人工智能的历史、现状和未来
2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄
2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄
2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国
2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士
专家:人工智能对国家政治安全带来5大挑战
【讲武堂】
人工智能技术的蓬勃发展和广泛应用,给人类生产生活带来了极大便利,同时,也对国家主权、意识形态、执政环境、社会关系、治国理念等带来冲击,深度影响国家政治安全。充分认清人工智能对国家政治安全的挑战,研究应对之策,对于有效维护国家政治安全,意义重大。
人工智能影响政治安全的机理
作为一种颠覆性技术,人工智能进入政治领域后,既具有技术影响政治安全的一般规律,又体现出其不同于以往技术的鲜明特点。
从技术影响政治安全的一般机理来看,主要体现在三个方面。第一,技术进步不可避免地直接或间接服务于政治安全。政治安全是国家安全的根本,经济、社会、网络、军事等领域安全的维系,最终都需要以政治安全为前提条件。因此,包括技术在内的一切社会条件,首要的任务是为政治安全提供服务和保证。综观人类历史上的技术进步,往往被首先考虑用于维护国家安全特别是政治安全,尽管这些技术研发的初衷并非如此。人工智能亦然。第二,政治安全与技术进步相生相克、相生相长。马克思认为,先进技术进入政治领域后,有效提高了“社会控制和权力再生产”。同时,政治安全对技术进步的需求,反过来成为技术不断进步的推动力。但技术并非完美的政治工具。一旦技术利用不当、发生技术失控,或者技术自身缺陷所蕴含的风险爆发,政治安全可能被技术进步反噬。第三,技术进步倒逼政治发展转型,给政治安全带来新课题新挑战。从历史上看,技术进步对社会结构、社会关系、社会文化等带来的变化和冲击,从来不以人的意志为转移。当火枪火炮成为主战兵器时,继续用木盾藤牌来保卫政权的行为无疑是愚蠢的,迫切需要当政者转变思想观念,寻求能够有效维护政治安全的新模式新方法。当计算机网络技术逐渐普及时,西方国家政党纷纷利用互联网进行政治宣传和选举拉票。人工智能较之以往的技术,拥有前所未有的机器“主观能动性”优势,必将对政治安全理念、安全机制、安全路径等带来更大的改变。
从人工智能影响政治安全的独特机理来看,主要体现在两个方面。第一,算法和大数据将左右智能机器“认知”“判断”,继而影响政治行为体的抉择。人工智能的核心“三大件”是算法、算力和大数据。一方面,算法是否公正不偏袒、大数据是否真实完整未被删减篡改伪造污染,直接决定机器的研判结果,并影响人的判断和行为。另一方面,与传统的人口学变量的定量分析不同,大数据、云计算、机器学习等可以将数以亿计的政治行为体抽象成社会的“节点”,人工智能通过分析信息中节点的度数、介数和接近度,来揭示权力集聚规律、赢得政治威望的秘诀,这为执政安全提供了新的技术支撑和智慧渠道。第二,人工智能技术对经济、军事、社会、网络、信息等领域的影响向政治领域传导,间接冲击政治安全。作为一项赋能性技术,人工智能正在逐渐“改写”各领域的秩序规则,给各领域带来机遇和挑战。尽管以往的技术进步也是如此,但其影响的深度和广度远远不及人工智能。而且,以往各领域安全问题“错综复杂、交织并存”的程度,也远远不及人工智能时代高。其他领域的安全问题一旦发酵,极有可能冲击政治安全。
人工智能给政治安全带来新挑战
技术变革具有两面性,人工智能既是维护政治安全的新机遇,也是新挑战。
