博舍

新一代人工智能的发展与展望 人工智能应用边界有哪些特点呢

新一代人工智能的发展与展望

随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。

人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。

当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。

事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。

未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。

作者:徐云峰

catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]

人工智能的应用边界

刚才说到概率图,我们知道现在业界在自然语言理解的研究里面机器学习用得最好,就是它能用大量的数据来做机器翻译,但是仅仅利用传统的机器翻译,传统的这种统计学意义上的这种方法去寻找大规模数据上的对应关系,这是不够的。学者们最新的研究引用概率图计算去做自然语言理解和做机器学习,能够取得更好的翻译效果。

最近有一个著名的争论,深度学习是在颠覆一切。意思是说有了深度学习什么都能干,这里面有另外的问题,炼金术好还是化学好,如果不能非常明确的确定证明它的结论正确性,不能够证明它的结果的确定性,那么它就是一种炼金术,炼金术后面每一个元素是怎么反应的,它们反应的化学规律揭示清楚,这就是科学。什么叫科学,科学的唯一的判定标准就是确定性,是否具有确定性,如果说你发现某一条规律,繁杂无章的这种状况面前,具有某种确定性,只有这种规律是确定的,你所发现的规律是真的科学的,如果说不确定,那就不是科学了。数据科学是否成立?现在大家都在热炒,全世界都在炒作,大数据人工智能数据科学,如果说数据科学的判断标准仅仅是用统计学的这种方法,无法确定正确性与否的方法来判断的话,那就不是一个科学,他仅仅一个统计学结果,统计学在科学上来讲,统计学并不被所有的学者认为是科学,因为它里面有随机性。

我们现在说大数据小数据和零数据,现在很多公司宣传说人工智能发展的关键是是否拥有大数据,这句话是错的。我们拥有大数据就有大的优势,没有数据就无法发展人工智能,这句话是错的。阿尔法零在规则确定信息完全的情况下,是不需要数据的。不需要任何数据,就可以去写这个程序,在阿尔法狗开始研究的时候,系统需要用棋手对弈的大量历史数据去学习,那是因为当时的研究者还没有意识到这种场景下的道理,对于规则明确信息完全的这样的博弈场景,比如说像围棋、象棋,这里面不需要数据。有人说谷歌的阿尔法狗没有什么了不起的,人的智慧学得更快,围棋的维数一改变,谷歌的下棋程序就不能使用了,这是错的,无论围棋多少维,人工智能程序都应该可以自适应,应该可以完全战胜人类没有问题。在规则确定,信息不完全的情况下,像麻将,军棋,德州扑克,信息不完全的情况下,人工智能程序处理是很难的,需要计算博弈的胜负的概率,比前面的围棋难很多。我们在做人工智能研究的时候,要看具体的博弈场景,有的场景下即便没有那么多的数据,只要我们搞清楚数据背后的原理,可以利用对抗性网络让系统自己生成数据,去在策略网络和价值网络上训练。

很多人都忽悠说大数据是信息时代的石油,大数据是不是信息时代的石油?石油是不是可替代性的?如果说大数据在每一个场景都是必然的,需要的,那他就是石油,如果说很多应用场景不同的情况下,重要性不是一概而论的,那就不是信息时代的石油。小数据小样本学习才是人工智能真正的重点,为什么?我们可以观察婴儿,婴儿在学习新的知识的时候,他没有通过大数据去学习,他很简单的只要见过几次就认识了,这就是小样本学习。为什么人具有小样本学习的能力,机器不具备这种小样本的学习能力,这里面最根本的原因是人是经过几十亿年遗传进化而来最高等的生物,人的生理结构,人的遗传信息里面就包含了某些先天性的知识,而且人具有常识,具有对于自然界和社会的常识,常识才是人工智能发展的最核心和最根本的问题,也是人工智能发展最大的困难。怎么样让人工智能对常识获得认识和理解?常识的构建,常识的范围太广了,我们对于整个社会,对于整个物理世界的所有认识,都叫做常识,也就意味着要想建立常识,终极来讲对客观世界包括物理世界和人类社会的所有知识整合起来,来建立这样一个开放性的无所不包的知识模型。

开放性的问题就是如果说你要建立一个通用的人工智能对话机器人,我们往往发现答非所问,比如说像小冰,聊两句之后,答非所问,不知所云。像机器人助手在行业应用里面,结合具体的行业知识去做机器人行业问答助手是比较好的。

