博舍

黄金新十年来临,人工智能面临哪些机遇与挑战 人工智能热门话题有哪些呢

黄金新十年来临,人工智能面临哪些机遇与挑战

原标题:黄金新十年来临,人工智能面临哪些机遇与挑战?

编者按:本文系专栏作者投稿,作者智能相对论。

3月11日,全国两会闭幕,“人工智能”依然是热议话题,不过今年意义却大不一样,十三届全国人大四次会议表决通过十四五规划纲要,智能经济被寄予厚望。2021年很可能会是智能经济的一道分水岭。

2021年,智能经济分水岭

自2016年以来,两会上关于人工智能的声音就越来越多。2017年两会上,百度CEO李彦宏提交的三份提案就均与AI相关,科大讯飞CEO董事长刘庆峰则提议将“智能+”上升为国家战略……今年两会上“人工智能”依然是高频词汇。

李彦宏提交的5份提案涉及自动驾驶和智能交通、智慧养老进社区等方面,均与AI相关;联想杨元庆则提出“新IT”即IntelligentTransformation(智能转型)的概念;小米雷军的建议涉及智能制造等三个方面;360周鸿祎则建议要尽快加强智能汽车网络安全……

在两会上被表决通过的十四五规划纲要中,“科技”出现36次,“数字”出现17次,“智能”出现7次。“加快数字发展”与“发展战略性新兴产业”均拥有自己的独立篇章。

规划纲要指出:“发展数字经济,推进数字产业化和产业数字化,推动数字经济和实体经济深度融合,打造具有国际竞争力的数字产业集群。加强数字社会、数字政府建设,提升公共服务、社会治理等数字化智能化水平。”

规划纲要明确要“推动互联网、大数据、人工智能等同各产业深度融合,推动先进制造业集群发展,构建一批各具特色、优势互补、结构合理的战略性新兴产业增长引擎,培育新技术、新产品、新业态、新模式。”

今年两会上,代表们都在强调两个字:“应用”,更关注AI在产业经济、社会民生与城市治理等领域的落地。十四五规划纲要指出要大力发展智能经济,2021年是十四五开局年,对中国人工智能产业来说,也将是至关重要的年份。

“十三五”期间,我国全社会研发经费支出从1.42万亿元增至2.21万亿元,着力加强基础研究和关键核心技术攻关,科技实力进一步增强。人工智能是我国科技自主创新的关键领域之一,我国AI产业取得了全球瞩目的成就,人才、算法、算力等基础已完善。

2020年疫情不约而至,AI在防疫中贡献了力量,全社会对智能化达成高度共识。疫情期间我国提出“新基建”战略,人工智能是其重要组成部分之一。已经结束的地方两会也表明,全国多地正加速建设数字经济、发展人工智能产业、加快产业智能化升级。

天时地利人和,2021年人工智能将从小范围应用走向大规模落地。

新十年,智能经济面临哪些新机遇?

1、AI基础技术进一步突破。

AI经历“革命性十年”的大发展,底层算法以深度学习为核心。随着AI的大规模应用,AI技术已出现瓶颈。科学家与工程师们在现有技术框架下克服瓶颈,但却很难将其消除。算法层面,人工智能目前处于初级阶段,从被动感知向主动感知、认知和决策还需要技术全面提升;算力层面,人工智能对计算提出更高要求,当前的计算体系在成本、性能与能耗上均不堪重负。

新十年,AI基础技术或再度跃迁。递归神经网络LSTM之父JürgenSchmidhuber在2020年就曾撰文指出,自然语言处理(NLP)、计算机视觉与强化学习是AI前十年的技术主线,下一个十年,量子计算、无监督学习、浅层学习网络与算力vs深度学习进展,被寄予厚望。量子计算如果能够取得突破性进展,AI将是另外一番景象:“自1975年摩尔定律提出以来一直颠扑不破,但近10年来我们的发展慢了下来。因此,很多人相信技术进步即将到来,很可能就是我们前文讨论的量子计算。这将有助于推动深度学习的重大进步。”

我国已在战略布局下一代AI技术。十四五规划纲要指出,要瞄准人工智能、量子信息、集成电路、生命健康、脑科学、生物育种、空天科技、深地深海等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。

2、智能云将成社会“水电煤”。

越来越多企业意识到AI价值,然而AI技术门槛颇高,企业自行研发并不现实,也无必要。基于“云服务”模式,企业可快速基于云端AI技术能力开发AI应用。

2020年底,IDC报告预测到2021年至少有65%的中国1000强企业将利用自然语言处理、机器学习和深度学习等AI工具,赋能60%在客户体验、安全、运营管理和采购等业务领域的用例。IDC在《中国人工智能云服务市场研究报告(2020H1)》报告中指出,企业智能化转型是驱动AICloud市场规模增长的重要因素,AI云服务厂商在整体AI软件及应用市场中将获得越来越高的市场份额。云计算巨头纷纷在名字中加入“智能”背后,反映出它们对AI云服务的日益重视。

前十年,云计算是社会数字化基础设施;新十年,AI将成为云计算市场的一大增量,智能云则将成为智能社会的水电煤。

3、服务机器人迎来黄金发展期。

前十年,大规模爆发的AI应用却不多。在消费市场,智能音箱、智能汽车、智能家居等少数产品实现智能化并大规模销售;在行业市场,在防疫、教育、金融、物流等少数行业,AI开始逐步应用。

新十年有望爆发式增长的AI应用则是服务机器人。服务机器人是指除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,主要包括个人/家庭用服务机器人和公共服务机器人。

人口老龄化加剧、劳动力成本上升,服务机器人市场需求更加强劲。StrategyAnalytics数据显示,继2020年的年销量增长24%之后,服务机器人销量将在2021年加速增长31%。2020年Covid-19疫情推动服务机器人增长,它们帮助家庭清洁地板、陪伴孩子,帮助企业分拣送货,通过紫外光对环境进行消毒。疫情期间,服务机器人明星公司优必选的防疫机器人就在16个国家/地区被应用;华住旗下将近6000家酒店皆推行了无接触智能服务,酒店机器人每月送物超过20万次,成为疫情期间的一道亮丽“风景线”。

《2020全球机器人统计报告》显示,全球专业服务机器人销售额增长32%,在2019年达到112亿美元。优必选科技创始人周剑提出,过去十年是服务机器人的10年储备期,未来10年则是黄金发展期,越来越多服务机器人解决方案将在垂直领域落地应用,“未来10年,也许会有一家万亿级的服务机器人公司出现。”