挑战之一:人工智能技术的普及应用,导致政治权力呈现出“去中心化”趋势。在人工智能时代,数据即代表着权力。掌握数据的主体既有国家权力机构,也有个人、企业团体、社会组织等非国家行为体。“互联网数据”结构的“多节点、无中心”设计,决定着处于线上社会任何位置的主体,均不可能比其他位置的主体位势高。人人都有“麦克风”“摄像机”,处处都是“舆论中心”“事发现场”,这一显著特征,弱化了传统的线下科层制国家管理结构和单向治理模式,政治话语权由政府这个传统的权力中心逐渐向社会层面弥散,国家治理难度大大增加,政治安全风险也大大增加。目前,这种风险已初露端倪。2019年9月,因有人线上传播“老师辱骂原住民学生是‘猴子’”的种族歧视谣言,印尼巴布亚省爆发严重骚乱,导致26人死亡、70余人受伤。
挑战之二:随着人工智能技术和数据垄断持续扩张,资本权力的扩张将危及国家权力边界。生产力的发展变化必将带来生产关系包括政治权力结构的调整。作为“第一生产力”的科学技术,其发展进步势必引起国家权力结构的调整。当人工智能技术广泛应用于经济社会各领域并引起变革时,将会推动国家治理结构与权力分配模式做出相应调整。从当前种种迹象来看,资本的权力依托技术和数据垄断持续扩张,将成为新时代国家治理结构调整的重大课题。一方面,人工智能技术研发门槛很高,依赖于大量的、长期的资本投入和技术积累,这导致社会各产业、各阶层、各人才群体间的技术研发能力、资源占有程度、社会影响力等方面极不平衡,以互联网商业巨头为代表的技术资本将占据明显优势。另一方面,人工智能技术强大的赋能作用,以及良好的经济社会应用前景,导致资本趋之若鹜。商业巨头实际上掌握了目前人工智能领域的大部分话语权,并正在逐步形成行业垄断。人工智能时代,巨头企业以强大资本为后盾,逐步垄断技术、控制数据,或将不可避免地在一定程度上逐渐分享传统意义上由国家所掌控的金融、信息等重要权力,进而可能插手政治事务。因此,国家是否有能力为资本权力的扩张设定合理的边界,是未来政治安全面临的重大挑战。
挑战之三:人工智能技术及其背后的数据和算法潜移默化引导公众舆论,进而影响人的政治判断和政治选择,间接把控政治走向。在人工智能时代,数据和算法就是新的权力。近年来围绕国家大选而展开的种种政治运作显示:拥有数据和技术能够从一定程度上影响政治议程。据有关媒体报道,2020年美国总统大选期间,有人利用网络社交平台的大量机器人账号,发布海量虚假信息,力图影响选民的认知、判断与选择。类似的情况,也曾出现在2016年的美国大选、2017年的英国大选和法国大选中。这些案例非常清晰地显示:只要拥有足够丰富的数据和准确的算法,技术企业就能够为竞争性选举施加针对性影响。当某种特定政治结果发生时,人们很难判断这是民众正常的利益诉求,还是被有目的地引导的结果。
挑战之四:人工智能技术可能被政治敌对势力用于实施渗透、颠覆、破坏、分裂活动。利用先进技术威胁他国政治安全,这样的例子屡见不鲜。计算机网络技术出现后,被西方国家用来进行网络窃密、网络攻击、网络勾联、传播政治谣言、意识形态渗透和进攻。人工智能时代,攻击一国人工智能系统或利用人工智能实施渗透、颠覆、破坏、分裂活动,带来的后果将比以往更为严重。
挑战之五:人工智能技术进步对主权国家参与国际竞争带来严峻挑战。人工智能是当前最尖端最前沿的技术之一,其核心技术多被美欧等发达国家所掌握。这些国家利用它提升生产自动化水平,提高劳动生产率,加快制造业回迁,将冲击发展中国家的传统比较优势,使后者在国际政治经济竞争格局和全球分工中处于更加不利的地位。通过发展军事智能化,进一步扩大对发展中国家的军事优势。国家之间一旦形成技术“代差”,综合实力差距将被进一步拉大。在这种情况下,技术强国对发展中国家实施政治讹诈和技术突袭的可能性增大。
多措并举,维护我国政治安全
政治安全事关我党生死存亡和国家长治久安,我们必须高度重视人工智能带来的政治安全挑战,多措并举,综合施策。
