博舍

人工智能的历史、现状和未来 人工智能的忧虑有哪些内容

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

关于人工智能和人类繁荣的未来的思考

在我们思考人工智能的变革潜力时,人工智能的最新进展引发了我们的好奇和忧虑。人工智能为丰富我们的生活带来了巨大的希望,但这种期待与对可能出现的挑战和风险的忧虑交织在一起。为了培育一个利用人工智能造福人类和社会的未来,将一系列广泛的声音和观点汇聚在一起至关重要。

考虑到这一目标,我很荣幸地推出"人工智能文集",该文集由来自不同学科的杰出学者和专业人士撰写的20篇鼓舞人心的文章组成。该文集探讨了人工智能可以通过哪些不同的方式来造福人类,同时揭示了潜在的挑战。通过汇集这些不同的观点,我们的目标是激发发人深省的对话,鼓励合作努力,引导人工智能走向一个利用其潜力促进人类繁荣的未来。

2022年秋天,我在担任微软Aether委员会主席时,第一次遇到了GPT-4,一个了不起的大规模语言模型。Aether领导层和工程团队被允许提前接触OpenAI的最新创新,其任务是调查其使用的潜在挑战和更广泛的社会后果。我们的调查以微软的人工智能原则为基础,这些原则是委员会在2017年与微软的领导层合作建立的。我们对GPT-4的能力进行了全面分析,重点关注采用该技术的应用在安全、准确、隐私和公平方面可能带来的挑战。

GPT-4让我大吃一惊。我观察到了出乎意料的智能闪光,这些闪光超出了以前的人工智能系统所见。当与它的前身GPT-3.5--一个被数以千万计的人当作ChatGPT使用的模型--相比,我注意到能力上的重大飞跃。它解释我的意图并对许多提示提供复杂的答案的能力感觉就像一个"相变",唤起我在物理学中遇到的突发现象的想象。我发现GPT-4是一个多面手,具有整合传统上不同的概念和方法论的非凡能力。它无缝地将超越学科界限的想法编织在一起。

GPT-4的卓越能力引发了关于潜在破坏和不利后果的问题,以及造福人类和社会的机会。当我们更广泛的团队积极探索安全和公平问题时,我深入研究了医学、教育和科学领域的复杂挑战。越来越明显的是,这个模型和它的后继者--可能会在能力上表现出进一步的跳跃--拥有巨大的潜力来进行变革。这使我开始思考更广泛的社会影响。

围绕着艺术创作和归属、恶意行为者、工作和经济,以及我们还无法设想的未知未来,人们想到了一些问题。随着生成性人工智能工具的普及,人们可能会对不再是无与伦比的知识和艺术思想和创作的源泉作出反应?这些进步会如何影响我们的自我认同和个人愿望?在就业市场上可能会有什么短期和长期的后果?人们对人工智能系统所做的创造性贡献如何得到认可?恶意行为者可能如何利用这些新兴的力量来造成伤害?这些用途有哪些重要的潜在意外后果,包括那些我们可能还没有预见的后果?

同时,我想象着这样的未来:人们和社会可以通过利用这种技术以非同寻常的方式蓬勃发展,就像他们利用其他革命性的进步一样。这些变革性的影响包括从最初的认知工具--我们的共享语言,使前所未有的合作和协调--到科学和工程的工具,印刷术,蒸汽机,电力和互联网,最终达到今天人工智能的最新进展。

我们渴望与不同学科的其他人合作研究这些机会,因此在OpenAI的支持下,我们发起了"AI文集"项目。我们邀请了20位专家来探索GPT-4的能力,并思考未来版本对人类的潜在影响。每位参与者都被授予对GPT-4的早期保密访问权,提供教育、科学探索和医学方面的案例研究,这些案例来自我的探索,并被要求专注于两个核心问题:

这项技术和它的后继者可能对人类的繁荣做出怎样的贡献?作为社会,我们如何才能最好地引导技术,为人类实现最大的利益?

