2023人工智能教育蓝皮书:现状、挑战与发展建议|附下载
周丹腾讯青少年人工智能教育负责人
吴朋阳腾讯研究院智慧产业研究中心主任
人工智能作为新一轮科技革命和产业革命的重要驱动力量,正在深刻改变人们的生活、工作和教育学习方式,人工智能技术越来越多地应用在教学管理的各个环节,人工智能课程也逐渐成为中小学阶段的重要教学内容之一。
为贯彻落实《中国教育现代化2035》,更全面地调研我国中小学人工智能课程教学和技术赋能教育的现状,腾讯研究院联合华东师范大学、中国教育科学研究院开展全国人工智能教育现状调研,编写了《2022人工智能教育蓝皮书》,旨在为未来中小学人工智能教育落地提供有效路径参考。
本次蓝皮书面向全国25个省市的中小学校长、教师和学生进行问卷抽样调查,从2021年9月至10月获得有效问卷总计超过19万份,样本量较为充分。蓝皮书从人工智能教育的定义及应用比较、人工智能赋能教育的技术应用情况、人工智能课程的教学设置及师资实践等维度,通过不同地区校长、教师和学生不同视角的比较研究,反映出当下人工智能教育的现状及挑战,并对未来发展给出建设性建议。(文末提供本报告电子版和纸质版的获取方式)
人工智能教育的内涵和关键词
教育学者从不同的视角和层次出发,按照观点内容的指向性,将人工智能教育的内涵分为三大类:第一类是工具,人工智能教育即人工智能赋能教育,主要指向人工智能的应用层面,支持教、学、管、评等教育活动的技术手段,利用智能工具对教育系统各要素进行自动分析,支持规模化教学与个性化学习,加快人才培养模式和教学方法的改革。第二类是内容,人工智能教育即人工智能课程教学,以人工智能为学习内容的教育,包括人工智能知识教育、应用能力教育和情意教育等,是提升个体人工智能素养的泛学科性教育。第三类是工具与内容的组合,将以上两类观点进行整合,实现学习层面与应用层面的统一与融合。
图1人工智能教育的分类
工具:
人工智能赋能教育的重要发现
1.学校信息化智能系统建设仍处于“重硬轻软”阶段。受访学校的信息化硬件设备总体情况较好,并配备了一定数量的智能设备,但是人工智能技术教育应用的相关软件系统还较为欠缺。
图2学校所拥有的人工智能软硬件教育装备情况(N=1423)
图3学校在课堂教学中应用人工智能技术的情况(N=1423)
2.学校管理层愿意推进人工智能教学应用,同时对系统安全诉求强烈。受访校长对人工智能技术在学校管理方面的应用满意度较高,并且愿意继续推进人工智能技术在学校中的进一步应用;学校都愿意通过设立“教学服务团队”、“邀请人工智能专家提供指导”等渠道为人工智能在教育方面的应用提供支持;校长们还认为教师最需要的外部支持是为教师创造在教学中使用人工智能产品的文化氛围、配置成熟的人工智能教学应用产品、增加教师在教学中使用人工智能产品的激励机制。由于人工智能技术在教育应用中可能导致师生的个人信息泄露或被监视等问题,因而校长对搭建校园安全预警防范系统的态度较为强烈。
图4校长对人工智能技术在学校管理应用的满意度情况(N=1423)
3.教师整体认可人工智能教学工具的价值,但也受阻于相关产品的不成熟和系统培训的缺乏。受访教师对人工智能在教学中的应用较为满意,认为在教学中应用人工智能技术可以提高他们的教学自信心,但同时也反映在操作人工智能产品中遇到困难的问题。教师认为最阻碍在教学中有效应用人工智能技术的因素是缺乏成熟的智能产品以及配套的资源与服务,其次是中小学中缺乏对一线教师进行人工智能相关课程的系统培训。
图5教师应用人工智能技术的阻碍因素(N=26806)
4.学生普遍愿意使用人工智能学习工具,希望获得个性化评估与辅导。大部分受访学生都对人工智能教育持有积极的态度,愿意使用人工智能学习工具,并认为使用人工智能技术会促进学习。仅有不到一半的受访学生使用过人工智能学习工具辅助学习,使用过的学生则都能够利用人工智能学习工具自主获取所需要的学习资源,实现学习方式的多样化。
图6学生使用人工智能学习工具的类型(N=54684)
大部分受访学生认为,智能评价系统从不同角度分析学习数据,能精准反映实际学习情况,对学习有很大帮助,并期望智能学习工具能够基于问题给予学生详细的解析思路和过程,在此基础上配备相应的讲解视频,全方位多角度地对学生进行有针对性的辅导。
图7学生期望的智能学习工具(N=46462)
内容:
人工智能课程教学的重要发现
1.政府拨款采购是人工智能课程资源配置的主要方式。受访学校拥有的智能技术硬件设备或软件设施等资源,超过半数以上是通过“政府拨款采购”的方式获取的,这表明在人工智能进入中小学的过程中,政府发挥着重要的作用,为课程资源的配置提供坚实的政策和资金支持。
图8人工智能课程资源获取途径(N=1423)
2.学校管理层普遍积极推进人工智能课程,教师能力培养和课程体系完善是当务之急。对于中小学人工智能课程的发展前景,大多数的受访校长保持积极的态度,认为人工智能课程具有光明的应用前景。超半数的受访学校已经开设或正在筹备人工智能教育教学活动,聚焦人工智能课程的教师培养、课程规划以及硬件设备、设施环境等。
图9人工智能教育教学活动的开展情况(N=1423)
图10学校开展人工智能课程建设的主要工作类型(N=838)
3.人工智能课程的教师数量较少,大部分教师认为自身专业知识和能力一般需要进行系统培训。受访的中小学校中,参与人工智能课程教学活动的教师数量较少,专职讲授人工智能课程的教师寥寥无几,大多数受访教师认为自己对于人工智能专业知识和相关工具的掌握程度一般,且开设的人工智能课程尚处于了解与体验阶段,授课时间频率在1周1课时。
图11教师对人工智能相关知识的掌握情况(N=2159)
图12教师开设人工智能课程的阶段(N=2159)
讲授人工智能课程的教师普遍认为,中小学有必要开展与人工智能教学相关的职前培训,仅有三成左右的教师在高等教育阶段接受过人工智能教学培训,且认为培训课程的难易程度适中。
中小学人工智能课程教材的获取途径主要分为两种:直接采购和自主研发;教材的购买主体一般为学校,而教材的开发主体一般为人工智能课程教师,仍有近三分之一的教师表示其所在学校的人工智能课程并没有配备相应的教材资源。
图13人工智能教材资源的配套情况(N=838)
4.学生学习人工智能课程普遍喜欢课外活动、竞赛等多元化的教学方式。大部分受访的学生对自主探究和小组合作的授课形式表示满意,认为项目式的学习方式有益于教学活动的开展,贴近生活的情境学习可以激发他们的学习兴趣,运用人工智能技术解决问题的方法能够提高他们动手实践和创新思维的能力,希望学习人工智能课程可以走出课堂,参加丰富多元的课外活动或竞赛。
图14学生期待的人工智能课程开展形式(N=105955)
地区发展差异分析
1.东部地区学校的信息化基础设施情况和人工智能设施设备情况都是最好的,而东北地区的人工智能系统情况不够乐观,这将导致地区间差异逐渐拉大,更会影响后续人工智能课程的开设与发展。
图15不同地区学校在课堂教学中应用人工智能技术情况
2.东部地区的校长对于人工智能在教育管理上的应用持有赞同态度的比例最高,而东北、中部、西部地区的认同态度比例明显低于东部地区,中部地区最低。
图16不同地区校长对工智能教育管理应用的赞同比例
3.目前各区域人工智能教师培训内容以人工智能教育的理念和理论为主,其中东部地区人工智能教师的培训内容丰富度最高,其他各方面的占比均高于其他地区。
图17不同地区人工智能教师培训内容
4.根据学生使用人工智能工具类型可看出,东部地区中小学生能够自主寻找网络资源满足自己的学习需求,并根据系统的评价与反馈进行自我反思,其信息化素养较高且利用技术解决现有问题的意识也比较强烈,人工智能工具对西部地区中小学生的学习有着更为明显的促进作用。
图18不同地区学生使用人工智能工具情况
5.大部分区域中开设人工智能课程的学校已经具备相关的配套教材资源,其中教材获取途径以学校自主研发为主。
图19不同地区人工智能教材配套情况
6.在“双减”政策下,各区域均考虑开展人工智能课程的课后托管服务,其中中部地区最为突出。
图20不同地区学校考虑开展人工智能课后托管情况
人工智能教育的未来展望
综观人工智能教育发展现状和主要问题,未来发展可从以下几个方面重点考虑:
