忆、复述、再现等初级信息加工任务将更多地被机器代替,而高阶认知能力的重要性会更加凸显,如识别问题、逻辑推理、意义建构、精致思考、自我指导能力等。”吕文清认为,人工智能时代应重点培养学生的终身学习素养、计算思维素养、设计思维素养和交互思维素养,培养学生5种能力——高阶认知能力、创新能力、联结能力、意义建构能力和元认知能力。终身学习素养,主要基于人工智能时代需要更强大和持续的学习力,强调学会学习和建构不断演进的知识框架;计算思维素养,主要基于学习和理解人工智能,强化思考的逻辑和精致。现在很火的编程课程,主要是培养计算思维;设计思维素养,主要基于人工智能时代学生执行困难任务,需要关注项目设计、任务设计和路径设计等高层次管理,重点引导学生学会选择、学会决策、学会判断;交互思维素养,主要基于人工智能时代学生交往方式的变化,需要高级信息素养、媒体素养、沟通交流和技术伦理,重点引导学生学会开源共享、参与协商、组建社区等,理解复杂的相互关系。高阶认知能力,强调独立思考、逻辑推理、信息加工等;创新能力,强调好奇心、想象力和创新思维、创新人格等;联结能力,强调学会统筹、组织资源、建立联系,特别是包括人工智能在内的多个空间的联结;意义建构能力,强调社会情感、责任意识和高感性、高概念等要素;元认知能力,强调学习自我认知、自我监控和自我指导。
“我认为,没有什么能力是贴有人工智能时代专属标签的。随着时代的发展,人类已有的知识和经验变得不重要,而培养学生的综合素质、高阶思维、创新能力等,这些要求无论在哪个时代都是需要的、共通的、不会过时的。”孙曙辉说。
未来的学习将更加个性化
未来的学习,在哪儿学、跟谁学、怎么学?原有的概念可能都会被颠覆。教育又该如何作出调整,以适应新的时代要求?吕文清认为,人工智能时代对学生的学习目标、学习内容、能力层级甚至心智模式,都提出了新的需求。在教学上,人工智能时代要以“思维教学”为主线,既强调基于认知能力的信息加工、分析综合、逻辑推理等高阶思维的培养,还要增加和突出计算思维、设计思维和交互思维的培养。具体落点上,要强调概念性知识、方法性知识和价值性知识的教学,要注重教原理、教统筹、教大观点、教元认知等不可替代的知识,也就是高阶认知和高阶学习。
人工智能对于当前的教育,不只是颠覆和冲击,也会带来促进和改良。李志民说,人工智能时代的教育管理,无论是宏观层面还是微观层面,都更容易做到精细化,对教师的评价会更加全面而科学;可以根据每个学生的智力程度和思维习惯以及学习方式进行教学,实现真正的个性化学习和因材施教。
据了解,目前许多中小学已开设编程、3D打印技术等与人工智能相关的课程,学生学习兴趣特别浓厚。一些学校还以社团和选修课的形式推进机器人、智能汽车、计算机编程等课程的开设与完善,提升学生信息化素养,促进学科知识融合。
人工智能时代,学生获得知识及能力、素养的提升途径无疑会更多元,其中互联网发挥的作用会更大。而人工智能的应用,会让教师从机械重复的工作中解放出来,去做更有价值的工作。孙曙辉认为,在中小学开设编程等人工智能相关课程,有助于训练学生的思维方式,但主要意义在于普及相关科学知识,并不能帮助学生“赢在起跑线”。目前,很多所谓人工智能的应用,包括一些针对职业人群的人工智能培训,都是炒作概念的“伪人工智能”,人工智能在短期内尚难发展到较为高级的阶段。当前市场上已经出现针对中小学生的打着“人工智能”旗号的相关培训班,家长完全没必要怕“掉队”,在现阶段,保持清醒的头脑,不盲目跟风至关重要。(本报记者汪瑞林)