服务机器人是我国AI战略的一部分,2017年12月《促进新一代人工智能产业发展三年行动计划(2018-2020年)》提出到2020年,智能家庭服务机器人、智能公共服务机器人实现批量生产及应用。前瞻产业研究院预测,我国服务机器人至2023年销量将超过50万台,销售额预计达277亿美元。

4、AI进一步“下沉”到传统行业。

前十年,AI在一些行业率先落地,主要集中在金融、教育、娱乐、信息等相对新兴的第三产业。新十年,AI则会进一步“下沉”到千行百业,包括制造业、医疗、养老业以及古老的农业。

比如农业,互联网巨头纷纷布局“养猪”业务,落地数字农业战略。AI与IoT设备、农机、无人机、无人车等技术结合,可用于提高农作物产量、优化灌溉系统、保护农田、治理虫害、监测牲畜健康,提升农业效益。有数据显示,农业领域人工智能技术和解决方案方面的支出预计将从2020年的10亿美元增长到2026年的40亿美元。

比如医疗,AI与生物科技、医疗科技等技术结合,将会对医疗健康产业产生深刻影响。DeepMind的AlphaFold应用深度学习技术在数十年来的蛋白质折叠生物学挑战中获得重大突破,科学家们用机器学习模型来学习化学分子的表示,以便制定更有效的化学合成计划;

再比如养老,今年两会关注老人面临的数字鸿沟,科技企业界代表们纷纷建言献策,助老养老正是服务机器人的重点场景。中国老龄人口已有两亿六千万,老龄产业成为“一个巨大的朝阳产业”,康养养老行业均有大量服务机器人应用场景。在两会上,广东移动党委书记、董事长、总经理魏明表示,发展养老机器人产业既能有效破解养老资源紧缺问题,还能促进智慧养老产业蓬勃发展。优必选科技则对外透露其正在研发康养机器人及智慧康养解决方案,通过5G、物联网和人工智能技术,建设软硬一体化的智慧康养平台。

在2020年的世界人工智能大会上,李彦宏有一个判断:AI发展会经历技术智能化、经济智能化、社会智能化三个历史阶段,他认为AI正处在“从经济智能化的前半段向后半段过渡的时期,具体表现在AI能力从逐步向平台化,正在朝向产业化方向演进。”现在看来,李彦宏的判断或许有些悲观,新十年,“社会智能化阶段”已全面来临。

收割季,AI产业化依然面临三道老坎

技术驱动的产业发展,一般都逃离不了高德纳(Gartner)的“技术成熟度曲线”模型(GartnerHypeCycle),该模型认为,一门技术的发展要经历五个阶段。

启动期:概念,媒体有所报道,引起外界兴趣。

泡沫期:个别成功案例,一些激进的公司开始跟进。媒体大肆报道,各种非理性的渲染。

低谷期:该技术的局限和缺点逐步暴露,对它的兴趣开始减弱。基于它的产品,大部分被市场淘汰或者失败,只有那些找到早期用户的公司艰难地活了下来。

爬升期:该技术的优缺点越来越明显,细节逐渐清晰,越来越多的人开始理解它。基于它的第二代和第三代产品出现,更多的企业开始尝试,可复制的成功使用模式出现。媒体重新认识它,业界这一次给予了高度的理性的关注。

高原期:经过不断发展,该技术慢慢成为了主流。技术标准得到了清晰定义,使用起来越发方便好用,市场占有率越来越高,进入稳定应用阶段。配合它的工具和最佳实践,经过数代的演进,也变得非常成熟了。业界对它有了公认的一致的评价。

AI一路走来,经历了最初被高度看好、泡沫化严重后被广泛唱衰,再到泡沫去掉后成熟稳健发展等阶段。今天AI进入高原期,成为主流技术,将被大规模应用。不过,AI产业依然有一些客观问题有待行业给出答案,这些问题都是老问题,只不过当下更加紧迫。

第一个是AI商业化能力有待证明。

AI创业公司最有名的当属“CV四兽”,即专注于机器视觉技术服务的四大独角兽公司:商汤、旷视、依图与云从。2020年旷视科技冲击港股IPO未果,3月12日再度冲刺科创板;此前不久依图与语音AI企业云知声IPO折戟,多家AI公司上市遇阻,核心原因在于商业化能力有待证明。

《财经》披露的数据显示,商汤2019年营收超过50亿元,而云从和依图分别才刚刚超过8亿元、7亿元。2017年至2019年,旷视营收规模逐年增长,营业收入从3亿元增长至12.6亿元。这些AI独角兽公司都有一些共同特征:营收增长快但整体规模较小,但烧钱规模却很可观,大都已完成数亿甚至数十亿美元融资,却一直亏损,招股书显示,报告期内(2017年、2018年、2019年、2020年9月),旷视科技净亏损达到7.7亿元、28亿元、66.4亿元与28.5亿元,因此有媒体将它们称为“吞金兽”。

不只是CV四兽。截至目前,不论是消费端的智能音箱/智能驾驶等AI产品,还是产业端的AI行业服务,普遍都存在“亏损换规模”的现状。对此,一方面,AI企业要积极探寻商业模式,在技术研发外对市场高度重视,强化现金流能力,让AI赚取真金白银,比如可以让AI深度融合场景,对产品做减法,从应用场景的单点和单应用切入,从单点产品到解决方案,再到面,不断壮大AI应用生态。AI企业也要从解决社会重大问题和满足社会重大需求进行突破;另一方面,投资者要给AI公司更多耐心,要有放长线钓大鱼的长期思维,毕竟AI大规模爆发时点才刚刚到来。市场已经证明AI不是技术泡沫,资本应该放宽心,给予AI创业者更多耐心。

第二个是AI人才荒依然有待缓解。

前些年AI快速爆发,导致AI人才一度供不应求,企业年薪百万招聘AI专业大学毕业生、高价挖角高校AI专家的新闻不少。后来,国家重视AI教育、高校开设AI专业、产学研共同培育AI人才,AI人才荒得到一定程度解决,仅仅是百度就宣称自己已给行业培养100万AI人才;优必选科技则宣称在全球40多个国家,有约150万名学生通过优必选科技学习人工智能。

然而,AI人才供给依然跟不上AI产业化进程,新十年AI人才依然供不应求。

高端AI人才依然稀缺,根据美国保森基金会旗下智库的统计显示,截至2019年底,全球顶尖AI人才中的近60%定居美国,在中国接受本科教育的顶尖AI人才占比最高,达到29%,就是说,很多中国AI人才出国深造后留在了美国工作,导致中国本土高端AI人才匮乏。中国是AI大国,但领英大数据却显示,中国顶级人工智能人才仅排第六名。

