人工智能的伦理挑战与科学应对
【光明青年论坛】
编者按
2023年2月21日,中国外交部正式发布《全球安全倡议概念文件》,呼吁“加强人工智能等新兴科技领域国际安全治理,预防和管控潜在安全风险”。在中国式现代化进程中,人工智能的技术革新是助推我国科技创新的重要力量之一。作为最具代表性的颠覆性技术,人工智能在给人类社会带来潜在巨大发展红利的同时,其不确定性也会带来诸多全球性挑战,引发重大的伦理关切。习近平总书记高度关注人工智能等新兴科技的发展,强调要加快提升“人工智能安全等领域的治理能力”,“塑造科技向善的文化理念,让科技更好增进人类福祉”。为此,本版特组织几位青年学者围绕人工智能的伦理挑战与科学应对展开讨论,并邀请专家予以点评,以期引发学界的更多关注,为推动人工智能健康发展贡献智慧。
与谈人
彭家锋 中国人民大学哲学院博士生
虞昊 华东师范大学政治与国际关系学院博士生
邓玉龙 南京师范大学哲学系博士生
主持人
刘永谋 中国人民大学哲学院教授、国家发展与战略研究院研究员
1.机遇与挑战并存的人工智能
主持人:新技术革命方兴未艾,以人工智能等为代表的新兴科技快速发展,大大拓展了时间、空间和人们的认知范围,人类正在进入一个“人机物”相融合的万物智能互联时代。请具体谈谈人工智能给人类社会发展带来什么样的机遇?
彭家锋:人工智能、大数据、物联网、云计算等智能技术蓬勃兴起,对人类社会的方方面面产生深刻影响,推动整个社会逐步迈入智能社会。在此过程中,存在许多重大历史机遇需要我们把握。就技术治理而言,人工智能作为一种治理技术,正在助推社会治理的治理理念、治理方式、治理效能等方面的变革,将传统技术治理提升至智能化新阶段,呈现出“智能治理的综合”趋势。智能治理将全面提升社会公共治理的智能化水平,主要呈现出四个方面的特征:一是治理融合化,即促进各种智能技术与其他治理技术相互融合,大幅度提升智能社会的治理水平;二是治理数据化,即以日益增长的海量数据为基础,通过对数据映射出来的“数字世界”进行社会计算,实现治理目标;三是治理精准化,即发挥智能技术强大的感知能力、传输能力和计算能力,将传统的粗放治理转变为精准治理;四是治理算法化,即不断完善智能决策系统,尝试将程序化的算法决策扩展到更多的决策活动中,从而提高决策质量。
虞昊:人工智能有助于反思人类社会得以建立与发展的基础。随着分析式AI向着生成式AI不断演变,尤其是生成式AI初步展现出判别问题、分析情感、展开对话、创作内容等越来越具有人类特征的功能,原本属于人类的领域正被人工智能以另一套由“0”与“1”构成的计算机语言逐步侵蚀。这既是对人类社会的冲击,也势必会在更加平等的开放性框架中增强人类的主体性,促进人类社会进一步发展。
邓玉龙:总体来说,以人工智能为代表的新科技发展,显著提升了社会生产力。例如,生成式AI不但能完成传统AI的分析、判断工作,还能进一步学习并完成分析式AI无法从事的创造性工作。从人机交互的角度来看,人工智能也促进了生产关系的高效发展。具体表现在:一是刺激劳动形态的转化。人工智能高效承担大量的基础机械性劳动,人类劳动则向高阶的创造性劳动转化,由此引发社会层面的劳动结构转型、升级,并且以人工智能为中介,社会范围内的劳动整合、协调能力也实现升级。二是促进劳动场域的重构。随着劳动形态的转化和劳动的社会化扩展,人工智能将劳动从固定场域中解放出来,人类劳动的灵活性增加。相比于创造性劳动,机械性劳动更加受到空间和时间的制约,而在人工智能从技术层面替代更低边际成本的基础性劳动之后,人类劳动空间和时间的自由性实现跃迁。三是对主体的发展提出了更高要求,尤其是对主体适应社会发展提出了更高要求。人工智能技术的发展对人类传统的知识结构提出挑战,要求人类更新原有的知识结构以适应社会发展需要,也对教育提出更高要求,教育模式和教育内容需要更契合科技发展的水平,培养更加全面发展的人才。
主持人:人工智能的一系列产物在给人们带来生活便利的同时,也一定程度上引起大家对其可能引发的伦理挑战的警惕。一些人关注人工智能的风险问题,对人工智能的推进有些焦虑。如何看待这种警惕和焦虑?