一是构建公平而有质量的人工智能教育生态系统。人工智能发展带来了社会全方位的变革,也对教育提前布局人力资本提出前所未有的要求。首先,从国家战略的角度要对人工智能教育进行顶层设计,在国家层面制定宏观的规划与方案,再根据地区的差异因地制宜进行调整。其次,国家要大力投资与人工智能教育相关的研究项目,制定高精尖人才培养政策,建设人工智能精英人才库,为人工智能人才提供实践的大舞台。最后,要树立正确的人工智能价值导向,培养人工智能时代具有社会责任感的中国公民,并高度重视人工智能教育发展可能带来的伦理问题,为构建一个和平、包容、稳定的社会做出贡献。人工智能专业人才的培养,不仅依托智能化资源与内在价值认同等基础条件,也需要社会生态与文化情境的有力支撑。
二是提高教师应用人工智能教育技术的能力。未来的课堂,将由人类教师与人工智能教师共同协作承担教学任务,两者各自发挥优势,各司其职。其一,积极开展跨校际、跨区域的教研活动,利用课堂教学智能分析系统,结合不同地区优秀教研员的点评分析,为研修教师提供精准服务,指导、组织、协助研修教师进行深度学习。其二,组织开展人工智能的相关技能培训,转变教师的教学理念,帮助教师精准掌握人工智能的技术,完善学校教师的激励机制,推动教师积极应用人工智能技术开展教学活动,协同实现个性化教育、公平教育与终身教育,促进人的全面发展。
三是推动学校教育评价改革,完善学生评价机制。响应《深化新时代教育评价改革总体方案》中提出的“改进结果评价、强化过程评价、探索增值评价、健全综合评价”、“提升教育评价的科学性、专业性、客观性”的明确要求,一方面,借助大数据、人工智能等技术,以学生在学习过程中的动态数据为基础,实施学习诊断分析,建立围绕学生成长的数据档案,探索各学段学生学习情况的全过程纵向评价。另一方面,优化教育评价方式和转变评价焦点,定期完成核心评价指标的统计和分析,聚焦学生核心素养发展,构建“五育并举”的学生综合素质评价体系,推动德智体美劳全要素的横向评价落地,构建一条完整的人工智能赋能教育领域的清晰路径。
报告全文提供两种获取方式:
1.希望获得电子版报告的读者,请扫码填写您的邮箱地址和单位信息,我们将及时发送;
2.希望获得纸质版报告的读者,请在留言区留下您对人工智能教育的看法,我们将根据点赞数量,选出10位寄送。
人工智能助力高等教育:变革与坚守
作者:詹泽慧钟柏昌来源:中国教育新闻网-中国高等教育杂志
近年来,大数据、云计算、虚拟现实、人工智能等智能信息技术的兴起,深刻地影响着教育领域。作为引领科技革命和产业变革的战略性技术,人工智能具有溢出带动性很强的“头雁”效应,在近五年的《地平线报告》中均被提名,成为名副其实的助推高等教育教学发展的动力引擎。然而,“技术是把双刃剑”,何况人工智能这把“剑”尚未全面炼成,教育应用的“剑法”也尚不成熟。因此,在人工智能逐渐融入教育的今天,常有人质疑其智能的准确性是否能达到可用的程度。事实上,技术是一种客体存在,是人的本质力量对象化(劳动与实践)的产物,只有将人工智能嵌入合理的教育教学框架中,才能使其发挥正向作用。人工智能怎样助推高等教育发展?应明确哪些因素是变革的积极力量,哪些又是需要坚守的本质与初心,从而在技术浪潮中既能与时俱进,又能在变与不变之间保持必要的张力。
人工智能与高等教育的主客体地位辨析
人工智能与高等教育之间的关系,本质是“技术”与“教育”之间的关系。对二者的辨析实质上需探析其相互作用的两种主要形式:技术教育化与教育技术化。所谓技术教育化,就是将技术转化为“教育中的技术”,教育主体根据需求选择合适的技术,并在教育实践中对技术进行设计与开发,形成更加切合教育需求的技术。换言之,经过教育者本质力量的持续改造,技术才能成为适用于教育的技术。所谓教育技术化是指新技术首先以“工具”的形态进入教育系统起到教育辅助作用,随着新技术的作用得到肯定与推广,人们的行为习惯与能力也逐步发生变化,教育中原有的教学方法、教学规律、教学原则、教学理论等在新技术的影响下进行适应性的调整。
进一步说,“教育”与“技术”的关系是主体与客体之间的关系:教育作为主体,技术作为客体。技术是教育主体(人)实现教育目的的实践过程中(人的本质力量的对象化)的产物,也即技术在先天本质上是依附于人的教育需求与实践。由此可以说,教育的本质与目标不会因为人工智能的介入而发生根本变化,但会因为人的教育需求改变而变化;无论技术冲击多大,人作为教育系统中的主体地位是不可撼动的,技术对教育的影响取决于人的教育需求与实践。有人一味强调人工智能的作用而忽视教育自身需求与能动性,将教育当作对人才的规模化培养和无差别制造,这显然不符合技术的本质。
人工智能应用于高等教育可能会改变师生教学行为习惯,产生教育理念、教学原理、教学结构、学习方式等方面的变革。然而,在高等教育系统中,学习者的身心发展规律、教育的本质与基本原理等具有跨越时空的普适性与稳定性。这些不变的基本理论应该作为高等教育系统引入人工智能的标准与指南,以规范人工智能的“客体”角色定位,为高等教育系统服务的同时形塑教育人工智能的特质,避免技术的僭越桎梏师生主体性的张扬,真正实现人工智能与高等教育的双向赋能。
人工智能助推高校教育系统变革
目前,人工智能在教育领域的典型应用主要包括智能导师、智慧学伴、智能评测系统、特征识别与学习分析等,涉及教学场景、学习场景、管理考核三大场景,基本实现了对教育的全面渗透。
1.人工智能时代“教”的变革
在人工智能时代,高校教师角色被重新定位。人工智能技术的引入打破了大学课堂的边界,在自适应学习引导和智慧化资源推送支持下,学生将有更多机会进行自主学习,而不再受限于高校教师的权威。教师逐渐从知识传授者转变为学生学习的启发者、引导者、支持者、协作者,师生关系更加平等、开放。人工智能催生了“智能导师”和“双师教学”形式的出现,“教书”和“育人”的工作将被分离:“智能导师”或人工智能“助教”承担传授知识的教书工作(如批量批改作业、实时管控教学等高重复性、低认知性的程式化工作),而人类教师则集中精力在开展育人工作上(如引导学生、传递价值观、情感沟通等高认知的工作)。
在教学形式上,教师可灵活运用各类智能化信息工具,分析学习者特征,为学习者提供更加科学、个性化的指导。人工智能时代大学课堂将会更有弹性、灵活、互动、开放,教学课程越来越多地体现为线上、线下的混合,人工智能支持下的翻转课堂学习模式、自适应学习模式、项目合作与探究的学习模式等,使得人工智能时代的人才培养更加个性化、精准化和差异化。
在教学内容上,人工智能有可能促成高等教育学科结构的变化。人工智能对未来职业岗位产生了巨大冲击,一些低技能与重复化的工作将被智能机器代替。高等教育要面向未来的岗位和职业要求变化,以发展性的眼光进行学科体系结构的调整。教育部《高等学校人工智能创新行动计划》指出,高校要完成适应新一代人工智能发展的高校科技创新体系和学科体系的优化布局,一方面完善人工智能的学科体系,另一方面要推进“新工科”建设,形成“人工智能+X”复合专业培养新模式。再者,人工智能还可以视作建立学科联系的纽带和载体,与其他学科进行整合以开展跨学科教育(如STEAM+AI)。此外,人工智能机器带来的工业生产与简单服务业工作中人力的解放,使得人们有更多的时间思考。美学、艺术、人文、社会、哲学等人文学科可能会产生越来越多的就读需求,人文学科在人工智能时代可能会强势回归。
2.人工智能时代“学”的变革
在学习者分析、学习诊断与评测、智慧化推送等人工智能技术的支持下,学习者可以通过人工智能终端随时随地获得所需的资源,终身学习成为可能。学习过程变得更加自主、人性化、精准化、个性化。更重要的是,其有助于解决教育“个性化”和“规模化”双向需求的问题,也有助于缩小数字鸿沟,推动教育公平。
在学习形式上,传统的“生听师讲”的面对面授课已经难以契合人工智能时代的育人需求。有学者主张实行“经验学习”,即在真实情境的实践体验中学习,真切感知不同的文化或社会情境。也有学者指出,人工智能将激发高校系统中“人机协同学习”的新场景,由此伴随而来的海量信息与高速发展的社会性等特征,给教育教学带来了“高信息吸收量”与“有限的时间”等限制条件,这又进一步要求新技术为学生提供更凝练、高效而具身的社会经验。