在我2022年11月在密歇根大学的坦纳讲座中提出的观点基础上(智能的弧线:人类与它的理性和想象力工具),这些问题强调了长期思考的重要性,并对人工智能丰富人类生活的潜力保持乐观的态度。我们可以释放出巨大的潜在利益。但为了实现这种潜力,我们必须创造技术创新和政策,以防止恶意使用和意外后果。

这本文集证明了设想和合作的承诺,以及在塑造人工智能的未来时不同观点的重要性。这20篇文章提供了大量的见解、希望和关切,说明了随着人工智能的快速发展而产生的复杂性和可能性。

当你阅读这些文章时,我鼓励你对新的想法保持开放,参与深思熟虑的对话,并为正在进行的关于利用人工智能技术造福和赋予人类权力的讨论提供你的见解。人工智能的未来不是一条预先确定的道路,而是我们必须以智慧、远见和深刻的责任感共同驾驭的旅程。我希望这些文章中的观点有助于我们对我们所面临的挑战和机遇的集体理解。它们可以帮助指导我们努力创造一个人工智能系统补充人类智力和创造力以促进人类繁荣的未来。

欢迎来到"AI文集"。愿它能激励你,挑战你,并点燃有意义的对话,引导我们走向一个以创造性和有价值的方式利用人工智能而使人类繁荣的未来。

从今天开始,我们将在每周初发布四篇新文章。完整的"AI文集"将于2023年6月26日推出。

 

作为微软的首席科学官,埃里克-霍维茨带头在全公司范围内开展活动,在科学前沿、技术和社会的交汇处驾驭机遇和挑战。他因对人工智能理论和实践的贡献而闻名,包括在开放世界的复杂性中研究人工智能的原理和应用。

 

这些文章中所表达的观点、意见和建议仅代表作者本人,并不一定反映任何其他实体或组织的官方政策或立场,包括微软和OpenAI。作者对其文章中提出的信息和论点的准确性和原创性负全责。参与"AI文集"是自愿的,没有向作者提供任何奖励或补偿。

标签人工智能

人工智能时代,我们该忧虑什么该做些什么

不过,对于人工智能,我有几个方面的担忧:

第一,人工智能到现在都没有一个总体的规划和布局,会不会像之前的项目一样,盲目上马,最后落得一地鸡毛?

第二,人工智能会以加速度的方式改变人类文明,它带来的影响比计算机技术还大。80年代初有一部美国电影叫《星球大战》,当时觉得影片中的很多场景都是幻想,结果都实现了。所以,我的感觉就是,如果这次人工智能的机会抓不住,以西方为代表的工业社会就会和发展中国家形成一个新的鸿沟。未来发展中国家在新的制造方面就很难形成产业优势,这是我的第二点担忧。

第三,刚刚鄂维南院士提到,中国在人工智能产、学、研上的投入比例非常低。这里有一个数据,不只是人工智能产业链,在技术产业化方面,中国高等院校的比例也只有不到5%。这意味着我们超过90%以上的研究成果是被浪费的。我们一直在模仿西方国家,在资本的推动下、模式的推动下,市场大环境的推动下,实现了快速的发展。但是,模式容易创造,真正的技术进步还是需要沉淀的。

刘谦:其实,人工智能已经融入我们的日常生活了,比如我们开车使用的导航,就是人工智能应用的一种。以前,我们开车的时候才用导航,现在,即使去熟悉的地方也会开着导航,因为导航可以智能匹配最优路线,让我们的出行更方便,更智慧。

《人类简史》里面提到了三次革命,最重要的一次是认知革命,即通过数据和科技改变我们的生活。也正是因为认知革命,才会把整个社会从原来的传统模式带入一个新的模式。所以,我认为人工智能一定是未来社会的发展趋势,而且会给经济发展和社会形态带来巨大变化。

与其担心人工智能,不如拥抱人工智能。2015年,AlphaGo刚开发出来的时候只有10到12岁的智商,但是它打破了人机仿真学的模式,通过大数据、云计算、深度学习,让人工智能技术不断进化。另外,人工智能不是单一的智能,未来它可以实现万物互联。

所以,如果用开放和拥抱的心态看人工智能,它是行业进步的大方向,但也绝对是一个大挑战。

雷鸣:从去年3月AlphaGo赢了棋手李世石,人工智能就开始进入大众视野并且越来越热。从技术角度来说,人工智能有三个基础组成部分:数据、算法和预算能力。预算能力随着GPU的提升发展很快,现在一个GPU服务器的运算能力是过去的几百倍,而且还在以一年半到两年的速度翻番。