人工智能技术具有高度专业性和复杂性,企业、科研机构常常处于技术创新前沿,而国家政府则往往远离技术前沿,对技术的感知相对滞后,对技术的安全风险准备不足。为此,要强化风险意识,密切跟踪人工智能技术和应用的发展,运用系统思维,定期研判人工智能可能带来的政治风险,提高风险识别、防范和处置能力。要创新技术治理模式,构建政府主导,企业、研究机构、技术专家、公众等多方参与的人工智能治理体系。“治理”不同于“管理”,管理是政府单向的行为过程,治理则是一种开放的、多个利益攸关方参与的互动过程。通过多方互动,政府既可以跟踪掌握技术和应用的前沿动态、发展趋势,掌控治理主动权,又有助于企业、研究机构、专家、民众更好地了解政府关切,共商制定风险管控机制,推进治理工作的科学化民主化。
当前,我国在人工智能技术领域面临的最重大的安全威胁,是关键核心技术受制于人。从现在起到2030年,是我国抢抓机遇的关键期。要举全国之力,集全民之智,打造一批国家级人工智能研发平台,加强基础性、原创性、前瞻性技术研发,从智能芯片、基础算法、关键部件、高精度传感器等入手,加快核心技术突破。
没有规矩,不成方圆。针对技术应用风险,严格人工智能标准制定和行业监管,确保人工智能良性发展。紧跟技术发展变化,动态修订完善相关技术标准。加紧完善人工智能相关法律法规和伦理道德框架,对相关的民事与刑事责任确认、隐私和产权保护、机器伦理等问题予以明确,理顺设计者、使用者、监管者之间的权责关系。要建立健全人工智能监管体系,形成设计问责和应用监督并重的双层监管结构,实现对算法设计、产品开发、成果应用的全过程监管。积极促进行业自律,加大对数据滥用、算法陷阱、侵犯隐私、违背道德伦理、擅越权力边界等不良行为的惩戒力度。要积极主动参与人工智能国际议题设置,共同应对安全、伦理、法律等诸多挑战。抓住人工智能国际准则和配套法规刚刚起步之机,积极参与规则制定,及时宣示我国主张,努力掌握规则制定话语权和国际交往主动权。
针对外部安全风险,加强军事能力建设,为维护国家政治安全提供力量保证。要积极研究探索智能化战争理论,加快推进现代武器装备体系和人才队伍建设,强化智能化条件下部队训练演练,不断提升我军新时代军事斗争准备水平。
(作者:许春雷,系军事科学院博士研究生,现任河北省石家庄市鹿泉区人武部副部长)
人工智能引发产业结构深刻变革
原标题:人工智能引发产业结构深刻变革人工智能引发产业结构深刻变革
人工智能(ArtificialIntelligence,AI)作为计算机学科的一个分支,20世纪70年代以来被称为世界三大尖端技术之一。经过多年的不断创新发展,人工智能让智能设备逐步实现从认识物理世界到个性化场景落地的跨越。近年来,通过人工智能提高生产力以及创造全新的产品和服务,已经成为经济竞争和产业升级的迫切需求。
为实体经济创新发展赋能。实体经济是强国之本,富民之基。建设现代化经济体系,必须把发展经济的着力点放在实体经济上。在当前的大环境下,实体经济的创新之路,离不开与人工智能的深度融合。目前,应用型人工智能已经渗透到了各行各业,多种技术组合后与硬件设备或者软件设备的深度融合,改变了不同领域的商业实践,为实体经济的发展注入了新的能量。包括医疗、零售、金融、教育、农业等领域,通过运用自然语言处理(NLP)、计算机视觉与图像(CV)、语音识别等人工智能技术,实现了创新发展。以医疗为例,依托深度学习算法,人工智能在提高健康医疗服务的效率和疾病诊断方面具有天然的优势:一方面是基于计算机视觉通过医学影像诊断疾病;另一方面是基于自然语言处理,先“听懂”患者对症状的描述,然后根据疾病数据库里的内容进行对比和深度学习诊断疾病。这两方面的运用,大大提升了医疗服务效率和体验,对于未来健康医疗行业的发展具有重要的意义。