细分领域AI人才同样短缺,比如服务机器人领域,AI人才荒更严峻,因为这是一个复杂系统,牵涉到多学科,厂商需求大量复合型技术人才、市场人才以及产品人才;应用场景则需要懂服务机器人和人工智能的人才。然而,复合型研发人才和应用人才太少,直接制约了产品研发和行业应用。

2020年国内人工智能人才缺口达500多万,供需比例严重失衡。2021年加强人工智能人才,特别是高端人工智能人才、细分AI领域人才的培养,已迫在眉睫。

第三个则是AI伦理问题变成燃眉之急。

类似于AI换脸、“基于人脸识别的教室监控”这样的AI应用出现,让人们意识到,AI技术爆发,人类并未完全准备好。

任何技术都是双刃剑,AI也不例外。AI技术会给网络欺诈提供便利,让“造假”变得更加容易,且难以辨别;AI技术会让很多人失业,尤其是重复性强的工作,比如收银、客服、监测、软件测试工程师;AI算法是被人训练出来的,人的偏见会被AI继承,比如性别歧视、种族歧视、地域歧视;AI技术被黑客掌握,黑客的攻击手段会全面升级。

随着服务机器人、无人车等看得见、摸得着的AI应用爆发,AI伦理变得更重要。服务机器人在服务人类时,可能会跟人或者环境发生冲突/冲撞,责任该如何划分?无人车在马路上出现事故,责任又该如何划分?很多问题都有待解决。我们不能因噎废食限制AI发展,唯有AI伦理与法规双管齐下。

AI伦理是人与机器以及AI时代人与人相处的道德准则,“阿莫西夫机器人三原则”就属于机器人伦理。除了道德准则外,法律法规也亟待完善,比如针对自动驾驶的法律法规正在形成。

亚马逊、微软、谷歌、IBM、Facebook、苹果等公司已联合成立非营利性人工智能合作组织以解决AI伦理问题;2017年微软在内部成立人工智能伦理委员会(AETHER);2018年Facebook宣布已成立专门伦理团队防止人工智能的偏见。

国内,百度李彦宏多次提交关于AI伦理的提案,2019年马化腾就指出“AI治理的紧迫性越来越高”,应以“科技向善”引领AI全方位治理,确保AI“可知”、“可控”、“可用”、“可靠”。我国监管部门则从顶层设计上决定了AI伦理的规范和执行。2019年6月国家新一代人工智能治理专业委员会发布报告,提出发展“负责任的人工智能”,这是我国首次发布人工智能治理原则,当年7月24日,《国家科技伦理委员会组建方案》被通过,根据《国家科技伦理委员会组建方案》要求,组建国家科技伦理委员会,会议指出:科技伦理是科技活动必须遵守的价值准则。

AI新十年来临,我们有理由相信,智慧的人类既可以发展利用AI,让AI给国家、社会、企业与人民创造更多价值,也一定可以驾驭AI,与AI和平共处。

本文为专栏作者授权创业邦发表,版权归原作者所有。文章系作者个人观点,不代表创业邦立场,转载请联系原作者。如有任何疑问,请联系editor@cyzone.cn。

人工智能的创新发展与社会影响

党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明了方向。2018世界人工智能大会9月17日在上海开幕,习总书记致信祝贺并强调指出人工智能发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。深入学习领会习总书记关于人工智能的一系列重要论述,务实推进我国《新一代人工智能发展规划》,有效规避人工智能“鸿沟”,着力收获人工智能“红利”,对建设世界科技强国、实现“两个一百年”的奋斗目标具有重大战略意义。

一、引言

1956年人工智能(ArtificialIntelligence,简称AI)的概念被正式提出,标志着人工智能学科的诞生,其发展目标是赋予机器类人的感知、学习、思考、决策和行动等能力。经过60多年的发展,人工智能已取得突破性进展,在经济社会各领域开始得到广泛应用并形成引领新一轮产业变革之势,推动人类社会进入智能化时代。美国、日本、德国、英国、法国、俄罗斯等国家都制定了发展人工智能的国家战略,我国也于2017年发布了《新一代人工智能发展规划》,发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏等地政府也相继出台推动人工智能发展的相关政策文件,社会各界对人工智能的重大战略意义已形成广泛共识。

跟其他高科技一样,人工智能也是一把双刃剑。如何认识人工智能的社会影响,也有“天使派”和“魔鬼派”之分。“天使派”认为,人工智能领域的科技创新和成果应用取得重大突破,有望引领第四次工业革命,对社会、经济、军事等领域将产生变革性影响,在制造、交通、教育、医疗、服务等方面可以造福人类;“魔鬼派”认为,人工智能是人类的重大威胁,比核武器还危险,有可能引发第三次世界大战。2018年2月,牛津大学、剑桥大学和OpenAI公司等14家机构共同发布题为《人工智能的恶意使用:预测、预防和缓解》的报告,指出人工智能可能给人类社会带来数字安全、物理安全和政治安全等潜在威胁,并给出了一些建议来减少风险。

总体上看,已过花甲之年的人工智能当前的发展具有“四新”特征:以深度学习为代表的人工智能核心技术取得新突破、“智能+”模式的普适应用为经济社会发展注入新动能、人工智能成为世界各国竞相战略布局的新高地、人工智能的广泛应用给人类社会带来法律法规、道德伦理、社会治理等方面一系列的新挑战。因此人工智能这个机遇与挑战并存的新课题引起了全球范围内的广泛关注和高度重视。虽然人工智能未来的创新发展还存在不确定性,但是大家普遍认可人工智能的蓬勃兴起将带来新的社会文明,将推动产业变革,将深刻改变人们的生产生活方式,将是一场影响深远的科技革命。

为了客观认识人工智能的本质内涵和创新发展,本报告在简要介绍人工智能基本概念与发展历程的基础上,着重分析探讨人工智能的发展现状和未来趋势,试图揭示人工智能的真实面貌。很显然,在当下人工智能蓬勃发展的历史浪潮中如何选择中国路径特别值得我们深入思考和探讨。因此,本报告最后就我国人工智能发展态势、存在问题和对策建议也进行了阐述。

二、人工智能的发展历程与启示

1956年夏,麦卡锡(JohnMcCarthy)、明斯基(MarvinMinsky)、罗切斯特(NathanielRochester)和香农(ClaudeShannon)等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能”这一概念,标志着人工智能学科的诞生。人工智能的目标是模拟、延伸和扩展人类智能,探寻智能本质,发展类人智能机器。人工智能充满未知的探索道路曲折起伏,如何描述1956年以来60余年的人工智能发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能60余年的发展历程划分为以下6个阶段:

一是起步发展期:1956年-20世纪60年代初。人工智能概念在1956年首次被提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、LISP表处理语言等,掀起了人工智能发展的第一个高潮。

二是反思发展期:60年代-70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入了低谷。

三是应用发展期:70年代初-80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入了应用发展的新高潮。

四是低迷发展期:80年代中-90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:90年代中-2010年。由于网络技术特别是互联网技术的发展,信息与数据的汇聚不断加速,互联网应用的不断普及加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年IBM深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念,这些都是这一时期的标志性事件。

六是蓬勃发展期:2011年-至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器(GraphicsProcessingUnit,简称GPU)等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越科学与应用之间的“技术鸿沟”,图像分类、语音识别、知识问答、人机对弈、无人驾驶等具有广阔应用前景的人工智能技术突破了从“不能用、不好用”到“可以用”的技术瓶颈,人工智能发展进入爆发式增长的新高潮。

通过总结人工智能发展历程中的经验和教训,我们可以得到以下启示:

(一)尊重学科发展规律是推动学科健康发展的前提。科学技术的发展有其自身的规律,顺其者昌,违其者衰。人工智能学科发展需要基础理论、数据资源、计算平台、应用场景的协同驱动,当条件不具备时很难实现重大突破。

(二)基础研究是学科可持续发展的基石。加拿大多伦多大学杰弗里·辛顿(GeoffreyHinton)教授坚持研究深度神经网络30年,奠定人工智能蓬勃发展的重要理论基础。谷歌的DeepMind团队长期深入研究神经科学启发的人工智能等基础问题,取得了阿尔法狗等一系列重大成果。

(三)应用需求是科技创新的不竭之源。引领学科发展的动力主要来自于科学和需求的双轮驱动。人工智能发展的驱动力除了知识与技术体系内在矛盾外,贴近应用、解决用户需求是创新的最大源泉与动力。比如专家系统人工智能实现了从理论研究走向实际应用的突破,近些年来安防监控、身份识别、无人驾驶、互联网和物联网大数据分析等实际应用需求带动了人工智能的技术突破。

(四)学科交叉是创新突破的“捷径”。人工智能研究涉及信息科学、脑科学、心理科学等,上世纪50年代人工智能的出现本身就是学科交叉的结果。特别是脑认知科学与人工智能的成功结合,带来了人工智能神经网络几十年的持久发展。智能本源、意识本质等一些基本科学问题正在孕育重大突破,对人工智能学科发展具有重要促进作用。

(五)宽容失败应是支持创新的题中应有之义。任何学科的发展都不可能一帆风顺,任何创新目标的实现都不会一蹴而就。人工智能60余载的发展生动地诠释了一门学科创新发展起伏曲折的历程。可以说没有过去发展历程中的“寒冬”就没有今天人工智能发展新的春天。

(六)实事求是设定发展目标是制定学科发展规划的基本原则。达到全方位类人水平的机器智能是人工智能学科宏伟的终极目标,但是需要根据科技和经济社会发展水平来设定合理的阶段性研究目标,否则会有挫败感从而影响学科发展,人工智能发展过程中的几次低谷皆因不切实际的发展目标所致。

三、人工智能的发展现状与影响

人工智能经过60多年的发展,理论、技术和应用都取得了重要突破,已成为推动新一轮科技和产业革命的驱动力,深刻影响世界经济、政治、军事和社会发展,日益得到各国政府、产业界和学术界的高度关注。从技术维度来看,人工智能技术突破集中在专用智能,但是通用智能发展水平仍处于起步阶段;从产业维度来看,人工智能创新创业如火如荼,技术和商业生态已见雏形;从社会维度来看,世界主要国家纷纷将人工智能上升为国家战略,人工智能社会影响日益凸显。

(一)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定领域的人工智能技术(即专用人工智能)由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,因此形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域,统计学习是专用人工智能走向实用的理论基础。深度学习、强化学习、对抗学习等统计机器学习理论在计算机视觉、语音识别、自然语言理解、人机博弈等方面取得成功应用。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,语音识别系统5.1%的错误率比肩专业速记员,人工智能系统诊断皮肤癌达到专业医生水平,等等。

(二)通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。虽然包括图像识别、语音识别、自动驾驶等在内的专用人工智能领域已取得突破性进展,但是通用智能系统的研究与应用仍然是任重而道远,人工智能总体发展水平仍处于起步阶段。美国国防高级研究计划局(DefenseAdvancedResearchProjectsAgency,简称DARPA)把人工智能发展分为三个阶段:规则智能、统计智能和自主智能,认为当前国际主流人工智能水平仍然处于第二阶段,核心技术依赖于深度学习、强化学习、对抗学习等统计机器学习,AI系统在信息感知(Perceiving)、机器学习(Learning)等智能水平维度进步显著,但是在概念抽象(Abstracting)和推理决策(Reasoning)等方面能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

(三)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,在其2017年的年度开发者大会上,谷歌明确提出发展战略从“MobileFirst”(移动优先)转向“AIFirst”(AI优先);微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿,麦肯锡报告2016年全球人工智能研发投入超300亿美元并处于高速增长,全球知名风投调研机构CBInsights报告显示2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

(四)创新生态布局成为人工智能产业发展的战略高地。信息技术(IT)和产业的发展史就是新老IT巨头抢滩布局IT创新生态的更替史。例如,传统信息产业IT(InformationTechnology)代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网IT(InternetTechnology)代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等,目前智能科技IT(IntelligentTechnology)的产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动AI技术生态的研发布局,全力抢占人工智能相关产业的制高点。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理GPU服务器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。在技术生态方面,人工智能算法、数据、图形处理器(GraphicsProcessingUnit,简称GPU)/张量处理器(TensorProcessingUnit,简称TPU)/神经网络处理器(NeuralnetworkProcessingUnit,NPU)计算、运行/编译/管理等基础软件已有大量开源资源,例如谷歌的TensorFlow第二代人工智能学习系统、脸书的PyTorch深度学习框架、微软的DMTK分布式学习工具包、IBM的SystemML开源机器学习系统等;此外谷歌、IBM、英伟达、英特尔、苹果、华为、中国科学院等积极布局人工智能领域的计算芯片。在人工智能商业和应用生态布局方面,“智能+X”成为创新范式,例如“智能+制造”、“智能+医疗”、“智能+安防”等,人工智能技术向创新性的消费场景和不同行业快速渗透融合并重塑整个社会发展,这是人工智能作为第四次技术革命关键驱动力的最主要表现方式。人工智能商业生态竞争进入白热化,例如智能驾驶汽车领域的参与者既有通用、福特、奔驰、丰田等传统龙头车企,又有互联网造车者如谷歌、特斯拉、优步、苹果、百度等新贵。