另外就是数据,计算机被发明之后,数据的增长速度基本上是一年翻一番。关于深度学习,一开始方法非常差,最近几年有了质的变化,这就是现在的数据和运算能力深度学习模型,基本上可以接近人脑,或者超过人脑。

在应用方面,人工智能在各个垂直领域都有一定程度的替代性。各个领域,但凡通过学习和掌握重复提供标准化服务的,人工智能都可以替代,包括智能投顾、自动驾驶、安保、审计、简单的法律处理、在线医疗诊断等等。人工智能一旦找到一个真正的风口,发展速度是非常之快的。

Q2:结合产业,探讨一下未来人工智能的影响和愿景?

檀江来:我先谈一个例子。前段时间我们去考察科大讯飞的一个项目,是利用人工智能帮助学校老师改卷子。我们都知道,试卷里客观题比较好判断,对比选项就可以,但是主观题就比较麻烦,需要根据教学大纲里内容分析判断。但是科大讯飞做到了,并且已经在教育领域里面耕耘了好多年,很多学校都在用他们的产品,很多学生也在用。大家都知道中国家长最大的投资是小孩的教育。据科大讯飞内部的数据,目前已经有1万多所学校用了他们的产品,中国最优秀的100所学校有60多所在用他们的产品。这是一个了不起的市场。

希望未来在中国在金融市场上,我们也可以见到的一个比较好的人工智能标的,供大家参考。

王进:从社会需求来看,人工智能是一个必然趋势。我们知道,在北京上海这样的一线城市,企业最头痛的一件事就是不断上涨的人力成本。每个企业都在寻找降低成本的方式,其中一个就是技术进步带来的劳动生产率的提高,人工智能恰恰就可以提供这种可能性。

以我大学同学的公司为例,这个公司每年有80%的机器替代人工;还有另一个例子是相机行业,以前大家出门都是背着一个笨重的相机,现在人工智能也把这个行业给颠覆了。

所以,未来企业家招人的时候可能考虑更多的是需要引进几个机器人来替代工人。

刘谦:我们企业是专门服务于建设行业的。目前来看,建筑行业有很大的转型空间。

首先是建筑数字化,即以后我们交付的除了建筑实体,还有数字虚体;第二个数字化是整个建筑流程数字化;第三个是参与各方的数字化。这也是人工智能影响建筑行业的基础。

目前,全国有8000万的建筑从业人员,里面有5000万建筑工人。这些建筑工人在哪儿?在什么地方工作?每天上下班出勤情况怎么样?从业学历怎么样?这些都需要用数字化记录下来。这是第一个特征。

第二个特征是要把建筑行业的人与物、物与物在线连接起来。以前都是通过摄像头来操作,未来我们会把建筑实体和建筑物提前通过数字模型连接起来,把建筑物所有的信息传到数字虚体里面,然后再反向影响建筑实体,这样就构成了数字建筑。当我们完成数字化和在线化以后,就形成了非常重要的数据基础,整个建筑物也会走向智能化。

未来,人工智能带给传统行业的改变就是万物互联,但如果说人工智能会不会给建筑行业带来一些威胁,我觉得有两个。一是,如果人工智能在某些算法和数据采集上出现问题,可能导致安全事故发生;二是,当我们掌握大数据和人工智能技术之后,人可能更难控制了,那时候真正的威胁可能是来自于人。

未来,人工智能发展更多的不是技术本身,更重要的是我们的看法和我们本身。

雷鸣:人工智能进入每个行业都会衍生出很多的新事物,比如智能预警大楼、智能安防、智能制造,智能物流、智能驾驶等等,未来我们的生活会被数字包围。

Q3:人工智能将真正影响世界,这一点是确认无疑的。目前中国在这方面有没有领先优势和主动权?大家应该怎么样做?