在学习发展目标上,具备高信息素养、科技素养以及创新创造能力的人工智能人才培养成为了各国高校育人的重要方向。无论是面向专业型的人工智能精英培养,还是面向科普型的其他各行业人才,在育人需求上都产生了新的变化。除此之外,人工智能时代还强调培养学习者知识迁移运用能力、逻辑思维能力、判断性思维能力和复杂决策能力,以及想象力、表达力、创造力等高阶综合能力,从而实现实用型、复合型、智慧型的人才培养。
3.人工智能时代“管”的变革
人工智能在学习支持服务与行政管理服务中的应用主要有以下四个方面:特征分析和预测、考核和评价、自适应系统和个性化、智能辅导系统。在人工智能与大数据、云计算、区块链等技术支持下,海量的高校信息与数据得到了有效的管理、流通、共享与保护,这不仅有利于信息与资源的共建共享,而且减少了许多简单性、重复性、程序性的工作,优化了高校教育管理中烦琐的流程性业务。例如,线上办理、数字签名等功能,实现了简政增效。又如,基于数据的实时获取与监控,能够实现校园情况的实时把控,提高校园的安全管理效能。
把握好“双主”师生关系,科学发挥人工智能应用实效
教育是关乎人的事业,人工智能与高等教育之间的关系,本质上是技术与人之间的关系。只有坚定人作为教育主体地位不动摇,把握好“教师主导-学生主体”这一“双主”师生关系,人工智能应用与高等教育才能科学发挥实效。
1.坚守教育者在高等教育系统中的主导地位
一切智能技术的作用,都是在人的设计和引导下实现的作用,所以人工智能的智慧,其实质还是人类的智慧。例如,在开展智能化评价时,智能评价背后的评判标准与逻辑由专家研究与制定,评价的结果与效果尽在人类的设计与规划之中。在人工智能全方位渗透进高等教育领域的今天,被人工智能所“识别”“分析”“判断”“决策”与“引导”,但实质上这一切都是在智能机器背后的专家团队的集体智慧。
人类智慧才是人工智能背后的真正逻辑,因此高等教育的“传道授业解惑”亦须以人为主导。何况当前人工智能技术发展还处于初级阶段,新一代人工智能在涉及心灵、文化、审美等高认知、高情感体验、高人文性与复杂性的领域,仍存在局限。教育是面对生命的事业,教书育人具有很强的人文性与情感温度。人工智能机器可以代替和辅助人类完成简单重复、低认知与低技能的工作,承担知识讲授、评卷阅卷等教书任务;但是在传递理想信念与经验道德、引导创新等高阶任务仍要依靠教育者实现。
2.坚守受教育者在高等教育系统中的主体地位
育人是教育的本质,“培养适应社会发展的人”是高等教育的重要目标,立德树人是高等教育的根本任务。所有人工智能机器与工具的设计与使用,其本质驱动力就是为促进学生的发展而服务。新技术的出现,为采用新的教学方法、提高教学质量提供了可能。但是新技术从出现到应用,常常耗费人力、物力和财力。若为了使用技术而生产技术,这种“自产自销”的行为中间不会产生任何的教育价值与意义,结果可能只是劳神伤财。因此我们需要紧紧把握“育人”目标,谋篇布局,进行人工智能技术与工具的设计与开发,把学习者放在设计与应用过程的中心,才能保证技术的可取、可信、可用。
3.人工智能与高等教育的双向赋能须坚守以人为本
人工智能可以减少教师工作量,达到减负增效的效果,但这并不意味着我们可以完全依赖于人工智能来做评价。那么在高等教育中,什么环节必须依托人类智慧,什么环节可以依托人工智能呢?可以从四个维度来分析:在“教”的维度上,内容的呈现、课后的辅导可由双师课堂完成,但互动与共情的环节,人类教师的作用是不可替代的。在“学”的维度上,人工智能可以对既定题目进行实时反馈,但知识的习得与内化迁移也只能由学习者自身来完成。在“研”的环节,人工智能可以辅助分析,还能协助解决部分问题,但发现问题的过程,亦难以通过人工智能达成。在“管”的维度,人工智能可以从数据中发现类别或奇异点,作出预警,然而决策的过程仍然离不开人类。总之,人工智能在教育领域可以帮助师生做事实判断,但无法也不应做价值判断,教育主体的师生互动和情感交流才是根本。
毋庸置疑,人工智能潜力巨大,其发展必将带来高等教育的新形态、新生态。但技术的能量需要理性看待,有所为有所不为,有变革,亦需坚守。
一方面,技术再强大,育人才是根本,面对人工智能对教育的渗透,需要有“以静制动”的定力。首先,在人工智能重塑高等教育的过程中,人工智能如何作用,其背后藉由人工智能专家、教育学专家、心理学专家等专业人员“无形的手”进行操控。人工智能对高等教育的冲击,还是在人为控制和规划范围内的冲击。其次,技术是工具,育人才是目的。无论人工智能如何作用,归根结底还需落实到人。教育立德树人的根本任务不会改变,人工智能应用要为人才培养服务的定位就不会改变。在人工智能对高等教育助力的过程中,我们要坚守人作为教育主体地位不动摇。
另一方面,人的需求在不断变化,教育也在不断革新,面对人工智能对教育的冲击,还需要有“以动制动”的应变能力。人工智能技术是“人”改造世界的过程中本质力量对象化的产物,在教育领域,尤其是肩负高层次创新人才培养的高等教育领域,教育者需要深入思考新时代背景下国际高等教育的发展趋势和人才培养的需求变化,接纳人工智能技术的教育应用,并努力探索改善人工智能在高等教育领域的应用途径、方式、方法、功能与价值,将人工智能教育化,匡正智能技术的教育应用之道。
【作者詹泽慧钟柏昌,单位:华南师范大学教育信息技术学院】
原载2021年第20期《中国高等教育》杂志
人工智能时代教师教育创新发展路径与趋势研究
人工智能新技术、新工具和新理念深度融合于教师教育,为教师教育创新发展提供支撑,推动了教师教育模式丰富化、教育环境智能化、教育资源多样化、教育师资多元化以及教育测评精准化。从外部来看,科学、稳定和统一的教育政策能为教师教育良性发展提供支持,良好的教师教育环境则是教师教育发展的基础;加强教师教育内涵与外延建设,在提升教师研修质量的同时,加强技术支持的教师研修的研究[7];打造教师教育创新团队和品牌,为教师教育发展提供自下而上的牵引力,从而引领教师教育发展;以职前职后一体化的理念创新教师教育模式、课程、环境、资源、师资和评价,依托师范专业认证,加快构建新时代教师教育体系,并持续创新教师教育,从而最终实现建设高素质专业化创新型教师队伍,培养卓越师范生和专家型教师,助力教育现代化建设。
三、人工智能时代教师教育发展趋势
应用人工智能助推教师队伍建设,将智能技术与教师教育诸要素深度融合,推动教师教育发展。未来人工智能技术与教师教育深度融合,必将深度创新教师教育变革与转型,形成一种全新的教师教育生态。
(一)教师教育模式丰富化,校企协同走向深度化
人工智能时代教师教育面临转型与变革,主要体现在三个方面:第一,教师需求正从数量到结构和质量的变化;第二,教师的学习要求从学历达标到素质提升的转变;第三,教师素质从单一技能向研究型、专家型的转变。在此背景下,以终身学习、泛在学习理念和智能移动技术为支撑的教师职后教研模式,如远程同步课堂、手机课堂直播、网络名师工作室、技术支持的教师工作坊等,正逐步推动教师职后研修走向数据化和深度化。在师范生培养方面,面对职前教师实践技能不足的问题,融合高校(University)、政府部门(Government)、中小学(School)的U-G-S模式在师范生培养中得到应用[8]。在产教融合背景下,以智能技术为支撑的教师教育产业学院育人模式逐步走入教育者的视野,依托产业学院建设,加强校企协同创新人才培养,提高实践教学质量,提升师范生职业技能和素养,而这一模式正成为解决当前师范生实践技能薄弱的新途径,在高校中获得关注。
(二)教师教育环境智能化,全面支持教师专业发展
(三)教师教育资源多样化,个性化深度学习成常态
教育中,智能技术与工具催生大量优质教育资源,有力支持资源共建共享,扩大了优质教育资源覆盖范围。学习者无须复杂的设备,使用智能移动终端即可获取智能APP工具,支持自主与合作学习;应用开放、共享的生态理念,推动市场参与教师教育资源建设,将行业、企业、政府部门纳入资源建设队伍,拓展资源供给渠道,丰富资源数量。在此基础上,借助学习分析技术、智能导师系统通过对学习进行诊断,推荐针对性的学习路径与资源,实现高度个性化的学习。例如,针对在线学习中学习者学习迷航这一问题,AI智能教师扮演个性化问题解决的智能导师,应用知识表征和知识图谱技术,为学习者推荐个性化的学习路径和符合认知特点的学习资源[12];再比如,通过为师范生/教师进行精准画像,推荐符合其学习特点和需求的学习资源;借助大数据优势,建立一体化的学习资源库,支持职前职后一体化学习[13]。