(五)人工智能上升为世界主要国家的重大发展战略。人工智能正在成为新一轮产业变革的引擎,必将深刻影响国际产业竞争格局和一个国家的国际竞争力。世界主要发达国家纷纷把发展人工智能作为提升国际竞争力、维护国家安全的重大战略,加紧积极谋划政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。无论是德国的“工业4.0”、美国的“工业互联网”、日本的“超智能社会”、还是我国的“中国制造2025”等重大国家战略,人工智能都是其中的核心关键技术。2017年7月,国务院发布了《新一代人工智能发展规划》,开启了我国人工智能快速创新发展的新征程。

(六)人工智能的社会影响日益凸显。人工智能的社会影响是多元的,既有拉动经济、服务民生、造福社会的正面效应,又可能出现安全失控、法律失准、道德失范、伦理失常、隐私失密等社会问题,以及利用人工智能热点进行投机炒作从而存在泡沫风险。首先,人工智能作为新一轮科技革命和产业变革的核心力量,促进社会生产力的整体跃升,推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域发展积极正面影响。与此同时,我们也要看到人工智能引发的法律、伦理等问题日益凸显,对当下的社会秩序及公共管理体制带来了前所未有的新挑战。例如,2016年欧盟委员会法律事务委员会提交一项将最先进的自动化机器人身份定位为“电子人(electronicpersons)”的动议,2017年沙特阿拉伯授予机器人“索菲亚”公民身份,这些显然冲击了传统的民事主体制度。那么,是否应该赋予人工智能系统法律主体资格?另外在人工智能新时代,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题都需要我们从法律法规、道德伦理、社会管理等多个角度提供解决方案。

由于人工智能与人类智能密切关联且应用前景广阔、专业性很强,容易造成人们的误解,也带来了不少炒作。例如,有些人错误地认为人工智能就是机器学习(深度学习),人工智能与人类智能是零和博弈,人工智能已经达到5岁小孩的水平,人工智能系统的智能水平即将全面超越人类水平,30年内机器人将统治世界,人类将成为人工智能的奴隶,等等。这些错误认识会给人工智能的发展带来不利影响。还有不少人对人工智能预期过高,以为通用智能很快就能实现,只要给机器人发指令就可以干任何事。另外,有意炒作并通过包装人工智能概念来谋取不当利益的现象时有发生。因此,我们有义务向社会大众普及人工智能知识,引导政府、企业和广大民众科学客观地认识和了解人工智能。

四、人工智能的发展趋势与展望

人工智能经过六十多年的发展突破了算法、算力和算料(数据)等“三算”方面的制约因素,拓展了互联网、物联网等广阔应用场景,开始进入蓬勃发展的黄金时期。从技术维度看,当前人工智能处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有数据、能耗、泛化、可解释性、可靠性、安全性等诸多瓶颈,创新发展空间巨大,从专用到通用智能,从机器智能到人机智能融合,从“人工+智能”到自主智能,后深度学习的新理论体系正在酝酿;从产业和社会发展维度看,人工智能通过对经济和社会各领域渗透融合实现生产力和生产关系的变革,带动人类社会迈向新的文明,人类命运共同体将形成保障人工智能技术安全、可控、可靠发展的理性机制。总体而言,人工智能的春天刚刚开始,创新空间巨大,应用前景广阔。

(一)从专用智能到通用智能。如何实现从狭义或专用人工智能(也称弱人工智能,具备单一领域智能)向通用人工智能(也称强人工智能,具备多领域智能)的跨越式发展,既是下一代人工智能发展的必然趋势,也是国际研究与应用领域的挑战问题。2016年10月美国国家科学技术委员会发布了《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。DeepMind创始人戴密斯·哈萨比斯(DemisHassabis)提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年7月成立了通用人工智能实验室,100多位感知、学习、推理、自然语言理解等方面的科学家参与其中。

(二)从人工智能到人机混合智能。人工智能的一个重要研究方向就是借鉴脑科学和认知科学的研究成果,研究从智能产生机理和本质出发的新型智能计算模型与方法,实现具有脑神经信息处理机制和类人智能行为与智能水平的智能系统。在美国、欧盟、日本等国家和地区纷纷启动的脑计划中,类脑智能已成为核心目标之一。英国工程与自然科学研究理事会EPSRC发布并启动了类脑智能研究计划。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。人机混合智能得到了我国新一代人工智能规划、美国脑计划、脸书(脑机语音文本界面)、特斯拉汽车创始人埃隆·马斯克(人脑芯片嵌入和脑机接口)等的高度关注。

(三)从“人工+智能”到自主智能系统。当前人工智能的研究集中在深度学习,但是深度学习的局限是需要大量人工干预:人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据(非常费时费力)、用户需要人工适配智能系统等。因此已有科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类AI”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低AI人员成本。

(四)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、材料等传统科学的发展。例如,2018年美国麻省理工学院启动的“智能探究计划”(MITIntelligenceQuest)就联合了五大学院进行协同攻关。

(五)人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来十年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,在现有基础上能够提高劳动生产率40%;美、日、英、德、法等12个发达国家(现占全球经济总量的一半)到2035年,年经济增长率平均可以翻一番。2018年麦肯锡的研究报告表明到2030年人工智能新增经济规模将达到13万亿美元。

(六)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出未来五年人工智能提升各行业运转效率,其中教育业提升82%,零售业71%,制造业64%,金融业58%。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

(七)人工智能领域的国际竞争将日趋激烈。“未来谁率先掌握人工智能,谁就能称霸世界”。2018年4月,欧盟委员会计划2018-2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略》重点推动物联网建设和人工智能的应用。世界军事强国已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即提出谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

(八)人工智能的社会学将提上议程。水能载舟,亦能覆舟。任何高科技也都是一把双刃剑。随着人工智能的深入发展和应用的不断普及,其社会影响日益明显。人工智能应用得当、把握有度、管理规范,就能有效控制负面风险。为了确保人工智能的健康可持续发展并确保人工智能的发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,深入分析人工智能对未来经济社会发展的可能影响,制定完善的人工智能法律法规,规避可能风险,确保人工智能的正面效应。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。