虞昊:人工智能的风险以及由此带来的焦虑,是完全可以理解的。但我们无法返回一个没有人工智能的世界,人工智能已然深度介入人类社会,试图遏制人工智能的推进只能是螳臂当车。同时我们对人工智能的发展也不能放任不管,无视甚至于压制人工智能的推进只能是掩耳盗铃。因此,我们应该正视这种焦虑,在发展人工智能的过程中探求解决方案,在人工智能带来的风险中寻求危中之机。
邓玉龙:我们应正确看待这种焦虑。要看到,焦虑有其积极的意义,它体现人类的忧患意识,催生对人工智能风险的预见性思考,提醒我们注意焦虑背后人工智能技术发展存在的问题。正确对待焦虑有助于积极采取措施防范风险,辩证分析焦虑中先见性的思考,通过社会治理模式的升级化解风险问题。同时,仅有焦虑和恐惧是不够的,更重要的是积极解决人工智能发展带来的社会问题。从劳动的角度看,人工智能确实会取代部分人类劳动,推动劳动结构转型升级,让劳动向着碎片化、个体化方向发展,劳动者处于弱势地位,面临着“机器换人”的挑战。但是我们也应该理性认识到,人工智能不是对人类劳动能力的完全替代,而是对劳动者提出了更高的要求,要求劳动者掌握科学知识,将技术的发展内化为自身能力,在更具创造性的劳动中实现自身价值。
彭家锋:任何技术的发明使用,不可避免地伴随着这样或那样的风险。人工智能技术自然也不例外,在其应用过程中,同样引发了诸如隐私泄露、算法歧视、法律责任等风险问题。因此,关注人工智能的风险问题,并由此对人工智能的推进产生焦虑,具有一定理论依据和现实基础。但更应当清醒地认识到,人工智能的某些相关风险可以提前得到规避,并不必然会发生;即便真的发生,也仍可不断寻求化解风险的有效手段。以个人隐私滥用风险为例,在治理过程中,虽然不可避免地会涉及个人数据收集和分析处理,但可以通过建立完整的规范和监管体系来保护个人隐私,降低滥用风险。
2.人工智能科技竞争的“伦理赛道”
主持人:习近平总书记在以视频方式出席二十国集团领导人第十五次峰会时指出,“中方支持围绕人工智能加强对话,倡议适时召开专题会议,推动落实二十国集团人工智能原则,引领全球人工智能健康发展”。请谈谈“人工智能原则”应包含哪些内容?科技向善的文化理念对推动全球人工智能健康发展具有怎样的现实价值?