(四)教师教育师资多元化,人机协同教学成标配
人工智能技术有助于解决教师教育师资短缺的问题,为教师职业发展提供新平台与工具。借助智能化的工具,可打破学科、专业、行业界限,将行业、企业领域优秀人才引入教师教育领域,专业人员通过远程或“虚拟”的方式走入课堂,引领教师专业成长。另一方面,余胜泉等人提出未来将是人工智能与人类教师共同协作的时代[14],目前在国际上已有研究者进行了探索,例如:Rubio应用智能导师系统以支持学生协作学习[15],Walkington开发了智能机器人系统,以辅助学生开展个性化的学习[16]。在人机协同育人过程中,人工智能机器可扮演出题和批阅的助教、学习过程数据的采集师与分析师、智能学习伙伴、教育决策助手[17],而教师则扮演学习中的导演、教练、设计师的角色,对学习进行决策、指导、设计,承担需要运用人类智慧才能胜任的工作。通过人机优势互补,共同推动教师专业成长。
(五)教师教育测评精准化,助力职前职后紧密衔接
教师职前培养与职后培训相分离是教师教育中亟待解决的问题之一[18]。所谓职前职后一体化,就是解决好职前职后教育的衔接问题。依托智能技术开展教师教育精准测评,有助于推动教师教育职前职后一体化发展。一方面,建立具有连贯性和一致性的职前职后一体化机制,搭建基于云计算和大数据的教师教育云档案系统,将师范生学习特点、课程、成绩、实践项目、学习成果等数据存储于云端,依托大数据实现精准测评,找到知识和技能的薄弱点,制定具有针对性的职后培训方案,实现职前职后无缝紧密衔接。另一方面,在职后发展阶段,建立持续获取和分析教师学习数据机制,搭建职后培训学习平台,不断完善和丰富职后学习数据,通过大数据分析对教师进行画像,从而精准支撑教师职后培训。基于上述方法打造一条贯通职前职后的教师专业发展之路,推动职前职后一体化,助力教师专业化成长。
四、人工智能时代教师教育创新发展建议
(一)树立教师教育生态意识,建立智能教师教育发展愿景
教师教育是一个复杂的系统。从阶段来看,既涉及职前阶段又涵盖职后阶段,并且二者有机结合构成一个统一整体;从参与对象来看,包括教育部门、大学及科研院所、中小学、企业;从范围来看,涉及区域内的合作、区域外的协同以及区域内外的协同;从研究的角度来看,涉及教师教育理论、实践与技术。因此,推动智能时代的教师教育创新发展,首要的是建立教师教育生态意识,用开放、融合、跨界、数据化的“互联网”思维重新审视各要素的内涵及关系,运用平台思维推动教师教育顶层设计,应用跨界思维实现多方力量的高度协同,以数据思维为教师教育提供精准支持、融合用户思维真正实现以“学生为中心”“素养为基、能力为本”的教学与培训,以此建立智能教师教育发展愿景与行动。
(二)从学校、课程与课堂发力,推进人工智能真正走进教师教育
本研究认为,实现人工智能走入教师教育包括三个维度:人工智能教育进学校、进课程和进课堂。从学校层面来看,建设智能化的校园、学习平台,为智慧学习提供环境支撑,这是人工智能融入教师教育的基础。从课程层面来看,祝智庭提出智能教育包括智能技术支持的教育、学习智能技术的教育和促进智能发展的教育[19],人工智能时代的教师教育涵盖上述三个方面。因此,在教师教育课程中将人工智能本身作为学习内容,帮助教师掌握人工智能的内涵、特点和趋势,以此推动人工智能教育融入课程。从课堂层面来看,应用智能技术支撑教学将是未来需要重点关注的方向,这是人工智能教育真正的主战场。
(三)提升教师创新设计思维,助力教师适应智能时代角色转型与变革
人工智能时代,教师角色正面临转型与变革。美国《教师标准》提出“设计者(Designer)”将是未来教师的重要角色[20]。《2019年地平线报告》(高等教育版)认为教师教育正逐渐从技术应用的取向转变为设计思维方法取向,助力教师成为更具创新力的教学设计师[21]。新时代,教师不仅需要技术整合应用的信息化教学能力,更亟须一种指向为教学变革而设计(DesigningforPedagogicalChange)的创新设计思维。对此,在职前培养和职后培训中,要以智能学习环境为支撑,创新课程内容,将设计思维的理念、方法融入其中,帮助教师掌握创造性设计教学的使能手段,以此培养面向智能时代的创新型人才和创新型教师。
五、小结
人工智能时代,新技术、新工具和新理念为破解教师教育发展困境提供了支撑,必将推动教师教育模式、环境、资源、师资以及评价的深度变革,但需要反思的是,实践中不能陷入“技术中心”的境地而盲目应用智能技术。需要指出的是,人工智能教育应用的核心是设计,把适合机器的事情交给机器做,把适合人做的事情让人去做,把人机结合起来做得更好的事让人机一起做,以创新设计的理念引领技术工具高效应用,真正实现人工智能为教育赋能的价值。
[2]赵春,卢蓓蓉,秦虎,等.数字化时代的教师教育:以“下一代互联网教师教育创新支持系统应用示范”项目为例[J].远程教育杂志,2011,29(6):10-17.
[3][9]杜玉霞.基于“互联网+”的中小学教师信息化教学能力提升研究[J].中国电化教育,2017(8):86-92.
[4][13]肖瑶,张学斌.教师教育一体化课程资源及其建设[J].教育研究,2015(8):112-115.
[5][18]杨桂青.教育从不单纯根据技术需求来变革:访华东师范大学终身教授祝智庭[N].中国教育报,2018-05-31(8).
[6]DARLING-HAMMONDL.Constructing21st-CenturyTeacherEducation[J].JournalofTeacherEducation(S0022-4871),2006,57(3):300-314.
[7]HATTONN,SMITHD.ReflectioninTeacherEducation:TowardsDefinitionandImplementation[J].Teaching&TeacherEducation(S0742-051X),1995,11(1):33-49.
[8]李广.教师教育协同创新机制研究:东北师范大学“U-G-S”教师教育模式新发展[J].教育研究,2017(4):146-151.
[10]景玉慧,沈书生.智慧学习空间的建设路径[J].电化教育研究,2018(2):23-27+40.
[11]KORTHAGENF,LOUGHRANJ,RUSSELLT.DevelopingFunda-mentalPrinciplesforTeacherEducationProgramsandPractices[J].Teaching&TeacherEducation(S0742-051X),2006,22(8):1020-1041.
[12]吕恺悦,孙众.“人工智能+教师教育”的现状、动态与问题[J].现代教育技术,2019(11):114-120.
[14]余胜泉.人工智能教师的未来角色[J].开放教育研究,2018(1):16-28.
[15]RUBIO-FERNNDEZA,MUOZ-MERINOPJ,KLOOSCD.AnalyzingtheGroupFormationProcessinIntelligentTutoringSystems[C].InternationalConferenceonIntelligentTutoringSystems,Berlin:Springer,2019(6).
[17]胡小勇,曹宇星.面向“互联网+”的教研模式与发展路径研究[J].中国电化教育,2019(6):80-85.
[19]祝智庭,彭红超,雷云鹤.智能教育:智慧教育的实践路径[J].开放教育研究,2018(4):13-24+42.
[21]ALEXANDERB,ASHFORD-ROWEK,BARAJAS-MURPHYN,etal.HorizonReport2019HigherEducationEdition[EB/OL].(2019-04-25)[2019-09-20].https://library.educause.edu/-/media/files/library/2019/4/2019horizonreport.pdf?la=en&hash=C8E8D444AF372E705FA1BF9D4FF0DD4CC6F0FDD1.