五、我国人工智能的发展态势与思考

我国当前人工智能发展的总体态势良好。中国信通院联合高德纳咨询公司(Gartner)于2018年9月发布的《2018世界人工智能产业发展蓝皮书》报告统计,我国(不含港澳台地区)人工智能企业总数位列全球第二(1040家),仅次于美国(2039家)。在人工智能总体水平和应用方面,我国也处于国际前列,发展潜力巨大,有望率先突破成为全球领跑者。但是我们也要清醒地看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

一是高度重视。党和国家高度重视并大力发展人工智能。党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明方向。2016年7月习总书记明确指出,人工智能技术的发展将深刻改变人类社会生活,改变世界,应抓住机遇,在这一高技术领域抢占先机。在党的十九大报告中,习总书记强调“要推动互联网、大数据、人工智能和实体经济深度融合”。在2018年两院院士大会上,习总书记再次强调要“推进互联网、大数据、人工智能同实体经济深度融合,做大做强数字经济”。在2017年和2018年的《政府工作报告》中,李克强总理都提到了要加强新一代人工智能发展。2017年7月,国务院发布了《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动,人工智能将成为今后一段时期的国家重大战略。发改委、工信部、科技部、教育部、中央网信办等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

二是态势喜人。根据2017年爱思唯尔(Elsevier)文献数据库SCOPUS统计结果,我国在人工智能领域发表的论文数量已居世界第一。从2012年开始,我国在人工智能领域新增专利数量已经开始超越美国。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成全球人工智能投融资规模最大国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。近两年,清华大学、北京大学、中国科学院大学、浙江大学、上海交通大学、南京大学等高校纷纷成立人工智能学院。2015年开始的中国人工智能大会(CCAI)已连续成功召开四届、规模不断扩大,人工智能领域的教育、科研与学术活动层出不穷。

三是差距不小。我国人工智能在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在较大差距。英国牛津大学2018年的一项研究报告指出中国的人工智能发展能力大致为美国的一半水平。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,存在“头重脚轻”的不均衡现象。在Top700全球AI人才中,中国虽然名列第二,但入选人数远远低于占一半数量的美国。据领英《全球AI领域人才报告》统计,截至2017年一季度全球人工智能领域专业技术人才数量超过190万,其中美国超过85万,我国仅超过5万人,排名全球第7位。2018年市场研究顾问公司CompassIntelligence对全球100多家AI计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国制定完善人工智能相关法律法规的进程需要加快,对可能产生的社会影响还缺少深度分析。

四是前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

人类社会已开始迈入智能化时代,人工智能引领社会发展是大势所趋,不可逆转。经历六十余年积累后,人工智能开始进入爆发式增长的红利期。伴随着人工智能自身的创新发展和向经济社会的全面渗透,这个红利期将持续相当长的时期。现在是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧需要深入思考。

(一)树立理性务实的发展理念。围棋人机大战中阿尔法狗战胜李世石后,社会大众误以为人工智能已经无所不能,一些地方政府、社会企业、风险资金因此不切实际一窝蜂发展人工智能产业,一些别有用心的机构则有意炒作并通过包装人工智能概念来谋取不当利益。这种“一拥而上、一哄而散”的跟风行为不利于人工智能的健康可持续发展。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。根据高德纳咨询公司发布的技术发展曲线,当前智能机器人、认知专家顾问、机器学习、自动驾驶等人工智能热门技术与领域正处于期望膨胀期,但是通用人工智能及人工智能的整体发展仍处于初步阶段,人工智能还有很多“不能”,实现机器在任意现实环境的自主智能和通用智能仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此发展人工智能不能以短期牟利为目的,要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,并务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

(二)加强基础扎实的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。在此发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。根据2017年爱思唯尔文献数据库SCOPUS统计结果,尽管我国在人工智能领域发表的论文数量已经排名世界第一,但加权引文影响力则只排名34位。为了客观评价我国在人工智能基础研究方面的整体实力,我们搜索了SCI期刊、神经信息处理系统大会(ConferenceonNeuralInformationProcessingSystems,简称NIPS)等主流人工智能学术会议关于通用智能、深度学习、类脑智能、脑智融合、人机博弈等关键词的论文统计情况,可以清楚看到在人工智能前沿方向中国与美国相比基础实力存在巨大差距:在高质量论文数量方面(按中科院划定的SCI一区论文标准统计),美国是中国的5.34倍(1325:248);在人才储备方面(SCI论文通讯作者),美国是中国的2.12倍(4804:2267)。

我国应对标国际最高水平,建设面向未来的人工智能基础科学研究中心,重点发展原创性、基础性、前瞻性、突破性的人工智能科学。应该鼓励科研人员瞄准人工智能学科前沿方向开展引领性原创科学研究,通过人工智能与脑认知、神经科学、心理学等学科的交叉融合,重点聚焦人工智能领域的重大基础性科学问题,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

(三)构建自主可控的创新生态。美国谷歌、IBM、微软、脸书等企业在AI芯片、服务器、操作系统、开源算法、云服务、无人驾驶等方面积极构建创新生态、抢占创新高地,已经在国际人工智能产业格局中占据先机。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。美国对中兴通讯发禁令一事充分说明自主可控“核高基”技术的重要性,我国应该吸取在核心电子器件、高端通用芯片及基础软件方面依赖进口的教训,避免重蹈覆辙,着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如军民融合、产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。

另外,我们需要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过标准实施加速人工智能驱动经济社会转型升级的进程。

(四)建立协同高效的创新体系。我国经济社会转型升级对人工智能有重大需求,但是单一的创新主体很难实现政策、市场、技术、应用等方面的全面突破。目前我国学术界、产业界、行业部门在人工智能发展方面各自为政的倾向比较明显,数据资源开放共享不够,缺少对行业资源的有效整合。相比而言,美国已经形成了全社会、全场景、全生态协同互动的人工智能协同创新体系,军民融合和产学研结合都做得很好。我国应在体制机制方面进一步改革创新,建立“军、政、产、学、研、用”一体的人工智能协同创新体系。例如,国家进行顶层设计和战略规划,举全国优势力量设立军事智能的研发和应用平台,提供“人工智能+X”行业融合、打破行业壁垒和行政障碍的激励政策;科技龙头企业引领技术创新生态建设,突破人工智能的重大技术瓶颈;高校科研机构进行人才培养和原始创新,着力构建公共数据资源与技术平台,共同建设若干标杆性的应用创新场景,推动成熟人工智能技术在城市、医疗、金融、文化、农业、交通、能源、物流、制造、安全、服务、教育等领域的深度应用,建设低成本高效益广范围的普惠型智能社会。