最新的人工智能的科研方向就是把传统的符号逻辑,我们称之为符号主义,专家系统和规则系统跟连接主义,机器学习神经元网络,把两种方法结合起来去应用。比如说googledeepmind研发的神经元网络图灵机,学习出来一个新的图灵机,可以用来做简单的推理,用于一些大数据里面的规则挖掘和推理有不错的效果。再一个比如说有的朋友在做自然语言理解,就是让机器理解人的语言,他们是把计算语言学规则系统与机器学习相结合,他们做得效果非常好。曾经有一个笑话说机器学习兴起来后,计算语言学家就成了自然语言理解的发展障碍,开除一个就进步一些,计算语言学家是自然语言理解发展的障碍吗?不对。计算语言学被抛弃了一段时间之后,当自然语言理解遇到瓶颈的时候,机器学习根自然语言学的规则系统结合起来,这是目前最新的研究趋势和方向,取得了很好的效果。

机器人里面的眼睛是用机器视觉图像处理,听声音回答用得是语音识别或者语音合成,机器人只有运动状态控制是跟人工智能有关的,但是它是一个典型的机器证明问题,这里面机器人有很多的关节,要计算每个关节的状态平衡态,是多元的非线性代数连续方程组,典型的机器证明问题,三角化后求解一个多项式解。所以大家如果认为机器人代表了人工智能那是错的。

我们再来说一下深度学习和机器学习及控制系统之间的区别,这一轮人工智能火爆起来就是因为CNN用来处理人脸识别的图象,CNN最早的是模拟猫的眼睛处理图像的视觉相关部分的神经和大脑结构,它是天然的比较适合用来处理图像。时序神经网络RNN,因为交易类场景有下单和成交时序,适合于股票期货交易算法,长短时神经元网络族LSTMfamily,适用于语音识别,科大讯飞的核心语音识别算法就是属于一个变形的LSTM算法。级联随机森林cascaderandomforest,适合于决策,最高法和某大型国有科研机构合作的智慧司法项目去年底找到我们外包做人工智能模拟法官判案决策逻辑。量子热力学模拟退火算法,它也不属于深度学习,当我们在超级复杂的系统里面,想计算系统的状态代价函数的全局最小点,这种特别复杂的情况下,有时候用梯度下降算法容易陷在局部最小点跳不出来,就要用这种算法。

辅助驾驶和自动驾驶中黑盒子算法的安全性问题。特斯拉最开始的时候,他的广告宣传片是自动驾驶,在迪拜,一个人坐上车后面的座位什么都不用管了,后来把广告撤了,因为出了人命事故。你要让车实现自动驾驶,图象识别现在用的是黑箱子算法,没有办法去解答,图象识别的每个层面,每层是什么意义,图象识别的正确性如何,即便识别的精度很高也不知道什么时候失效,没有办法去确定图像识别算法的正确性,只能说它是有用的有效的。还有一个方面,驾驶系统不仅仅是图象识别系统,还是一个决策系统。比如说举个例子,一个自动驾驶系统,驾驶员坐上去了,天然的驾驶系统就是要保护驾驶员。遇到一种场景,驾驶员坐在自动驾驶的车上,前面有紧急情况,车有一种选择是撞上栏杆,车毁驾驶员受伤,还有一种选择是前边有一个高端人士,比如是一个高级学者,还有一个选择是另外一边站着几个所谓的普通人,作为自动驾驶系统,他应该选择撞谁或者选择保护驾驶员吗?这是决策系统的问题,需要在各种可能性之间进行博弈和决策,而生命是平等的。还有生命的神圣性问题,现有的自动驾驶系统里面,没有办法确定算法什么时候失效,某种情况下,即便概率很低,很有可能让一个人坐在自动驾驶的车上出现交通事故,出了人命。即便自动驾驶降低了车祸的概率,这种概率很低,我们作为乘客把命运交给他们不确定正确与否的算法和系统手里,自动驾驶的乘客生命是可以确定性的被自动驾驶的安全或者不安全性随机的失效,低概率但是确定性的剥夺他们的生命。谁赋予了这个权力,我们要看待自动驾驶的问题,它分为几个等级,L1到L4。有单目、双目辅助驾驶(adas),激光雷达,微波雷达,惯性导航仪的引入,这种情况下用它来做L3级别的自动驾驶,这是可行和靠谱的,如果做L4完全自动驾驶只能用于没有人的港口,如果突然走出来一个行人,怎么决策,在复杂的路况下怎么做自动驾驶的决策,这种是目前的技术不能做到的。