檀江来:毫无疑问,人工智能已经在影响人类,未来会更加深刻的影响着我们的生产和生活。关于中国在人工智能领域的优势,我个人觉得有几点:

一,相比较美国,中国在人工智能领域的研究比较靠前,至少在人工智能的发展中,中国抢了一些先机。美国的优势在于可以吸引全世界的人才,中国政府如果可以把国内空气质量改善一下,相信优秀人才也会留在国内。

二,在中国,人工智能最迫切需要改善的领域可能是医疗。在之前的工业革命中,机器代替人已经很完整了,剩下的空间其实没有那么大。反倒是医疗行业,需要人工智能可能更迫切一些。

王进:我觉得政府在人工智能发展进程中,脚步走的稍微有点快。我们可以看到,各地政府在实际的生产过程中占用了大量资源。这种资源往往是不计较投入产出的,还造成了资源浪费。换一种说法就是,我们产、学、研模式没有理顺。实际上,我们可以把中央政府的很多投资放到专业机构中,让它发挥专业机构的培育和引领作用。

同样,我们也可以借鉴一些国外的做法,建立一些国家产业基金,重点扶持包括人工智能在内的重点行业。中国一定要跟世界接轨,吸引全世界最优秀的人才,最创新的想法,来实现人工智能的产业化、市场化。

刘谦:我们可以看到,在中国有80%的产业数据都集中在政府里面。如果政府把这些产业数据开放,支持我们国家的创新研究和人工智能技术研究,将会有一个非常好的促进作用。

另外,对于各个国家而言,人工智能正处在百花齐放、万家争鸣的阶段,需要尽管推动国家层面制定人工智能相关产业的政策和配套制度,这些也将对人工智能发展起到正向引导作用。

所以,我们要相信政府,相信市场,相信未来。

雷鸣:从国际角度来看,中国在人工智能的优势确实不错。中国有巨大的人才池,华人在人工智能领域的相应论文数量占了全球的将近一半。这是中国的第一点优势。

第二点,中国有非常大的市场优势。

第三点是说一下医疗领域。中国的医生数量很多,但是高质量的医生很少,这是我们的缺陷。但是落后并不见得是坏事,人工智能时代,中国完全可能在医疗行业实现超越。

谢谢!

本文属企智网原创文章,如需转载请注明来源:企智网

更多内容请登录:企智网微信公众号:企智网ID:gh_c393ae2a352a返回搜狐,查看更多

科学网—人工智能:为什么忧虑

人工智能:为什么忧虑

 

郭刚制图

■本报记者胡珉琦

围棋人机大战让人工智能的话题热度居高不下。每一次新进展的横空出世,都让期待这项技术的人变得更乐观,不过,人们对其影响力的顾虑也在明显上升。越来越多的组织、机构开始研究智能机器衍生的伦理问题。虽然人们无法保证今天的思考、策略完全有效,但在没有作任何准备的情况下,就必然无法将其控制。

永恒的恐惧

对于人工智能的忧虑,最早可以追溯到200年前。但这不是对一项技术的反思,而是展示了造物者与被造物之间的内在关系。

“亚当”是英国19世纪女作家玛丽·雪莱笔下作品《弗兰肯斯坦》中的合成生命体,科学家弗兰肯斯坦创造了他。亚当天性善良,渴望感情,渴望受到尊重,但世界并没有像他所期待的那样接纳他,他始终是个异类。

于是,他被迫反抗,作出极端行为,胁迫弗兰肯斯坦为他造一个“夏娃”。弗兰肯斯坦担心“亚当”和“夏娃”会衍生出无数新的怪物,在即将成功时将“夏娃”销毁。“亚当”开始了复仇杀戮,弗兰肯斯坦只能与之决斗。

《弗兰肯斯坦》在多年以后,依然能够成为英美文化的热点。上海交通大学科学史与科学文化研究院院长江晓原认为,这是源于人类与被造物之间天然的永恒恐惧与不安。“历史证明,即便同是人类,异族之间想要获得融合,也需付出巨大代价。”这可以解释为什么人类与人工智能的实现越近,恐惧与不安会更深。

不过,科学家一向反对将人工智能过度拟人化,他们认为目前没有确切证据证明它们在未来会带来像作品中的灾难性后果。

伦理学家、哲学家则坚持对人工智能的忧虑,至少可以理解为对科学技术的人文关怀。江晓原说:“要打消这个担忧,就必须论证‘人工智能不会危害人类’或者‘人工智能的危害是可控的’。”