(五)加快创新人才的教育培养。发展人工智能关键在人才,中高端人才短缺已经成为我国人工智能做大做强的主要瓶颈。另外,我国社会大众的人工智能科技素养也需要进一步提升,每一个人都需要去适应人工智能时代的科技浪潮。在加强人工智能领军人才培养引进的同时,要面向技术创新和产业发展多层次培养人工智能创新创业人才。《新一代人工智能发展规划》提出逐步开展全民智能教育项目,在中小学阶段设置人工智能课程。目前人工智能科普活动受到各地学校的欢迎,但是缺少通俗易懂的高质量人工智能科普教材、寓教于乐的实验设备和器材、开放共享的教学互动资源平台。国家相关部门应高度重视人工智能教育领域的基础性工作,增加投入,组织优势力量,加强高水平人工智能教育内容和资源平台建设,加快人工智能专业的教学师资培训,从教材、教具、教师等多个环节全面保障我国人工智能教育工作的开展。

(六)推动共担共享的全球治理。人工智能将重塑全球政治和经济格局,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能将进一步拉大发达国家和发展中国家的生产力发展水平差距。美国、日本、德国等通过人工智能和机器人的技术突破和广泛应用弥补他们的人力成本劣势,希望制造业从新兴国家回流发达国家。目前看,我国是发展中国家阵容中唯一有望成为全球人工智能竞争中的领跑者,应采取不同于一些国家的“经济垄断主义、技术保护主义、贸易霸凌主义”路线,尽快布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合国家“一带一路”战略,向亚洲、非洲、南美等经济欠发达地区输出高水平、低成本的“中国智造”成果、提供人工智能时代的中国方案,为让人工智能时代的“智能红利”普惠人类命运共同体做出中国贡献!

(七)制定科学合理的法律法规。要想实实在在收获人工智能带来的红利,首先应保证其安全、可控、可靠发展。美国和欧洲等发达国家和地区十分重视人工智能领域的法律法规问题。美国白宫多次组织这方面的研讨会、咨询会;特斯拉等产业巨头牵头成立OpenAI等机构,旨在以有利于整个人类的方式促进和发展友好的人工智能;科研人员自发签署23条“阿西洛马人工智能原则”,意图在规范人工智能科研及应用等方面抢占先机。我国在人工智能领域的法律法规制定及风险管控方面相对滞后,这种滞后局面与我国现阶段人工智能发展的整体形势不相适应,并可能成为我国人工智能下一步创新发展的一大掣肘。因此,有必要大力加强人工智能领域的立法研究,制定相应的法律法规,建立健全公开透明的人工智能监管体系,构建人工智能创新发展的良好法规环境。

(八)加强和鼓励人工智能社会学研究。人工智能的社会影响将是深远的、全方位的。我们当未雨绸缪,从国家安全、社会治理、就业结构、伦理道德、隐私保护等多个维度系统深入研究人工智能可能的影响,制定合理可行的应对措施,确保人工智能的正面效应。应大力加强人工智能领域的科普工作,打造科技与伦理的高效对话机制和沟通平台,消除社会大众对人工智能的误解与恐慌,为人工智能的发展营造理性务实、积极健康的社会氛围。

六、结束语

人工智能经过60多年的发展,进入了创新突破的战略机遇期和产业应用的红利收获期,必将对生产力和产业结构以及国际格局产生革命性影响,并推动人类进入普惠型智能社会。但是,我们需要清醒看到通用人工智能及人工智能的整体发展仍处于初级阶段,人工智能不是万能,人工智能还有很多“不能”。我们应当采取理性务实的发展路径,扎实推进基础研究、技术生态、人才培养、法律规范等方面的工作,在开放中创新,在创新中发展,全速跑赢智能时代,着力建设人工智能科技强国!

(主讲人系中国科学院院士)

浅谈人工智能的伦理问题

浅谈人工智能的伦理问题

资料整理,仅供参考

引言

2018  年3月 18日晚上 10 点左右,伊莱恩·赫兹伯格(ElaineHerzberg)骑着自行车穿过亚利桑那州坦佩市的一条街道,突然间被一辆自动驾驶汽车撞翻,最后不幸身亡。这是一辆无人自动驾驶汽车,尽管车上还有一位驾驶员,但车子由一个完全的自驾系统(人工智能)所控制。与其他涉及人与AI技术二者之间交互的事件一样,此事件引发了人们对人工智能中道德和法律问题的思考。系统的程序员必须履行什么道德义务来阻止其研发产品导致人类的生命受到威胁?谁对赫兹伯格的死负责?是该自动驾驶汽车公司测试部们?人工智能系统的设计者,甚至是机载传感设备的制造商?

关于人工智能的伦理讨论一直在进行,从人工智能研究的开始,重点主要集中在讨论可能性和对未来影响的理论工作,但对人工智能实际应用中研究讨论较少。尽管学术界对人工智能伦理道德的关系进行探讨已经持续了几十年,但并没有得出普遍的人工智能伦理是什么,甚至应该如何定义命名也没有统一规范化。近年来,随着社会科技技术的不断发展,人工智能的发展取得重大的突破。人工智能相关伦理研究讨论日益广泛,影响着我们的生活。在当前AI伦理受到越来越多讨论研究的背景下,本文主要通过对一些案例分析人工智能的伦理问题,结合本学期《工程伦理》课程所学,谈谈自己的理解与收获。

人工智能及其案例讨论分析

“人工智能”被设计为一种为从环境中获取因素的系统,并基于这些外界的输入来解决问题,评估风险,做出预测并采取行动。在功能强大的计算机和大数据时代之前,这种系统是由人类通过一定的编程及结合特定规则实现,随着科学技术的不断进步,新的方法不断出现。其中之一是机器学习,这是目前AI最活跃最热门的领域。应用统计学的方法,允许系统从数据中“学习”并做出决策。关注技术的进步,我们更关注的是在极端情况下的伦理问题。例如在一些致命的军事无人机中使用AI技术,或者是AI技术可能导致全球金融体系崩溃的风险等。