为产业结构转型升级助力。人工智能正在引发产业结构的深刻变革。越来越多的传统产业在新旧动能转换中,将人工智能作为转型升级的新动力。国务院印发的《新一代人工智能发展规划》强调,要大力发展人工智能新兴产业,包括智能软硬件、智能机器人、智能终端、物联网等,并推动智能产业升级,在制造、农业、物流、金融、商务、家居等重点行业和领域开展人工智能应用试点示范。运用了人工智能的机器设备替代人或与人协同工作,促进了网络智能设计制造与服务,大幅提升了劳动生产率,重塑了产业链与价值创造和分配方式。
推动智能制造业快速发展。加快建设制造强国的核心关键问题,便是人工智能等高新技术与实体经济的深度融合。智能制造作为高性能产业,对提升一国的制造业核心竞争力具有重要的战略意义。智能制造的发展基于人工智能的发展,换言之,人工智能的发展将直接推动智能制造业的快速发展。从智能制造设备到智能车间、智能企业,从智能供应链到智能制造生态系统,制造业趋向高端化、智能化、服务化的产业结构。根据2017中国智能制造创新发展论坛发布的《智能制造创新基地发展规划(2017―2021)》预估,到2020年,中国智能制造产业体系将全面构建,智能装备制造产业销售收入将超过3万亿元,年均增长率可达25%。此外,中国智能产品市场规模也将超过万亿元。智能制造业将迎来下一个蓝海。
2016年,国家发展改革委、科技部、工业和信息化部、中央网信办等联合制定的《“互联网+”人工智能三年行动实施方案》提出,计划到2018年,基本建立人工智能的产业、服务和标准化体系,实现核心技术突破,培育若干全球领先的人工智能骨干企业,形成千亿级的人工智能市场应用规模。未来,人工智能将在国防、医疗、工业、农业、金融、商业、教育、公共安全等领域得到更深入的应用,人工智能应用场景将无处不在,通过与各产业领域的深度融合,形成数据驱动、人机协同、跨界融合、共创分享的智能经济形态。届时,智能家庭、智能企业、智能城市、智能国家、智能世界等,构成智能社会的不同层面;智能环保、智能建筑、智能交通、智能政府、智能医疗等,则构成智能经济的不同领域。
人工智能正在成为新一轮技术和产业变革的趋势,也正在悄然改变着这个世界。这是继工业时代、电气时代、信息时代之后,人类文明的又一重大进步。
(作者:郭军:广东省社会科学院;陈聪:广东广富诚信息科技集团有限公司)
(责编:赵爽、李栋)分享让更多人看到
人工智能带给各行业的冲击和机遇
随着科技的发展和社会的进步,高新技术正在慢慢地改变人类的生活方式,在这些巨大变化的背后是无数科研人员辛勤努力的结果。下面结合人工智能领域的文本理解研究方向,介绍人工智能领域近些年的发展和带给各行各业的变化。
人工智能技术指的是获取某一领域的海量信息,并利用这些信息对具体案例做出判断,以达成某一特定目标的技术。这些技术在给定任务中所展现出的工作能力已经被证明可以完全超越人类的表现。例如目前的信贷风险评估已经逐渐从人为评估转变为自动化评估,如何做到的呢?金融机构利用大量的历史借贷记录以及分析后的借贷的结果作为训练集,让计算机学习并理解如何评估是否实施借贷,也就是学习一系列的规则。当计算机学习完毕后,我们再给计算机一些新数据时,计算机就会利用原有的规则分析这个机构或者人的借贷条件,最后判断是否给予借贷。从而解放了人为的繁复工作,仅仅依靠计算机就能轻松解决。再例如,传统的客服行业都是雇佣大量的人员接线,成本巨大,目前随着人工智能的迅猛发展,已有很多公司如微软、百度、阿里率先实现了智能客服服务,用户输入问题后,计算机先理解问题然后在答案库里匹配答案,将结果反馈给用户。
今天,这样的人工智能技术正在被广泛应用于各个领域。随着它的进一步发展,会不可避免地对就业造成冲击。很多岗位和职业会逐步消失,如银行出纳员、客户服务代表、电话销售员、股票和债券交易员等;甚至律师助理和放射科医生这样的工作也会被这类软件所取代。假以时日,人工智能技术还会学会控制如无人驾驶汽车和机器人这类半自主或全自主硬件设施,逐步取代工厂工人、建筑工人、司机、快递及许多其他职业。人工智能技术所带来的冲击并非单纯指向