人工智能可以做所有的事情吗?在很多应用程序里面,它是什么样的应用环境需要被考虑进去,很多时候是一个博弈场景。广告算法中的博弈,比如说google,百度,exchange等广告平台,广告主,用户,代理商,第三方技术服务商的博弈。我们如果了解博弈中的均衡状态,计算到均衡点,就可以进行有引导的纳什均衡。量化交易算法中股票期货外汇交易市场的博弈,比如说交易所,交易各方的博弈,算法对交易趋势的预测,利用及扰动。这个算法引入了之后,算法引入的交易量大了,它把纳什均衡破坏掉了,一个量化交易算法公开了被很多交易商使用之后,这个算法破坏了纳什系统的状态,而且对当前的交易趋势进行了扰动,效果就不好了。

在政治里面,在经济里面,也可以用到数据分析和引入博弈论。我们团队做过一些竞选的数据分析的探索。三年前我们新加坡的团队为印度总理莫迪的竞选提供了一些数据分析服务,数据驱动的选举是可以做分析可以做预测的,选举数据在源源不断的更新,但是对于政治博弈,人工智能无法确定它的结果。全球治理,国家治理,宏观经济模型中各项数据指标的内在关系和博弈,选举,政治局势的监测,分析,预测,这些都可以用到数据分析,而且每一个复杂系统都可以考虑博弈动力学,都是复杂的博弈系统,包含很多博弈子系统,一个复杂系统中每一个博弈子系统也会有平衡态,整个系统构成子博弈精炼纳什均衡,系统的状态会从一个旧的纳什均衡,演进到新的纳什均衡。但是数据驱动的选举的预测分析有可行性,而隐规则驱动的政治结果预测只能判断可能性而不能判断结果的确定性。

人工智能里面发展最关键的部分是语义和知识图谱,这个世界是否是可计算的?计算机科学、物理学、哲学能不能统一起来?图像识别,语音识别,物体识别,自然语言处理,机器翻译,社会问题,金融科技,算法交易等开放性问题,都需要知识图谱和语义识别,知识图谱是符号逻辑的硕果仅存与再发扬。图像识别和语音识别达到了一定精度后要想再进步1%都很难,因为进一步的识别需要判断语义。基于实体及关系的知识图谱的构建,要考虑到语义在高阶逻辑上的不可判定性,在高级逻辑上语义是不可判定的,而且很久之前哥德尔不完全定理就证明了人类用的计算机,其根本是一个演绎逻辑系统,是有缺陷的。很多计算问题都是NP问题,NP=P?问题的多项式时间内的可计算性研究,及Karp21类典型NPC问题的多项式时间转化和等价,这些计算理论问题,需要归纳逻辑与演绎逻辑结合,对于逻辑系统进行补充和统一。

在自然界有概率,有随机性,但是也有概率分布,有概率密度分布,统计学有概率的随机性,而概率密度分布是研究这种随机分布的确定性的。人工智能在计算状态方程的时候有概率密度分布PDF函数,在计算理论和密码学理论里面,有计算NPC的多项式时间求解中概率密度分布函数的应用。量子物理中多量子体间作用的波函数与人工智能算法中张量网络有对应关系。人类知识系统与物理世界的语言描述和逻辑要统一,如果说你要建一个通用的完美的人工智能,你就要解决这个问题。哲学上的休谟问题,你能否用一些基本的原理来推导出社会上一切问题的道德性和正确性的判定?如果我们建立完美的人工智能,也就意味着我们要了解所有知识和逻辑,做到符号,代数,计算的统一,这个意义上来讲,科学的发展最终要反哺哲学。