对大量的数据进行汇总分析,我们可以利用AI技术帮助分析贷款申请人的信誉,决定是否给予贷款以及额度,同时也可以对应聘者进行评估,决定是否录取,还可以预测犯罪分子再次犯罪的几率等等。这些技术变革已经深刻影响着社会,改变着人们生活。但是,此类技术应用也会引发一些令人困扰的道德伦理问题,由于AI系统会增强他们从现实世界数据中学到的知识,甚至会放大对种族和性别偏见。因此,当遇到不熟悉的场景时,系统也会做出错误的判断。而且,由于许多这样的系统都是“黑匣子”,人们往往很难理解系统做出判断的内在原因,因此难以质疑或探究,给人们决策带来风险。举几个具体例子:2014年,亚马逊开发了一种招聘工具,用于识别招聘的软件工程师,结果该系统却表现出对妇女的歧视,最后该公司不得不放弃了该系统。2016年,ProPublica在对一项商业开发的系统进行了分析,该系统可预测罪犯再次犯罪的可能性,旨在帮助法官做出更好的量刑决定,结果也发现该系统对黑人有歧视偏见。在过去的两年中,自动驾驶汽车在依靠制定的规则和训练数据进行学习,然而面对陌生的场景或其系统无法识别的输入时,无法做出正确判断,从而导致致命事故。

由于这些系统被视为专有知识产权,因此该私人商业开发人员通常拒绝提供其代码以供审查。同时,技术的进步本身并不能解决AI核心的根本问题—经过深思熟虑设计的算法也必须根据特定的现实世界的输入做出决策。然而这些输入会有缺陷,并且不完善,具有不可预测性。计算机科学家比其他人更快地意识到,在设计了系统之后,不可能总是事后解决这些问题。越多人认识到道德伦理问题应该被当作在部署一个系统前所要考虑的一个问题。

对失业、不平衡问题的讨论与思考

人工智能的重要的道德和伦理问题,既是社会风险的前沿,也是社会进步的前沿。我们讨论两个突出问题:失业、不平衡问题。

1.失业

几十年来,为了释放人类劳动,我们一直在制造模仿人类的机器,让机器替代我们更有效地执行日常任务。随着经济的飞速发展,自动化程度越来越高,大量新发明出现在我们生活中,使我们的生活变得更快,更轻松。当我们使用机器人替代我们人类完成任务,即让手工完成的工作变成自动化时,我们就释放了资源来创建与认知而非体力劳动有关的更复杂的角色。这就是为什么劳动力等级取决于工作是否可以自动化的原因(例如,大学教授的收入比水管工的收入还多)。麦肯锡公司最近的一份报告估计,到2030年,随着全球的自动化加速,接近8亿个工作岗位将会消失。例如,随着自动驾驶系统兴起,AI技术引发了人们对失业的忧虑,大量的卡车司机工作岗位可能受到威胁。我们人类将有史以来第一次开始在认知水平上与机器竞争。最可怕的是,它们比我们拥有更强大的能力。也有一些经济学家担心,作为人类的我们将无法适应这种社会,最终将会落后与机器。

2.不平衡

设想没有工作的未来会发生什么?目前社会的经济结构很简单:以补偿换取贡献。公司依据员工一定量的工作来支付其薪水。但是如果借助AI技术,公司可以大大减少其人力资源。因此,其总收入将流向更少的人。那些大规模使用新技术的公司,其少部分人将获得更高比例的工资,这导致贫富差距在不断扩大。在2008年,微软是唯一一家跻身全球十大最有价值公司的科技公司。苹果以39位居第二,谷歌以51位居第三。然而,到2018年,全球十大最有价值公司前五名均是美国科技公司。

当今世界,硅谷助长了“赢者通吃”的经济,一家独大的公司往往占据大部分市场份额。因此,由于难以访问数据,初创企业和规模较小的公司难以与Alphabet和Facebook之类的公司竞争(更多用户=更多数据,更多数据=更好的服务,更好的服务=更多的用户)。我们还发现一个现象,就是这些科技巨头创造的就业机会相比于市场上其他公司往往少很多。例如,1990年,底特律三大公司的市值达到650亿美元,拥有120万工人。而在2016年,硅谷三大公司的价值为1.5万亿美元,但只有190,000名员工。那么如今技能变得多余的工人将如何生存,这样趋势下去会不会引发社会暴乱,科技巨头应不应该承担更多的社会责任,这些都是值得我们思考的问题。

人工智能伦理问题建议

由上文可知,缺乏对伦理的认知,会对社会及人类生活造成的一定风险,因此,为加强AI伦理因素在实际应用的正确导向作用,应从以下几个方面入手:

1.明确定义道德行为

AI研究人员和伦理学家需要将伦理价值表述为可量化的参数。换句话说,他们需要为机器提供明确的答案和决策规则,以应对其可能遇到的任何潜在的道德困境。这将要求人类在任何给定情况下就最道德的行动方针达成共识,这是一项具有挑战性但并非不可能的任务。例如,德国自动驾驶和互联驾驶道德委员会提出:建议将道德价值观编程到自动驾驶汽车中,以优先保护人类生命为重中之重。在不可避免的致命撞车事故发生时,汽车不应基于年龄,性别、身体或心理构造等个人特征来选择是否要杀死一个人。

2.众包人类道德伦理

工程师需要收集足够的关于明确道德伦理标准的数据,以适当地训练AI算法。即使在为道德价值观定义了特定的指标之后,如果没有足够的公正数据来训练模型,那么AI系统可能仍会难以取舍。获得适当的数据具有挑战性,因为道德伦理规范不能始终清晰地标准化。不同的情况需要采取不同的方针,在某些情况下可能根本没有单一的道德伦理行动方针。解决此问题的一种方法是将数百万人的道德伦理困境的潜在解决方案收集打包。例如,麻省理工学院的一个项目,其展示了如何在自动驾驶汽车的背景下使用众包数据来有效地训练机器以做出更好的道德决策。但研究结果还表明,全球道德价值观可能存在强烈的跨文化差异,在设计面向人的AI系统时也要注意考虑这一因素。

3.使AI系统更加透明

政策制定者需要实施指导方针,使关于伦理的AI决策,尤其是关于道德伦理指标和结果的决策更加透明。如果AI系统犯了错误或产生了不良后果,我们将不能接受“ 算法做到了 ”作为借口。但是我们也知道,要求完全算法透明性在技术上不是很有用。工程师在对道德价值进行编程之前应该考虑如何量化它们,以及考虑运用这些人工智能技术而产生的结果。例如,对于自动驾驶汽车,这可能意味着始终保留所有自动决策的详细日志,以确保其道德伦理责任。

结束语

伦理问题的出现是工程活动发展的必然要求。以人工智能技术为基础的现代工程活动日益复杂,对自然和社会的影响越来越深刻。同时,作为工程活动中的关键角色,工程师群体在一定意义上具有改变世界的力量。正所谓“力量越大,责任也就越大”。工程师在一般的法律责任之外,还负有更重要的道德责任。作为AI领域的工程技术人员,不断创新人工智能技术的同时也要关注实际应用中的伦理道德,相信人工智能技术可以让世界变得更加美好!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