朱龙(1988—),男,汉族,湖北黄冈人,博士,讲师,主要研究方向为信息化教学创新、教师教育信息化。返回搜狐,查看更多
人工智能时代教师专业发展的机遇和挑战
摘要:本文从教师专业发展的动因、新师徒制的发展、精准教育的实现及泛在学习的推进出发,分析人工智能时代教师专业发展的机遇,强调教师应在教学内容上求创新、课堂教学上求突破,告别传统题海战术,探索教学新方式,重视学生反馈,在数据支持下实现精准教学。
关键词:人工智能;教师专业发展;机遇;挑战
随着教育信息化的深入,教育将不可避免地受人工智能影响。笔者从人工智能的发展前景及其对传统教育的改变出发,基于我国教育改革和人工智能的研究现状,剖析人工智能时代教育模式、教育理念、教学形态的转变及发展趋势,同时结合教育改革背景下教师专业发展的调整方向,探求教师专业发展新策略。人工智能的发展已经引发师徒制、精准教育、个性化学习、泛在学习等教育之变,笔者希望相关研究能为教育改革提供一定的借鉴。
一、人工智能时代教师专业发展的动因
总体来看,业界对“人工智能+教育”的研究是在近几年火热起来的。笔者以“人工智能+教育”为主题进行检索,检出论文813篇,其中综述类文献仅27篇,可见该领域研究空间很大。学术界在肯定人工智能对传统教育带来冲击的同时,也存在着“人工智能威胁论”的说法。香港中文大学徐扬生教授认为人们的想象、创造、情感、直觉是人工智能所不及的,“教育怎么把这些东西放进去,才是最大的前景”。清华大学钱颖一教授认为未来人工智能首先会替代那些在我们教育制度下培养学生的优势,即对已有知识的积累。著名学者GrahamBrown-Martin在《人工智能对于教育行业来说意味着什么?》一文中指出:“这使得翻译和语音识别系统变得流行起来。”诸多研究都认为人工智能对传统教育的冲击不可避免。
综观众多学者的研究,笔者认为:人工智能时代,教师的教育目标将从“知识传授”转为“能力培养”。但是,教师依旧有其不可取代之处,因为人类在想象、创造、情感、直觉方面的优势是人工智能所不及的。如何打破传统教学中以教师为中心的思维惯性,变革以知识灌输为手段的教学模式,在人工智能浪潮下保持教师与教育的先进性,这是所有教育工作者需要思考的重大问题。笔者认为,“人工智能+教育”主要呈现以下几个特点。
(一)教育模式的改变——新师徒制的发展
笔者对国内外关于人工智能如何影响教育模式的文献做了分析,发现大多停留在“设想”的层面。汤敏先生在“未来教育与新师徒制”报告中,以“双师教学”“戴你唱歌”等教育新模式为例引出“互联网下的新师徒制”的概念。同时,汤敏先生对其优势进行了介绍,并阐述了人工智能对“互联网下的新师徒制”的影响。汤敏先生认为人工智能可以数据分析的形式满足相关个性化需求,而被人工智能前期技术淘汰的那些人需要应用一种低成本的有效方式来转换他们的工作。
近年来双师教学持续升温,人工智能将为此类新型教学模式带来怎样的改变值得关注。众多研究表明,依托大数据、云计算以及深度学习的人工智能正在不断革新传统教育模式。人工智能深度学习的特性决定了其对教育模式的改变是必然的。面对人工智能对教育模式之变,教师唯有图变,才能在大数据时代得以发展。正如汤敏先生所说,人都需要不断地充电——持续地学习新知识并掌握新技能比以往任何时候都更为重要。
(二)教学方式的革新——精准教育的实现
教育是线性发展的,而人工智能是呈指数发展的。目前的人工智能只能辅助教育,但若干年后就难以估量了。诸多研究都认为人工智能将推动精准教育发展,尤其是在个性化教学方面。
学者关新认为将来的教育应是往精准教育的方向发展,而人工智能时代的小学教育将充分实现“因材施教”。精准诊断,精准评价,精准辅导,精准练习……一切从学生个体的实际情况出发,以人工智能驱动个性化教学。江南大学牟智佳教授认为“个性化学习是技术与教学深度融合在高级阶段的表现形式,以机器学习和深度学习为关键支撑的人工智能技术的回归,对个性化学习进行了重塑和再造”。
总之,有关人工智能对教学方式影响的研究相对丰富,不少学者对于人工智能如何影响教学颇有见地,但对于理论的完善和实践的摸索依旧“在路上”。一方面,对于人工智能和教学方式革新的逻辑与内涵有待明确。另一方面,人工智能时代教育发展的具体内涵、因果关系有待明晰。但不可否认的是,借助人工智能可以针对学生做精准判断与个性化诊断,并为学生自主学习提供的个性化辅导,确实驱动了精准教育发展。精准教育服务有望实现日常教育与终身教育定制化。
(三)教学环境的更迭——泛在学习的推进
目前讨论人工智能在金融、交通、医疗等领域的应用较多,但在教育领域则相对较少。关于人工智能与教育关系的讨论较为深入的一次也许是在“人工智能与未来教育”高峰论坛。人工智能对于教学环境的改变可在互联网对教学环境的改变上有所洞悉。在华东师范大学袁振国教授的《人工智能的时代,依然会有诗和远方》一文中,他认为人工智能难以替代人类感知和思维的整体性与统整性,以及人的情感性与社会性。人工智能将彻底改变传统的教育,使任何人在任何地点任何时间可以学习任何的内容,即泛在教育。在人工智能发展的过程当中,人类自身一定会不断发展。
泛在学习强调智能化环境的创设,目标是创设让学生随时随地利用任何终端进行学习的环境,实现以学生为中心的教育。学生在时间、空间上的自由度将是传统教育所不能及的。目前国内外关于人工智能和泛在学习的理论相对较少,袁振国教授的研究在国内处于相对领先位置,但依旧没有形成系统的理论。泛在学习的有关观点虽具一定的合理性和前瞻性,但因为太过“年轻”,缺乏足够的说服力。
二、人工智能时代教师专业发展的机遇
(一)教育模式之变:新师徒制,以学生为中心
在我国,“学而优则仕”的思想根深蒂固,传统的教育模式依旧有其影响。在新课程改革热潮下,中国的教育模式正在从应试教育向素质教育过渡。大数据时代,发达的网络催生了“互联网下的新师徒制”——以互联网为媒介,由某一领域的行家里手,以长期言传身教的方式,带领较大规模的徒弟们用碎片时间进行学习与实践的一种新型教育模式。它改变了传统的教育模式,实现了教育史上的一次革命。人工智能可以通过数据分析为徒弟们匹配相应的教师,从而满足学习者的个性化需求,甚至以机器教师的身份在线为学习者提供有针对性的指导,或通过人机交互技术协助教师为学生在线答疑。此类教育模式以学生为中心,突破了传统课堂对学生的束缚,更是顺应了我国教育改革的趋势和方向。教师在专业发展过程中需主动适应人工智能时代新型教育模式,不断提升自我信息素养以顺应时代之变。
(二)教学方式之变:精准教育,重视个性化学习
人工智能是通过机器学习、深度学习来工作的,而其也能相应地推动学生对知识的深度学习。可以说,个性化学习的目标是满足学生的需求和兴趣,而人工智能技术则能基于学生的个性化信息数据进行情绪识别、情感计算、自然语言处理与分析,为个性化学习提供智能支持,从而实现精准教学。常见的模式有个性分析、智能推送和精准反馈服务。未来,每个学生会像拥有智能手机一样人手一个陪伴自己成长且能学会解决复杂而抽象问题的机器人。人工智能可以成为教师的助手,而学生则可以通过机器人辅助从而拥有“私人”教师团队。时代在进步,21世纪的小学生与“智能”走得太近,如果教师能够全面突破传统,瞄准精准化、个性化、弹性化、融合化的变革趋向,强化“共享共创”“个性定制”“体验参与”意识,更加有利于把握人工智能时代的教育新机遇。
(三)教学形态之变:泛在学习,随时随地学习
传统的学习资源分散无序、共享性差、聚合性差,而在泛在学习时代,资源深度聚合让学习变得“泛在”与即时。相比火热的在线教育,“人工智能+基础教育”的融合之路要审慎、复杂得多。随着互联网的发展及人工智能在教育上的应用,泛在学习将会真正实现。人工智能改变了教学的形态,也促使教育打破传统思想边际,加快教育教学转型,以适应新形势下的教学形态之变。同时,人工智能可以实现教育资源的相对公平。智能教育将让更多的人享受一样的资源,得到一样的受教育权利,让更多的少年儿童在人生起跑线上不因资源的不同而被区别对待,而从这一视角上来看人工智能对于教育的改变将是革命性的。此外,人工智能为学生构建的群体智能学习环境将能有效满足学生的学习需求,让学生适应未来的学习工作模式,甚至创造新的模式。教师的专业发展是与具体的教学情境联系的动态的知识建构过程,如何提前适应泛在教学形态并在此情境下提升自我教学能力及教学效果,是每位教师需要思考的问题。