人造机器会不会超越人

对于人工智能的警惕最初的焦点在于“人造的机器会超越人”。库兹韦尔在《奇点临近》中表示,一旦强人工智能实现,它可以很轻易地获得提高,其能力也会增倍,这是机器能力的根本特质。而这种自我强化的智能最终会超过人类智能水平。

世界通用人工智能学会副主席、《通用人工智能》杂志主编、美国天普大学计算机与信息科学系副教授王培认为,首先需要理清人工智能的概念。他告诉《中国科学报》记者,目前主流认知是,“人工智能”就是要在计算机上再现“全部的”人类智力功能。

虽然人们不断尝试设计和构建“思维机器”,但是往往都以失败而告终。因此,科学家转而研发只在某个特定问题的解决上可以达到人类水平的计算机系统。

在王培看来,这种研究方向的根本问题是这类系统的能力完全由人设计决定,系统本身基本上没有适应性、灵活性和创造性。因此,这类系统不是真正的智能。

一种非主流认识是,“智能”代表着某种理性原则,人类的智能从来不是全知全能,但人类总是能在任意环境中找到最优解。因此,真正的智能的定义可以抽象为“在知识和资源相对不足的条件下的适应能力”。

所谓“适应能力”是指,系统面临的问题是实时发生的,对系统作出反应的时间是有要求的;同时,相对于所要解决的问题来说,系统只有有限的信息加工能力,比如记忆的容量、计算的速度;其次,系统必须是开放的,不对面临的问题内容加以限制。

如此一来,目前人们所了解的人工智能系统都不满足这种能力。但王培认为,这才是更接近公众心目中的人工智能观念,是灵活的、有创造力的。

这类系统是一个自适应系统,元程序设计会赋予其自主应对问题的能力,但是它所面临的每一个问题本身并没有程序可以依靠,而是全凭自己在环境中学习和积累经验。

“无论计算机技术如何发展,尽管真正的人工智能系统会在很多具体问题的解决能力上超过人类,但由于它没有生物属性,没有和人类完全相同的经验,所以不会在所有方面超越人类。”王培表示,未来的人工智能系统只是在某些方面和人具有可比性,而非整体超越人类。那么,人与系统之间的关系也不可能等同于人与人之间的互动水平。

人工智能真的可控吗

人工智能不会全面超过人类不意味着它完全可控。就连库兹韦尔也表示,失控的人工智能在逻辑上是完全可能的。

王培承认,“智能”往往被当作褒义词,但事实上,真正的智能在拥有灵活性和创造性的同时,也可能是不稳定、不可靠的。“人工智能目标在一定程度上可以说就是减少人对计算机的控制和干预。因此,智能越高,失控的可能性在理论上就越大,风险也就越大。”

这正好印证了伦理学家的担忧。我国著名生命伦理学家邱仁宗表示,伦理学认为解决这个问题的核心,是希望人工智能机器成为一个“人工道德行动者”,使它们能考虑他人利益,甚至拥有利他主义倾向。

美国机器智能研究院专门研究人工智能的安全发展,该机构奠基人尤德科夫斯基就曾提出了“友好人工智能”的概念,认为“友善”从设计伊始就应当被注入机器的智能系统中。但这个理论很容易被推翻。“一个明显的常识是:人类无法避免自己的一部分后代学坏。”江晓原说。

王培的看法是,一个智能系统的行为同时取决于其先天条件以及后天条件。对于系统设计本身,可以在某种程度上将人类普世的道德标准编进程序。但由于它拥有自适应能力,人类无法预见其行为的所有后果。

“人工智能的‘自主决策’仍是被它的经验所约束的,如果在其‘未成年’期对其输入信息控制,以达到社会认可的动机、知识、技能结构和水平,并在其成长过程中进行与机器相关的道德、法律等社会约束,通过终生教育和社会化过程,可以实现像对人一样的管理。”

他认为,这就是平衡自由和道德的手段,然而,这个平衡并不能事先保证。这也说明人工智能一定能成为“人工道德行动者”的证据是不明确的。

预防还是行动

有一种观点认为,在科技发展过程中,恐惧新技术的人都会振振有词地说:到此处为止,不要再进步。

然而,由于“智能”天生就无法控制,在邱仁宗看来,人工智能对人类构成的威胁是一种“存在威胁”,即人类存在本身都成为问题,没有一项其他科技可以与之对等。

“真正带有终极性质的问题是:我们究竟为什么需要人工智能?人工智能真的必不可少吗?”江晓原认为,“没有人工智能或者限制人工智能并不会影响人类生存,它影响的是资本增值。”