某些特定岗位和职业,如传统制造业中的手工艺者被流水线工人所取代;或只会使用纸张和打字机的秘书被精通电脑的个人助理所替代等;人工智能所带来的是对现有职业和工作版图大规模地颠覆。简而言之,就是大量重复性肌肉劳动将会被人工智能取代,并且一些高难度的具有一定危险性的工作也会被人工智能取代,例如目前研制出的手术机器人可以为艾滋病患者、乙肝患者等具有传染性疾病的病人手术,从而降低了医护人员的危险性。
但随着人工智能的发展,除去传统行业被高新技术取代,创新型工作也面临着巨大的危机。音乐领域,索尼巴黎计算机科学实验室研究人员盖坦•哈杰里斯(GaetanHadjeres)与弗朗索瓦•帕切特(FrancoisPachet)编写的“DeepBach”(深度巴赫)的神经网络,通过学习352部巴赫的作品之后几乎可以能创造出以假乱真的巴赫曲目;编剧领域,一个人工智能程序名为“Benjamin”,通过学习大量剧本后,创造出一个9分钟短片。“Benjamin”目前没法做到像人类写的剧本那样逻辑通顺,刚出来的稿子有很多让人啼笑皆非的地方,不过整体而言,人工智能创作的具备还是很有意义。同时,让人惊讶的是,Benjamin根据剧本的情节,创作了相应的背景音乐;在围棋领域,谷歌创造的阿尔法狗横扫李世石等顶级高手,颠覆了人类对于围棋中“棋谱”的认识,打击了棋类的最后堡垒。
以此看来,人工智能显然是有能力和潜力取代人类现有的各类工作的,梁建章先生说的30年,显然是非常保守的判断。
随着一些行业的被取代,同样会出现一些“新兴”的行业,如已被行业认可的“自然语言处理”、“语音识别工程师”等,还有业内人都没意识到的职位,比如人工智能/机器人产品经理;脑洞再大一点,未来可能会有“机器人道德/暴力评估师”等职位。那么在人工智能时代,社会亟需的是哪些人才呢?
1.专才+创造力。
无论是上述三类需求来源的哪一种,浮于行业表面的人,都会被AI替代。只有具备深度的专业能力和创造力,才能有立足之地。
2.如果做人工智能行业,还需要极强的多领域理解力+沟通合作能力。
如服务机器人行业,会是人工智能+互联网+机器人硬件等多领域的交集,同时能懂这三方面的人是可遇不可求的。实际工作中,一定会需要和其他背景的牛人共同协作,这时,一方面,需要多领域的知识储备,另一方面,沟通合作能力尤其重要。
综上所述,我们需要不断学习,积累更多技能,不断适应社会对于职业的需求,才能让自己立于不败之地。
人工智能时代,制造业面临的机遇与挑战
前言:当前,在全球人工智能发展的浪潮中,中国在人工智能领域取得了令人瞩目的成绩。不过,在制造领域,却面临着人工智能发展与制造业融合不足的挑战。近日,中国工程院院士、中国互联网协会理事长邬贺铨表示,尽管目前中国在人工智能领域的投资绝对值高于美国,但是在制造业的投入明显不足。他认为,这主要是由于制造业的数据采集流程更长、数据的可靠性挑战较大所导致的。
人工智能向制造业的融合渗透面临挑战
人工智能自1956年诞生至今,已经先后经历了两次发展浪潮。如今,由于算法的进步、计算能力的大幅提升以及大数据的普遍应用,人工智能技术又进入了一个新的发展阶段。在中国,虽然人工智能技术正加速向各个领域渗透,但是它在制造业的应用仍是短板。
中国工程院院士、中国互联网协会理事长邬贺铨近日表示,尽管目前中国在人工智能领域的投资绝对值高于美国,但在制造业的投入明显不足,而制造业是人工智能应用在未来的巨大市场。他介绍,在2015年人工智能给中国各行业带来的增速统计中,制造业排在第一位,但目前中国人工智能投资23.4%集中在商业及零售领域,18.3%在自动驾驶,而制造业却不到1%。他认为,这主要是因为制造业的数据采集流程更长、数据的可靠性挑战较大所导致的。
人工智能与制造业深度融合的难点有哪些?