量子计算机和人工智能没有任何关系。有人说量子计算机的量子算法可以很快破解RSA加密带来了惊恐,但是这个仅仅在理论上有奇效,实际不可行。因为它需要非常多,无穷无尽的量子位来实现,但是量子位的增加是很难的工作。跟传统计算机的比特位的增加不一样,量子位的扩展对于量子态的测量和容错,纠错的难度是指数型增长,位数越多,纠错难度越大。量子计算机当前最新研究进展是十几个量子位。当前各大公司所有公布的经典量子计算机都是量子模拟,都不是真实的实现,Google支持的Dwave是非经典量子计算机,真正有前景的是量子热力学模拟退火,真正有前景的就是这种,包括日本有一个基于Ising模型研发的非经典量子计算机,Ising模型里面出过两个诺贝尔奖的获得者,如果谁能够计算三维Ising模型就能够再获得一个诺贝尔奖。用Ising模型在常温下就可以做量子热力学模拟退火芯片。量子模拟退火可以用于人工智能的组合优化,机器学习中状态方程的计算与量子模拟退火计算机结合的核心是添加随机数生成器和数据的交互传输。

我们公司各方面发展还行,现在最高的日收入是接近100万美金,量化广告,量化金融,金融科技我们也做了不少研发,我们是某个全国性股份制商业银行的智慧银行的项目主要开发者,包括反欺诈、大数据、企业风控和个人风控,企业授信,个人授信都是我们做的,我们在智能司法里做的最核心的就是人工智能模拟法官判案,中国的法律规定量刑范围有一些互相冲突的条款,在各个地方规定也有一些不一样,过去的判案案例里面有可能受到某些因素影响或者主审法官个人对法律的理解不到位,包括量刑范围和立功减刑。如果仅仅把历史上的案件统计一下根据统计规律指导法官进行新的判案是不靠谱的。我们也参与其他的事情比较多。今天的分享,主要是希望引起对于人工智能和大数据基础理论和原创性技术研究的关注。谢谢大家!返回搜狐,查看更多

什么是人工智能人工智能有哪些特点

  刷脸认证、自动驾驶、大数据推送、智能音箱、手术机器人……人工智能在各行各业得到了广泛的应用,数据伪造、算法瓶颈、隐私保护、道德困境等问题也日益突出。AI基础设施建设必须从提高自身底层能力入手,以内生动力突破三个关卡:算法关、数据关、应用关,迈向算法可靠、数据安全、应用可控的第三代人工智能。接下来小编就给大家带来什么是人工智能、人工智能有哪些特点的相关介绍,一起来看看吧。

什么是人工智能?人工智能有哪些特点?

一、什么是人工智能?

  人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

  人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

  人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

二、人工智能有哪些特点?

  首先,是从人工知识的表达转向大数据驱动的知识学习技术。由分类化的多媒体数据处理转变为跨媒体的认知、学习、推理,本文所说的“媒体”并非新闻媒体,而是界面或环境。

  其次,从追求智能化机器到高层次人机、脑机的相互协同与融合。从对个体智能的聚焦,到基于互联网和大数据的群体智能,它能将多个人的智能集合融合在一起成为群体智能。

  第三,是从拟人机器人向更广泛智能自主系统的转变,如智能工厂、智能无人机系统等。世界范围内对人工智能有三种看法:弱人工智能,强人工智能和超级人工智能。

  第四,弱人工智能是指利用现有的智能技术,改善我国经济社会发展所需的某些技术条件和功能。强人工智能阶段与人类智能非常相似,需要脑科学的突破,而国际上普遍认为,这一阶段将在2050年左右实现。

  第五,在脑科学和类脑智能得到长足发展之后,人工智能成为一种超强智能系统。在科技发展的今天,从脑科学突破的角度来发展人工智能,仍然有局限性。

  如何将人工智能(AI)引入计算领域,让机器从经验中学习,做出与人相似的决策,这在过去十年里得到了广泛的讨论,这几乎改变了我们经济的每个环节。

  AI技术被广泛应用于帮助企业将日常工作自动化,通过分析客户的行为来更好地了解客户,降低运营成本,以及在不同行业提供个性化服务的产品,无论是金融银行,还是交通运输,安保,医疗保健等领域,都逐渐显示出AI的独特优势。随着人工智能技术不断发展,不断涌现出新算法、新代码,新产品进入市场的机会大大增加,但不可授权使用和恶意篡改的风险无疑也在增加,数字版权保护任重道远。以上就是小编为大家带来的什么是人工智能、人工智能有哪些特点的相关介绍,希望对您有帮助。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