这也造成在该问题上两种截然不同的处理原则。预防原则要求,我们不能用试错法来处理生存危机。如果一个行为的后果未知,但是根据科学家判断有极小可能会带来巨大的负面风险,这一行为最好不要进行;行动派则认为,很明显,这就要求科学家在战略中要尽可能提高自信以对抗这种风险。阻止新兴技术带来的好处,可能会增加灾难性结果的可能性。

尽管两者无法达成一致,但人工智能研究是人类几千年来在意识层面上自我认识的努力的最新前沿,它将不会停止发展。

“目前在这个领域的研究成果还没有成熟到支持应用技术的程度。和所有科学领域一样,把不成熟的研究成果投入实际应用是危险的,尤其是那些可能产生深远影响的成果,因此它的伦理问题很重要。”王培坦言,作为人工智能的研究者,随时想着自己研究工作的社会后果非常必要。“但人工智能技术的具体伦理规范应当随着科学研究的进展而逐渐建立,而不可能在研究成果尚未成熟的条件下完善。”

江晓原也表示,在必须发展该技术的前提下,我们应该抱着慎之又慎的心态。虽然本质上不存在能对抗强人工智能的绝对保护措施,大力增加在发展防御手段上的投入,包括道德标准、法律标准和防御技术本身都是非常必要的。

此外,在他看来,当这样一项重大科技应用有可能引发伦理和社会问题时,应对方式应该是科学与人文、科学家与公众之间展开积极的对话,而非单向的传播和顺从。

《中国科学报》(2016-04-01第1版要闻)

AI安全和隐私的忧虑有哪些

AI的达摩克利斯之剑:隐私与安全的远虑近忧 

中国已经成为世界上人工智能发展最快的国家之一,部分指标已居于世界领先地位。但在AI飞速发展的过程中,技术作为双刃剑引发的副作用同样也不可忽视。

诸如《银河漫游》《星际穿越》等一些科幻电影中,机器发展到一定阶段往往人和产生纷繁的利益纠葛,甚至造成不可挽回的生化危机。

假设AI发展到可以取代人的部分功能时,其可能引起的安全与伦理争议成为我们现在不可以回避的问题。

我们现在该如何界定人工智能?人工智能应该在怎样安全的框架下发展?怎样才是理想的人工智能准则?

论道AI安全与伦理主题沙龙在清华科技园成功举办。来自AI届的网红大佬中国科学院院士、清华大学人工智能研究院院长张钹,中国人民大学高瓴人工智能学院院长文继荣,搜狐网产品技术总监杨田博士展开了热烈的思辨。此外,清华大学副教授刘知远,搜狐集团招聘负责人付卓艳也作为嘉宾参加了本次会议,一起探寻AI安全与伦理等问题的解决之道。

目前离真正想象的AI状态还较远

张钹院士表示,我们一直认为机器如果发展到和人类不相上下的地步是很遥远的,尽管人工智能技术看起来并不是十分智能,但是已给我们带来很大的危险性。

因此,人工智能究竟应该如何发展?有了这些技术我们如何用?

“什么叫做情感,什么叫美,美是主观的还是客观的。实际很多东西涉及到哲学上的考虑。人工智能发展如果一个新思路的发展,其实哲学应该走在最前面。大家不要认为这些都是无稽之谈,实际它背后包含哲学的思考,这些思考我们相对来讲做科学的人做技术的人特别做工程的人考虑很少。”张钹院士说。

从目前的产品角度,杨田博士表示现在实际看到的人工智能产品,和我们理想的人工智能差距还比较大大。

“现在感知到的人工智能产品基本都是由最优化问题衍生出来的,像张院士所说,我们现阶段想让人工智能具备人一样的情感,作为人工智能的训练者我们这些人本身也不知道情感究竟是什么,人是怎么样表达的,所以可以肯定的是,至少现在我们不能够训练出一个人工智能的机器具有跟人一样的情感。”