彭家锋:为应对人工智能等新科技快速发展带来的伦理挑战,2022年,中共中央办公厅、国务院办公厅印发了《关于加强科技伦理治理的意见》,其中明确了“增进人类福祉”“尊重生命权利”“坚持公平公正”“合理控制风险”“保持公开透明”等五项科技伦理原则。我认为,这五项原则基本涵盖了人工智能原则的伦理要求,彰显了科技向善的文化理念。科技向善的文化理念,根本目标是让科技发展更好地服务社会和人民,带来良好社会或社会公益的善。科技向善对推动全球人工智能健康发展至少具有以下三个方面现实价值:一是塑造公众信任。公众对人工智能的信任很大程度上并不完全由相关风险程度决定,而是取决于公众的利益与价值是否得到足够重视。后者正是科技向善的内在要求。二是引领技术创新。科技向善的文化理念将在技术创新发展过程中发挥价值引领作用。三是促进全球合作。科技向善的文化理念试图在全球范围内建立人工智能伦理规范的“最大公约数”,各国在达成伦理共识的基础之上,能够建立互信,实现更加充分深入的国际合作。
虞昊:个人认为,人工智能原则也应包含非对抗与非失控的理念。非对抗意味着不应将人工智能视作人类社会的对抗性存在,人工智能已经成为人类社会的构成性要素,我们必须持更为开放的态度去面对人工智能。非失控意味着不应放弃对人工智能的伦理规范,应以智能的方式去规范加速发展的人工智能。如果以上述理念为前提,也就是说,在支持人工智能发展的情况下,科技向善的文化理念在推动全球人工智能健康发展中就变得极为重要。此处的“善”在国家治理层面即指向“善治”,而当人工智能的发展从国家范围扩展到全球范围,“善治”就在构建人类命运共同体的意义上拥有了更贴近现实的内涵。各国应摒弃冷战思维与零和博弈,基于善意与友谊共同思考人类作为整体如何在人工智能的冲击下通往全球性的“善治”。
邓玉龙:2019年欧盟发布《可信赖的人工智能伦理准则》,2021年中国国家新一代人工智能治理专业委员会发布《新一代人工智能伦理规范》(以下简称《规范》)。与欧盟发布的伦理准则相比,《规范》体现了中国特色社会主义的制度优势,旨在将伦理规范融入人工智能全生命周期。人工智能发展的根本目的是促进人的全面发展,因此,我以为,人工智能原则还应体现共享和有序发展的要求。共享,旨在防止人工智能的技术垄断。科技发展应该兼顾全体人民的利益,而不是服务于少数群体,由全体人民共享科技发展成果,推动全球科技水平的共同增长。有序发展,旨在防止人工智能技术的无序扩张。人工智能技术的发展最终是为了提升人的幸福感,推动科技有序发展能够促进人机和谐融合,有效预防潜在无序扩张的风险。
主持人:从规范层面来说,伦理反思对规范人工智能发展的作用主要体现在哪些方面?
彭家锋:近年来,世界各主要国家在人工智能领域竞争日趋激烈,纷纷将人工智能发展置于国家发展的战略层面。比如,美国陆续出台《国家人工智能研究和发展战略计划》(2016)和《关于维持美国在人工智能领域领导地位的行政命令》(2019);欧盟先后发布《欧洲人工智能战略》(2018)和《人工智能白皮书》(2020);中国也较早发布了《“互联网+”人工智能三年行动实施方案》(2016)和《新一代人工智能发展规划》(2017)。人工智能科技竞争的客观局面已然形成。在此背景下,如果忽视人工智能技术发展所带来的全球性风险与挑战,极有可能陷入技术赶超的竞争逻辑。因此,亟须规范人工智能的科技竞争,而倡导伦理反思或许就是一条可行之路。伦理反思的意义至少在于:一是设定伦理底线。人工智能技术的开发和应用需要遵循一些基本的价值理念和行为规范。只有守住伦理底线,才有可能避免颠覆性风险的发生。二是实现敏捷治理。伦理反思是一个动态、持续的过程,贯穿于人工智能科技活动的全生命周期。为了确保其始终服务于增进人类福祉和科技向善的初衷,需要保持应有的道德敏感性,以灵活、及时、有效的手段化解人工智能带来的各种伦理挑战,确保其在科技向善的道路上行稳致远,实现良性发展。
邓玉龙:人工智能科技竞争是为了促进科学技术发展,而科学技术发展的最终目的是推动人类社会的进步。人工智能科技竞争不应该仅包括技术竞争的单一维度,更不应该通过技术优势遏制他国的科技发展,而应该是在人工智能科技条件下的综合性竞争,通过良性竞争促进全球人工智能和全人类的共同发展。其中就应该包括社会治理竞争,通过社会治理保障社会公平,因而对社会中人与人关系的伦理反思构成人工智能科技竞争的有机组成部分。首先,伦理反思对人工智能科技竞争提出了更高的要求。人工智能的公平性、可信任性、可解释与透明度、安全性不仅是伦理要求,也代表了人工智能技术的发展方向,是人工智能科技竞争需要抢占的技术制高点。科技的发展是为了人的全面发展,因而人的发展内嵌于科技发展要求,伦理反思有助于防止工具主义的泛滥。其次,伦理反思为人工智能科技竞争提供价值引导。伦理反思注重保障人的权利,科技发展并不是社会发展中的唯一衡量因素,我们还应该关注其中多样性的因素,尤其注重保护特殊群体的利益,例如防止数据鸿沟等不良影响。伦理反思有助于实现人工智能的综合性健康发展。
3.人工智能安全与人的全面发展
主持人:科学探究一直以来都是人们认识世界和了解自身的重要认知方式,人工智能等信息产业的革命如何影响着人们的认知方式?