三、人工智能时代教师专业发展的挑战及应对
(一)教学内容求创新,课堂教学应突破
人工智能催生了泛在学习,也将扩充教学资源。不仅教师能够接触深度聚合的教学资源,学生亦能唾手可得海量的学习资源。在这样的情况下,教师对教学内容进行创新就显得很有必要。单纯依靠书本上的“死知识”显然很难满足学生的需求,书本上原原本本的内容,学生依托人工智能便可学习。未来,人工智能时代的教育是“人性为王”的教育,教师应加强教育对德、仁、情等人性特有的东西的关注。在课堂教学中更多地关注对学生创造力、社交能力等人工智能难以代替因素的培养。
(二)告别传统题海战术,探索教学新方式
受应试教育的影响,教育被许多人狭隘地理解为“刷题”,其实教育并非仅灌输知识与传授技能。知识主要依靠人的记忆力和逻辑判断力进行消化。可以说,任何一个机器人都可以记忆五万个数字,所以机器在这一点上是很容易取代传统的注重知识灌输的教育的。如果一位教师最大的兴趣就是做重复的工作,那么在效率优先的人工智能时代,他是肯定会被替代的。传统行为主义下对学生反复操练的教学方式显然在人工智能时代是立足不了的。真正的教育过程,从来就不是师生之间单向的机械操作。教学主体不是冷冰冰的“程序载体”,而是有血有肉有思想有灵魂的人,情感交流绝对不是没有温度的人工智能能够做到的。教师应有意识地转变传统的题海战,寻求教学新方式,注重教学的艺术性,将学生放在主体地位。教师要在泛在学习大趋势下巧妙利用好教学情境,变灌输为感化,增强自身的能动性,提高效率并降低事件重复率。
(三)学生反馈应重视,依托数据精滴灌
人工智能将为学生的个性化学习提供技术支持,从而推进教师精准教学的开展。人工智能时代,教师对于学生学习的认识被画上新的问号,多元学习环境下作业和考试已很难反映学生的学习全貌。人工智能所带来的数据分析技术将为教师开通对学生学习情况诊断、反馈的绿色通道。此外,在教学中,教师对于学生学习情况的反馈与矫正是一个循环往复的过程,这就要求教师的反馈要及时、准确,而这些恰恰是人工智能所擅长的。如何应对人工智能所带来的挑战,积极利用它而不是被其取代,是每位教师需要认真思考的问题。
人工智能时代教师专业发展正受到越来越多人的关注,人们也正在致力于这方面的探索与实践。人工智能时代,教育模式、教学方式、教学形态等被重新解读,担负着教育信息化和教育改革使命的教师也应转变传统教学观念,重新定位角色,发展专业素养,从讲授者转向指导者,适应新师徒制、个性化学习、泛在学习等发展要求,思考教育的本质和内涵,重视教育过程中的情感投入,在实践和反思中不断提高教学的艺术性和创造性,拥有仁爱之心、恻隐之心,逐渐达到专业发展的目的。
[1]徐扬生。我排完课程表后,发现人工智能最大的冲击是教育[R]。中国源头创新百人会年度论坛,2017-07-06。
[2]汤敏。未来教育与新师徒制[R]。“人工智能与未来教育”高峰论坛,2017-05-13。
[3]伏彩瑞。人工智能,打造个性化定制化教育[R]。“人工智能与未来教育”高峰论坛,2017-05-13。
[4]牟智佳。“人工智能+”时代的个性化学习理论重思与开解[R]。“人工智能与未来教育”高峰论坛,2017-05-13。
[5]袁振国。人工智能的时代,依然会有诗和远方[R]。“人工智能与未来教育”高峰论坛,2017-05-13。
(作者董瑶瑶系浙江师范大学教师教育学院博士生;李志超系浙江师范大学教师教育学院副教授)
责任编辑:祝元志
人工智能时代的工作变化、能力需求与培养
摘要:在人工智能时代,程序化工作和一部分非程序化工作将被人工智能取代,工作将向高度智慧化转移,劳动者的工作定位将发生升级方式、介入方式、前进方式、转移方式和集中方式等不同的变化。为了适应人工智能时代,要在学校教育和企业教育中注重提高受教育者的人工智能素养、培养创造性思维能力、社会交流能力以及环境应变能力。应对人工智能时代培养所需人才的关键措施包括:突出个性化培养理念;构建人工智能素养教育体系;实施问题导向及跨学科合作探讨的学习方式;利用人工智能技术提高学习效率。
关键词:人工智能;工作定位;能力需求;能力培养
基金项目:本文系中国社会科学院登峰战略企业管理优势学科建设项目、中国社会科学院京津冀协同发展智库研究课题的阶段性成果。
当前,我们正处在全面进入人工智能时代的过渡期,几乎所有领域都出现了装载有人工智能技术的机械设备。18世纪中期以来,人类历史上先后出现了蒸汽机、内燃机与马达、计算机与互联网技术。这些技术极大地改变了人类的生产生活方式,推动了人类社会的发展。可以说,人工智能是继三大技术之后的又一重大技术。况且,与以往技术不同,人工智能可以替代人的脑力劳动,这将大幅度地改变人们现有的工作内容,并要求人们拥有不同于以往的特殊能力。然而,关于如何界定人在人工智能时代的工作定位及所需能力、如何培养人工智能时代所需要的人才,是尚未解决的课题。目前,有研究围绕人工智能可能产生的就业影响,尤其是结构性失业风险以及社会经济对策等方面进行了分析(万昆,2019;陈明生,2019;王君等,2017;潘文轩,2018),也有研究对人工智能背景下职业教育体制改革与发展问题进行了探讨(南旭光,汪洋,2018;毛旭,张涛,2019;丁晨,2019),但深入到工作能力层面,从劳动者角度探究人工智能时代的人才培养问题的相关研究还较为少见。鉴于此,本文基于技术—工作—能力—培养的视角,结合前沿研究进行理论分析,阐明人工智能对工作业务的影响机制,明确人工智能时代的工作定位与能力需求,探讨能力培养的战略思路和关键方法。
一、人工智能时代的工作变化
人工智能(ArtificialIntelligence,简称AI)是指可以感应环境、做出行动,并获取最佳结果的合理主体(RationalAgent)(S.J.Russell,P.Norvig,2018)。感应环境、做出行动和获取最佳结果,属于人的智慧行为,而这些行为通过计算机程序(合理主体)被再现出来,就成为了人工智能。换言之,人工智能就是具有人类智慧的计算机系统。而在现实的工作环境中,人工智能的计算机系统又是与大量的感应器、超高速通信网、大数据收集分析装置、终端设备、机器手等组成更为复杂的系统来进行实际作业的,如机场出入境管理的人脸识别系统、汽车自动驾驶系统等。因此,可以说人工智能就是装载有可以模拟人类智慧行为的计算机程序的自动化设备。
现阶段的人工智能可以在一定程度上替代人完成识别、决策和操控方面的任务。在识别方面,人工智能可以进行信息判别、分类与检索,如从影像中发现癌变征兆;从音调语速中检测情绪;从图像中监控设备异常、天气异常、用户账号异常等。在决策方面,人工智能可以进行数值形式下的物象评估与匹配,如预测销售额、GDP指标、民意度、信用风险、病变风险;推断消费者爱好、产品推销时机;根据消费者爱好、习惯不同而推荐不同内容的商品广告等。在操控方面,人工智能可以进行表现生成、设计行动最佳化及作业自动化,如自动撰写新闻稿件、概括文章大意;设计项目路线图、商品标识、网页布局、药品成分、建筑物结构;优化游戏策略、送货路线、店铺布局;实施自动驾驶、客户咨询等。只要人规定好了计算机程序的信息处理目的和分析方式,人工智能就能准确无误地替代人工进行作业(安宅和人,2015)。
(一)工作变化的特征
人工智能时代工作变化的特征体现在以下三方面。
1.程序化工作被人工智能取代