当前,人工智能技术的应用场景主要集中于商业领域,因受专用性限制以及数据量的影响,人工智能与制造业的融合场景主要是在非制造的研发、售后服务等环节。因此,我国人工智能与制造业的深度融合主要面临以下三个问题:
1、制造环节数据难以开发利用
人工智能与制造业的深度融合发展需要以大数据作为支撑,与消费环节相比,制造环节数据的可获得性、可通用性更弱。制造业机器设备生成的数据通常较为复杂,有接近一半的数据是没有相关性的。与此同时,制造环节的数据需要安装大量高精度传感器,这不仅需要投入巨额的资金,而且在后期维护上也会产生检修及人工成本等。
2、无法采用可复制的系统和整体解决方案
人工智能必须根据制造业的具体场景进行定制,简单照搬模版式的制造业人工智能解决方案是不可行的,而且也不存在一个能够被大多数制造业接受的统一的人工智能系统。此外,不同制造业之间的技术、流程差异巨大,对人工智能有不同需求,一个人工智能系统难以满足所有制造业的要求。
3、人工智能与制造业深度融合所需的复合型人才严重缺乏
一般来说,人工智能高端人才主要集中在互联网行业,而制造业相关人员对人工智能概念的理解、对技术的掌握还不是很准确。因此,难以支撑制造业企业智能化转型升级。从人才供给看,现阶段既了解制造业技术又掌握人工智能技术,还能够进行应用开发的复合型人才严重缺乏。
如何解决人工智能与制造业深度融合的难点?
因此,我国要在人工智能时代提升制造业的竞争优势,还需从以下三个方面补齐短板。
1、构建制造环节的工业数据库
目前,工业领域主要以企业私有数据库为主,且数据规模有限。要实现人工智能与制造业的深度融合,就必须要在制造业领域加强数据获取与整合。
2、促进学术交流
推动学术界与产业界之间围绕人工智能与制造业深度融合进行深入交流,在交流互动过程中形成多学科知识融合、专业知识扩展。
3、加强相关领域人才培养
在大学教育中增加智能制造相关课程,完善教材编制,形成教学体系,满足人工智能时代对技术人才的需求。
人工智能技术将为制造业带来怎样的影响?
与此同时,国家有关部门也出台了相关政策推动人工智能和制造业的深度融合。2017年12月,工业和信息化部印发了《促进新一代人工智能产业发展三年行动计划(2018-2020年)》。计划提出,以信息技术与制造技术深度融合为主线,以新一代人工智能技术的产业化和集成应用为重点,推进人工智能和制造业深度融合,加快制造强国和网络强国建设。此外,十三五规划也强调要实施智能制造工程,构建新型制造体系,促进新一代高科技产业发展壮大。那么,人工智能技术究竟会为制造业带来怎样的影响呢?
1、重塑制造业
有业内专家认为,人工智能对制造业的研发、生产、营销等方面都会产生不可预期的影响。在研发环节,基于人工智能技术可以实现行业需求发掘、用户画像;在生产环节,利用人工智能技术可以发挥其在网络化制造、智能工厂等方面的优势;在营销环节,通过人工智能技术可以提升营销效率。
2、人工智能将促使传统制造业转型升级
传统制造业规模化、标准化等特点,使其在生产个性化、定制化产品方面受到了一定的限制。调整生产线需要花费时间和资金,面对巨额定制成本,许多企业无法为小批量定制化的产品安排合理的生产。人工智能的应用将会极大提升制造企业的柔性化程度,满足低成本大规模定制的需求。
3、缓解人力成本上涨压力
制造业一直是国民经济中就业岗位的大类,同时也是我国就业总人数中比重较高的行业。随着经济持续增长和人口老龄化的日益严重,劳动力逐渐减少,劳动力成本也在不断上涨。人工智能技术的发展将使大量的工业机器人在很多岗位和领域代替人类劳动者,这将大大降低制造业的劳动力密度。
写在最后:
研究表明,人工智能与制造业的深度融合促进经济增长的效果要远高于其他行业。据咨询公司埃森哲发布的《人工智能:助力中国经济增长》报告指出,到2035年,中国经济年增长率将在人工智能拉动下从6.3%提速至7.9%。
可以说,人工智能技术融入制造领域是制造业发展的必然趋势。同时,以人工智能技术为代表的新一轮技术的广泛应用,对于制造业这类传统产业来说是一个新的机遇。因此,加快人工智能与制造业的深度融合,是促进中国智能制造走向全新时代的一个必要条件。