彭家锋:人工智能等信息产业的革命,促进了科学研究新范式——数据科学的诞生,进而对人们的认知方式产生深刻影响。数据科学被认为是继实验、理论和模拟之后的新的科研范式。相较于传统科学,数据科学融合了统计和计算思维,通过人工智能等技术提供的海量数据、强大算法和算力,能够直接从数据中寻找相关关系、提取相关性或者预测性知识,进而产生一种基于相关性的科学思维模式。但这种相关性并不一定能够转化为因果关系,因为可解释性对于从数据科学技术确定的相关性中提取因果解释至关重要,而相关技术一般都缺乏必要的透明度和可解释性。数据科学更可能成为一种预测科学,但是预测并不是科学追求的唯一目标。通过揭示世界的潜在因果结构来解释和干预现象,也是科学的两个重要目标。因此,尽管数据科学能够通过分析大量数据生成相关性知识,却不能直接产生因果解释。对此,传统科学的可检验性假设方法和因果规律探求仍有其重要价值。数据科学并非取代传统科学,相反,两者将相互补充,共同成为人类探索世界的有效工具。
虞昊:显而易见的是,随着人工智能向着通用人工智能迈进,其能够为人们提供的教育资源、生活娱乐、工作讯息也越来越丰富,人们势必越来越依赖于通过与人工智能进行交互来获取外界信息。因此,当人工智能深度地构成人们认知世界的滤镜时,若不对人工智能本身具有重复性、同质性倾向的认知框架保持警醒,人工智能可能扭曲人们的认知方式直至影响人的主体创造性。
邓玉龙:以人工智能为代表的全新技术发展被称为第四次工业革命,其中最显著的特征就是机器与人类的深度融合,机器不再作为一种外在性的工具被人类使用,而是在与人类的深度关联中影响人类的认知方式。一方面,信息产业革命丰富了人类认知的联结方式。人工智能和大数据技术的发展促进人类的分析逻辑从因果关系扩展为相关关系,对相关关系的重视使人工智能可以从大数据而非小数据维度获取信息,为人类认知提供新的视角。按照传统人类认知方式的理解,因果关系要求关于世界的认知是确定性的,而这在数字时代的复杂性社会中很难实现。人工智能对相关关系的认知填补了这一缺失,允许我们在无法掌握确定信息但在掌握大量数据的条件下对未来趋势作出预测。另一方面,如果我们对人工智能等科技的输出结果和生成内容盲目信赖,将结果和内容与经验事实之间进行绝对等同的连接,误认为是事实的全部,那么我们就会丧失人文主义抽象反思的能力,对此我们应当保持警惕,始终坚持反思和批判的人文精神。
主持人:如何调适人的主体创造性与信息高度集成共享之间的关系?