所谓程序化工作,按照美国经济学家奥托(D.H.Autor)等的定义,是指变化少、可以按照事先规定的程序进行的工作(Autoretal,2003)。程序化工作又分为主要使用认知能力的程序—认知型工作和主要使用肢体能力的程序—肢体型工作。认知能力是指直觉、判断、想象、推理、决策、记忆、语言理解等能力;肢体能力是指体力。程序—认知型工作具有重复性、单一性、目的明确并且主要使用脑力等特点,如行政事务、会计工作。程序—肢体型工作虽然也有重复性、单一性、目的明确等特点,但主要使用体力,如流水线组装、仓库运输业务。由于程序化工作相对简单,易于编制成计算机程序,所以人工智能对人类劳动的替代,首先会从这些工作开始。例如,产品组装是按照作业标准反复实施同样内容的工作,而作业标准完全可以编制为计算机程序,所使用的设备以及动作也完全可以建立成模型,因此,产品组装就可以由人工智能来代替实施。再如,需要一定认知能力的会计业务,人工智能也可以通过扫描或接受电子信号等方式获取相关数据,而后根据规定程序进行分类、汇总等作业。因此,在人工智能时代程序化工作会呈现明显的减少趋势,以往的自动化设备,基本是替代体力劳动的蓝领劳动者,而人工智能将替代白领劳动者。英国剑桥大学学者弗雷(C.B.Frey)与奥斯本(M.Osborne)在2013年发表的报告中指出,美国在未来20年里将有47%的工作存在被替代的可能性,电话推销员、标题审查与摘要人员、手工缝纫工、技工、保险受理员、手表修理工、货物运输人员、税务代理员、照片处理工、会计助理、图书馆技术员、数据输入员等工作被取代的概率可高达99%(C.B.Frey,M.Osborne,2013)。日本经济新闻和英国金融时报2017年合作进行的调查显示,制造、餐饮、运输等23个产业的2000项工作中有超过3成的业务可能被替代,制造业被替代的比例是80.2%,包括焊接、组装、裁缝、制鞋等业务;餐饮业被替代的比例是68.5%,如客服、点餐、食材准备、餐桌与餐具摆放等业务;运输业被替代的比例是48.4%,包括车辆维修、飞机驾驶、运输信息提供等业务(ShotaroTani,2017)。这些研究表明,被取代概率高的工作基本上都是重复性、单一性、目的明确的程序化工作,其中不乏白领岗位的部分业务。
2.一部分非程序化工作被人工智能取代
相对于程序化工作,非程序化工作通常变化较大,难以按照事先规定的计划进行。这一工作又分为两类,一类是非程序—认知型工作,如科学研究、文学创作、作曲作画、经营管理、医疗诊断、诉讼辩护等;一类是非程序—肢体型工作,如烹饪、理疗、看护以及汽车驾驶等。非程序—认知型工作需要高层次的文化水平、分析能力和想象力,现阶段的人工智能还达不到完全替代的水平。烹饪、理疗、看护以及汽车驾驶等非程序—肢体型工作需要高度的人际间互动、灵敏的环境反应能力以及灵活的肢体动作,而这些要求现阶段的人工智能尚不能完全做到,所以这些工作基本上还需要人来承担。但随着人工智能技术的发展,人工智能在未来不仅会代替人做更多的程序化工作,而且有望将一部分非程序化工作纳入替代范围,如自动驾驶、行走助力、编制诉讼方案、作曲作画等(Autor,2015)。届时非程序化工作完全由人来完成的局面就会发生变化,进而带来业务重组,从以前由人承担所有业务变成由人工智能和人共同分担业务,如影像诊断由人工智能完成,最终诊断由医生完成;围棋陪练由人工智能承担,棋艺解说由教练承担。
3.工作向高度智慧化转移
装载有人工智能的设备可以替代人的程序化工作,甚至部分非程序化工作,但现阶段人工智能仍有很大的局限性,如人工智能不能设定目标和规划未来、不能产生意识、不能对未曾有的变化作出反应、不能提出问题、不能设计分析框架、不能产生灵感、不具有常识判断力、不具有指挥人的领导能力(安宅和人,2015)。所以现阶段仍有四类工作是人工智能所无法替代的。一是高度创造性的思维工作。如通过综合分析各种知识归纳和提出新概念、通过多方面分析发现问题并提出解决方案、基于情感创造出文学艺术作品等。二是高度社会化的沟通工作。如包含理解、说服、交涉在内的工作,人际间交往与协同作业等。三是高度灵敏的肢体型工作。如演奏乐曲、表演舞蹈、高难度手工艺等。四是高度非程序化的工作。如看护、清扫工作。这些工作看似简单,但需要人根据知识、经验以及常识等对情境作出判断,如在清扫时对发现的废纸需要进行判断,确定它是重要笔记还是真正的废纸,而人工智能的扫地机是无法做到的(野口悠纪雄,2018)。但即使如此,现在几乎所有领域中都在使用人工智能,并且人工智能的工作领域还在不断扩展。在看护工作中,移动搀扶患者机器人已经开始出现;人工智能已能够进行文学、绘画及音乐的初步创作,人与人工智能协同作业的状态已成为普遍现象。在这种状态下,人的工作内涵必然要向高度智慧化转移。
(二)人机关系与工作定位
在刚开始引进人工智能的生产过程中,人仍是作业的主体,人工智能起辅助性和支持性作用。人工智能辅助人进行数据和信息处理方面的业务,支持人做一些复杂的、技术性的工作,从事需要肢体劳动的、程序化的操作,但对于需要高度认知能力的工作,如推理与决策,以及需要与人沟通的工作,如协调、开发与咨询、沟通与互动,人工智能的贡献相对较少,但这种情况将会发生改变。世界经济论坛《职业前景报告2018》发表了2018年人与设备的工作时间占比值和2022年人与设备的工作时间占比的预测值(见表1)。对于所有业务,2022年设备的工作时间占总工作时间的比值会增加,其中设备在信息和数据处理、探索和获取业务信息的工作时间占比将超过人的工作时间。在行政、肢体的程序化任务、识别和评估业务信息、执行复杂技术任务中,设备的工作时间占比也将超过四成。即使在推理与决策以及沟通与互动这样原本主要由人来完成的业务中,设备的工作时间也将提高三成左右。因此,未来人工智能不仅能在生产过程中起辅助、支持的作用,而且在一些业务中将会作为“数字劳动力”发挥主导作用。进而言之,在人工智能时代,智能设备将越来越多地替代人的劳动,人机协作的关系将越来越显著。
表12018年、2022年人与设备的工作时间占比值单位:%
资料来源:作者根据世界经济论坛《职业前景报告2018》整理。
在人工智能时代,一些职业及一些工作被替代是不可避免的趋势,因此劳动者必须对职业及工作选择有清楚的认知。美国管理学学者达文波特(T.H.Davenport)和卡比(J.Kirby)认为,人工智能时代劳动者的工作定位,即如何选择能实现自身价值的职业,有五种方式,分别为:一是升级方式,即提升管理素质和掌握超越计算机的大局思维,向高级管理岗位发展。这要求对经营系统有透彻的理解,并需要有充分的计算机知识与技能。随着人工智能质量的提高、数量的增加,高级管理岗位的事务性工作将被大幅度替代,因此升级到高级管理岗位的人数会比以往少;二是转移方式,即转移到不能程序化、结构化的工作领域。现阶段,人工智能设备尚不能完全替代人的劳动,因此工作流程中会保留一些人的岗位。但随着人工智能水平的提高,这些岗位也将逐渐被替代,因此,这些岗位的劳动者,要有充分的危机感;三是介入方式,即学习计算机的程序化决策过程,掌握监视和调整计算机功能的新型能力,以现场管理者的身份介入基本上由人工智能实施的作业过程中;四是集中方式,即以计算机程序尚未渗透到的领域为唯一标准来选择职业或工作。这种方式要求特殊、高超的人类智慧及技能,需要早期、长期训练,甚至需要天赋;五是前进方式,指与时俱进,加大学习力度,研究开发能改变当前领域工作效率的高水平智能机器(T.H.DavenportandJ.Kirby,2015)。从与人工智能的关系看,升级方式、介入方式和前进方式,都需要学习人工智能技术。对这些人群,国家应该对他们的学习进行资助。转移方式中劳动者没有学习新技术的欲望或能力,他们的收入可能会减少,就业也不稳定,国家应从就业政策角度进行援助。集中方式需要从中小学起通过个性化教育对这方面的人才进行培养。
二、人工智能时代的能力需求
随着人工智能在生产过程中的普遍应用,人在生产中的地位不断发生变化,大量程序化作业、甚至越来越多的非程序化作业都将由自动化设备实施,而人必须能够驾驭智能设备,发现和解决工作流程中的问题,对智能设备进行更新创造,从而使其更好地服务于人类社会。从劳动者角度看,必须具备符合人工智能时代所需要的能力,才能使自己的劳动付出变得更有价值;从企业角度看,具有符合人工智能时代能力的员工,是创造价值所不可缺少的人力资源,值得大力引进和培养;从社会角度看,劳动队伍和后备力量都具备符合人工智能时代要求的能力,就可以稳定就业,促进社会经济持续发展。关于能力,可以对有认知能力和社会情感能力的基础理论进行研究。为了探讨能力与社会需求的关系,能力被分成诸多子能力,以验证与不同技术条件的适配性。在解析这些研究之后,笔者将提出符合人工智能时代要求的能力要件,以便为理论研究和政策决策提供参考。
(一)能力的两个方面