虽然目前做出具有人类情感的AI还比较遥远,但是要用机器模拟出人的现象和行为,以现在的技术来说却基本可以实现。被人工智能的机器去利用弱点,反过来被机器所影响的风险极有可能发生。

AI的远虑和近忧

虽然离真正想象的AI状态还较远,但人工智能在发展的过程中已经引发了安全、伦理、道德等问题。

针对对AI伦理相关的考量,加拿大发布了《蒙特利尔宣言》,欧盟发布了《可信赖的AI伦理准则》,澳大利亚发布《人工智能发展政策指导》,北京智源实验室为首发布《人工智能北京共识》,以探讨AI的发展在技术之外还有什么重要的因素需要考量。

文继荣院长表示,现在人工智能面临两大问题,一是深度学习涉及的黑箱问题。“现在存在这种情况,拿一个数据在GPU上面跑,一堆复杂的模型,谁也搞不懂是什么东西,将来不可控制。”

“这件事情其实有很大的隐患,我们训练的模型都是好心,大家没有什么恶意,但是训练出来的模型拿去做一件事情,可能里面有不可控的因素,这是其一。”

其二,高级的人工智能会在应用过程中有自学习功能,会自我计划、自我学习,这个过程中也会有很多不可控的危险。

他举例说,微软研究院做了一个对话机器人小冰,中文版发布的时候叫小冰是个女孩,后来做了一个英文版,是男生,大概两天三天就下线了,为什么?它在两三天以后发表很多种族主义的言论。

小冰就是用大数据训练出来的看起来很智能的机器人,实际上它是在自学习。在刚刚一上线的时候,很多人开始利用这点训练小冰,因此它就学到了。

张钹院士表示,宣言里实际包含两个问题,分别是远虑和近忧。

从远虑角度来说,现在有两种路线,一种路线是我们希望发明出来的机器将来所有事都让它干,所有决策都让它做。这个思路非常危险,“你将来的命运实际是操纵在机器人手里。”

我们现在发展人工智能完全要建立人机和谐、人机共处、人机协作的未来,我们发展机器人的时候包括发展人工智能都要考虑到,哪些事情让机器做,哪些事情让人类做。

而近忧就在眼前,例如无意产生的语音合成。“本来想做一个服务器讲出来的语言和自然人一样,原来是好心做这个的,但是技术双刃剑也会去用做坏事,但是有意的有没有?绝对有。”

选择保护隐私还是公众安全

人工智能发展到一定阶段,总是面临着隐私和安全的冲突和平衡。

以加州为例,其通过了最严格的隐私保护法,任何在公共场合用摄像头照人得到的照片都不允许被使用,甚至警察抓罪犯也不能调用。

而我们在安全和隐私这两个纬度应该做怎样一个选择?

张钹院士表示:更重视隐私呢还是更重视公共利益?是如何平衡的问题。西方强调的隐私不见得对,我们过分强调公共利益也不对,这只是两个极端而已,不存在谁对谁错,而在于谁把这个平衡做得更好。

“个人利益和公共利益有些时候是矛盾的,我如何平衡?按照中国的世界观和价值观比较强调公共利益,按西方的价值观比较强调个人利益,个人利益神圣不可侵犯,有这条宪法约定。

比如装摄像头,我们装摄像头对社会带来多大的好处?比如抓逃犯,我主张罪犯要抓,如果影响到公共利益该抓就抓,个人要做点牺牲,这个是中国的哲学、中国的价值观,西方是不接受这种价值观的。”

清华大学教授唐杰则提到了分级问题,对于人工智能目前的发展状态是否需要未雨绸缪,像自动驾驶一样分级,在哪个领域隐私保护里面需要做到什么级别,需要探讨分级这个问题。

杨田博士则表示:“我们到处装摄像头,侵犯了公民的隐私权。另一方面,在座的所有人或多或少都从所谓的个性化推荐上面获得了便利,个性化推荐也可以理解为向系统出卖了我们的隐私换来了生活的便利。

而这里面的边界在不在于摄像头,不在于数据采集,而在于这件事或者数据采集它能不能作为对行为不当的一种证据。这个是很细致的问题,本身不应该由图象采集这件事情来承担。”

而对于人工智能的隐私,伦理等问题,学校和研究所应该做什么?企业应该做什么?还需要大家一起去探索。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