彭家锋:当人们逐渐将更多创造性工作交由人工智能完成,不免让人担忧人工智能是否将会威胁到人的主体创造性。从人机关系的角度来看,这种担忧是基于一种人机敌对论的视角,认为人工智能挤压了人的主体创造性空间,是替代逻辑的延续。但从人机协作的视角出发,将人工智能看作人的得力帮手,通过创造性地使用人工智能可以赋予人类更大的创造性空间。比如,在进行文字写作、多媒体脚本、程序代码、文稿翻译等工作时,可先由人工智能高水平地完成草稿工作,然后再由人类进行一些创造性的调整和发挥。此时人工智能生成的内容将成为进一步创作的原材料,人类将以更高的效率投入创造性活动之中。当然,要实现以上效果并非易事,不仅需要思想观念的转变,还应在制度安排、教育方式等方面作出相应调整。
虞昊:面对信息高度集成共享的人工智能,人有可能转变为算法的动物。试想下述场景:当依据人工智能展开行动变得足够便捷有效时,行动者便会倾向于采信人工智能,此时,看似是人类行动者基于自然语言在进行互动,实则是算法逻辑基于计算机语言在进行数字化运转。于是,人的主体创造性被侵蚀,人可能沦为算法动物。对此类情形,我们应该保持足够的清醒与警惕。
邓玉龙:人工智能技术生成的内容(AIGC)具有高度集成共享的特性,能够高效地对人类知识进行数据挖掘、信息生成。调适人的主体创造性与信息高度集成共享之间的关系,我们需做到如下几个方面:首先,需要通过人的创造性扩大AIGC数据库,当下AIGC主要是依赖于大语言模型,以大量的网络文本作为训练数据库生成的,通过人的创造性生成可以不局限于网络文本,而是进一步扩展数据库的训练文本,从而提高其丰富度。其次,需要通过人的创造性为AIGC提供价值训练,通过人的创造性生成的价值立场、伦理法则等与AIGC的训练数据库相融合,从而建构可信赖、可持续的信息高度集成共享机制。最后,需要将人创造性生成的内容与AIGC共同作为人类知识的来源,人类知识的获得不能仅仅局限于AIGC,而是需要人发挥其主体创造性对人工智能技术生成的内容进行反思和拓展,将人类无法被数据化的、经验性的知识与AIGC数据化的知识融合成为人类知识的来源。
(本版编辑张颖天整理)
人工智能的十大应用
导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。
作者:王健宗何安珣李泽远
来源:大数据DT(ID:hzdashuju)
01 无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。
美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。
2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。
Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。
2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。
近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。
但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。
02 人脸识别
人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。
2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;
2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。
03机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。
随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。
04声纹识别
生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。
相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。
同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。
目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。
05智能客服机器人
智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。
智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。
随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。
而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。
06智能外呼机器人
智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。
从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。
基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。
07智能音箱
智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。
支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。
在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。
08个性化推荐
个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。
个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。
09医学图像处理
医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。
传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。
该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。
10 图像搜索
图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。
关于作者:王健宗,博士,某大型金融集团科技公司资深人工智能总监、高级工程师,中国计算机学会大数据专家委员会委员、高级会员,美国佛罗里达大学人工智能博士后,曾任美国莱斯大学电子与计算机工程系研究员、美国惠普公司高级云计算解决方案专家。
何安珣,某大型金融集团科技公司高级算法工程师,中国计算机学会会员,中国计算机学会青年计算机科技论坛(YOCSEF深圳)委员。拥有丰富的金融智能从业经验,主要研究金融智能系统框架搭建、算法研究和模型融合技术等,致力于推动金融智能的落地应用与价值创造。
李泽远,某大型金融集团科技公司高级人工智能产品经理,中国计算机学会会员,长期致力于金融智能的产品化工作,负责技术服务类的产品生态搭建与实施推进。
本文摘编自《金融智能:AI如何为银行、保险、证券业赋能》,经出版方授权发布。
延伸阅读《金融智能》
点击上图了解及购买
转载请联系微信:DoctorData
推荐语:这是一部讲解如何用AI技术解决银行、保险、证券行业的核心痛点并帮助它们实现数智化转型的著作。作者从金融智能一线从业者的视角,深入剖析了传统金融行业的痛点与局限,以及金融智能的特点与优势,阐明了人工智能等技术在金融业的必要性,并针对金融智能在银行、保险和证券业的诸多应用场景,给出了具体解决方案。
划重点????
干货直达????
有了中台,那后台还剩下什么?(图解中台架构)
关于读书,我发现每一个技术大牛都有这个怪癖
2020福布斯中国富豪榜发布!10年来谁是中国最有钱的人?
34秒看完200余年美国总统大战:民主党vs共和党谁是赢家?
更多精彩????
在公众号对话框输入以下关键词
查看更多优质内容!
PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作
大数据 | 云计算 | 数据库 | Python | 可视化
AI | 人工智能 | 机器学习 | 深度学习 | NLP
5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生
据统计,99%的大咖都完成了这个神操作
????
人工智能主要研究方向
人工智能主要分为自然语言处理(NLP)、计算机视觉(CV)、数据挖掘(DM)三个大方向
自然语言处理(NLP):它是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。主要分类包括机器翻译、文本分类、知识图谱、文本相似度计算、语音识别、情感计算、自动摘要、聊天机器人等等
计算机视觉(CV):一门研究如何使机器“看”的科学,使用计算机及相关设备对生物视觉的一种模拟,研究如何运用照相机和计算机来获取我们所需的,被拍摄对象的数据与信息的学问。主要分类包括行人检测、人脸识别、自动驾驶、图像分类、目标检测、智能安防等等
数据挖掘(DM):数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程,主要分类有广告计算、推荐系统、用户画像、各类预测分类任务等等,DM多领域也需要用到NLP的知识。
例子:AlphaGo属于深度学习,深度学习可以应用于搜索技术,数据挖掘,机器学习,自然语言处理等很多领域
人工智能 领域六大分类
1)深度学习
深度学习是基于现有的数据进行学习操作,是机器学习研究中的一个新的领域,机在于建立、模拟人脑进行分析学习的神经网
络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。
2)自然语言处理
自然语言处理是用自然语言同计算机进行通讯的一种技术。人工智能的分支学科,研究用电子计算机模拟人的语言交际过程,
使计算机能理解和运用人类社会的自然语言如汉语、英语等,实现人机之间的自然语言通信,以代替人的部分脑力劳动,
包括查询资料、解答问题、摘录文献、汇编资料以及一切有关自然语言信息的加工处理。例如生活中的电话机器人的核心技术
之一就是自然语言处理
3)计算机视觉
计算机视觉是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适
合人眼观察或传送给仪器检测的图像。计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完
成处理和解释。计算机视觉的最终研究目标就是使计算机能像人那样通过视觉观察和理解世界,具有自主适应环境的能力。
计算机视觉应用的实例有很多,包括用于控制过程、导航、自动检测等方面。
4)智能机器人
如今我们的身边逐渐开始出现很多智能机器人,他们具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、
嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这些机器人都离不开人工智能的技术支持。
科学家们认为,智能机器人的研发方向是,给机器人装上“大脑芯片”,从而使其智能性更强,在认知学习、自动组织、对模糊信
息的综合处理等方面将会前进一大步。
5)自动程序设计
自动程序设计是指根据给定问题的原始描述,自动生成满足要求的程序。它是软件工程和人工智能相结合的研究课题。自动程序
设计主要包含程序综合和程序验证两方面内容。前者实现自动编程,即用户只需告知机器“做什么”,无须告诉“怎么做”,这后一步
的工作由机器自动完成;后者是程序的自动验证,自动完成正确性的检查。其目的是提高软件生产率和软件产品质量。
自动程序设计的任务是设计一个程序系统,接受关于所设计的程序要求实现某个目标非常高级描述作为其输入,然后自动生成一
个能完成这个目标的具体程序。该研究的重大贡献之一是把程序调试的概念作为问题求解的策略来使用。
6)数据挖掘
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。它通常与计算机科学有关,并通过统计、在线分析处
理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。它的分析方法包括:分
类、估计、预测、相关性分组或关联规则、聚类和复杂数据类型挖掘。