理论上看,人的能力一般包含两个方面。一个方面被称为认知能力,另一个方面是非认知能力。其中关于非认知能力有着几种不同的命名,如社会情感能力、软能力、社会能力、人格特质、性格(Heckman,Kautz,2012)。以下将沿用经济合作与发展组织(OECD)(2015)的表述样式,用“社会情感能力”来表示非认知能力。该研究认为,认知是关于获取和应用知识经验的过程,而认知能力就是所有与获取和应用知识经验有关的能力。认识能力有三个层次:第一层是基本能力,如模式识别、计算和记忆;第二层是获取能力,如检索、分类和解释;第三层是应用能力,如思考、推理和概念化。这三层能力的复杂程度从低到高、依次递进。与认知能力不同的是,社会情感能力是对目标实现、社会协作和情感控制产生影响的人格特征。例如,目标实现方面的忍耐、自律、意愿;社会协作方面的沟通、开放、体贴;情感控制方面的自尊、灵活、自信等。
在实际中,人是认知能力和社会情感能力的载体。换言之,这两种能力在人的身体中同时存在,相互影响、相互作用,形成了人的脑力活动和肢体行为。例如,批判性思考就是两种能力合二为一的结果。批判性思考既有认知能力的特点,即能够客观地进行逻辑推理,严守成本收益原则,冷静地进行战略分析。同时,因为批判性思考的对象是现实中的新问题,仅仅依靠过去的经验和教科书手法是不够的,还必须对新现象持有开放心态,根据具体情况,灵活改变思路和行动,而这些特点正是社会情感能力范畴的内容(池迫浩子,宫本晃司,2015)。
(二)能力需求变化与预测
技术进步使得工作环境发生变化,对劳动者的能力需求也出现了新变化。20世纪70年代以来,以大型计算机、电脑终端和互联网为代表的信息通信技术迅速发展,制造业以及服务业的生产过程大为改观,这使得对劳动者的社会情感能力的需求显著提高(Deming,2015)。在1980-2012年间,需要高度社会情感能力的职业就业人数占美国所有就业人数的比例增长了近12个百分点,而只需要认知能力的职业就业人数占比减少了3个百分点。另外,需要高度社会情感能力的职业的工资增长也比其他职业更快,并且2000年以后的增幅大于2000年之前。这是因为生产过程自动化,岗位任务重组,人员重新分配,团队形式增加,而社会情感能力可以降低协调成本,加强不同作业领域的有效合作。
以数字技术为轴心的自动化设备的应用,不仅要求劳动者提高社会情感能力的水平,同时也要求其认知能力和社会情感能力综合水平的提高。维因伯格(Weinberger,2014)利用美国职业大典的数据,对1977-2002年间各职业就业人员具有的计算能力、人际能力以10阶段法进行了赋值,根据数值把职业分为了两类,一类是计算能力与人际能力赋值均高于5的职业,一类是两种能力中一方赋值高于5而另一方赋值低于5的职业。分析发现,两种能力赋值均高于5的职业的就业人数增加,仅一种能力赋值高于5的职业的就业人数减少。该研究还以1972年和1992年的高中3年级中的两个年级层为对象,考察了各层人群的高中数学成绩、领导经验和高中毕业7年后的工资之间的关系。结果表明,同时具有数学能力和领导经验的人的工资在增加,只有一方面能力的人的工资没有变化,不具有这两方面能力的人的工资在减少。这个结论揭示了能力间互补的重要性,即认知能力与社会情感能力,不是各自单独产生价值,而是相互组合(互补)来产生更大的价值。技术进步并没有否定人的任何一方面的能力,而是要求在提高各自水平的基础上达到新高度的互补。由此可以推论出,兼有两种能力的劳动者在以人工智能为轴心的新技术时代将为社会所需,他们的劳动价值会得到社会认可。
表22018年、2022年关键能力需求
资料来源:世界经济论坛《职业前景报告2018》。
以上的推论不仅在以往的数据研究中得到了验证,在近未来的预测研究中也得出了同样的结论。世界经济论坛的《职业前景报告2018》发表了313家跨国企业管理高层的调查数据,从中可以看出2022年需要的关键能力中,属于认知能力的有8个,分别是:分析性思考与创新,主动学习与战略性学习,创造性、独特性和主动性,技术设计与编程,批判性思考与分析,解决复杂问题,问题推理与构思,系统分析与评估。与2018年相比,技术设计与编程、系统分析与评估是新增项目,反映出人工智能时代对劳动者的数字技能的强烈需求,揭示了劳动力素质提高的方向。而领导力和社会影响、情绪性智商属于社会情感能力的范畴。这两个能力同时出现在2018年、2022年两个时间段里,由此可以说,社会情感能力在未来的人工智能技术环境中是不可缺少的。只要生产过程中有人的存在,只要市场及组织内部环境不断变化,就需要社会情感能力去发现问题、运用技术技能去解决问题从而实现劳动的价值。另一方面,包括脑力、肢体在内的基本认知能力的需求将会减少,如操作灵活性、持久性与准确性,视觉、听觉与说话,读、写、算等能力。一些基本操作能力的需求也会减少,如财务和物资资源管理、设备安装与维护、质量管理与安全管理等能力。这些能力基本用于实施程序化业务,其工作的操作标准简单明了,个人发挥创造性的空间较少,从能力层次看,虽然属于知识经验应用能力范畴,但处于低级层次。
世界经济论坛在2016年对人工智能时代的能力需求变化进行了探讨。当时的研究报告指出,高层次认知能力不仅在当时受到重视,而且在2020年对其的需要将会进一步增加。而对于与肢体相关的能力,专家大都认为其需求将会减少。尤其是设备维护、质量管理与安全管理等能力,2016年报告中还有五成的人认为需求会处于稳定状况(世界经济论坛,2016)。由于2016年、2018年的调查方式不同,因此不能对其进行严格的对比,但可以看到能力变化的趋势,即对高层次认知能力的需求一直处于增强趋势,而对设备安装与维护等低层次能力的需求则明显减弱,这反映出人工智能时代对能力的高层次化有着越来越强的需求。
巴克什(Bakhshi)等利用美国和英国数据预测了两国2030年各职业的就业增长和职业所需的能力(Bakhshietal,2017)。该研究中的职业能力包括120项。美英两国各职业最为重视的能力有15项(见表3)。从表3看,美国和英国总体情况类似。在美国,与人际交往有关的能力会越来越重要,这些能力包括指导、社交知觉/认识、协调、服务导向、主动倾听,以及相关知识,如心理学和人类学、教育和培训、治疗和咨询、哲学和神学。认知能力范畴中的应用能力也会越来越重要,如要求能够了解当前和未来形势并且能够做出行动规划(战略性学习);能够了解新信息对当前和未来问题的解决与决策发挥影响(主动学习);能够提出有关某个主题的许多想法(思想流利性)。在英国,有10项属于认知能力范畴中的应用能力,这些能力是判断和决策、思想流利性、主动学习、战略性学习、原创性、系统评价、推理、解决复杂问题、系统分析、批判性思考。在人工智能技术更为广泛应用的近未来,劳动者只有充分具备这些能力,才能够有效解决新环境中出现的新问题,并且能够有针对性地提出新想法,积极吸收新信息;能够识别社会技术系统的变化,了解社会技术系统各环节的互连和反馈关系并采取正确行动。另外,英国对于人际交往的能力也非常重视,这些能力包括指导、协调,以及相关知识,如教育和培训等。
表32030年美国、英国各职业中最重要的15项能力
资料来源:作者根据Bakhshi等(2017)整理。
2017年,日本人才咨询公司阿德卡(Adecco)对309家上市公司管理高层进行了抽样调查,收集到了两个时间点(调查时间点为2017年、人工智能普遍应用的2035年)对各种能力的需求程度。结果显示(见表4),2035年最需要的前10项重要能力中,5项为认知能力,包括创造性、分析性思考与抽象性思考、解决复杂问题、信息收集和解决简单问题。5项是社会情感能力,分别是人际关系、灵活性、挑战精神、领导力和积极性与主体性。2017年的前10项重要能力中,4项为认知能力,依次是分析性思考与抽象性思考、解决复杂问题、创造性和信息收集;6项是社会情感能力,如人际关系、积极性与主体性、挑战精神、团队工作与协调性、灵活性和目标实现意愿。从数量看,不论是2017年还是2035年,认知能力和社会情感能力的排名基本相当,表明无论什么时代,均衡能力结构都是必要的。从内容看,不论是2017年还是2035年,认知能力和社会情感能力的子项目基本相同,反映出企业能力需求具有一定的稳定性。从个别能力变化看,有两个突出现象,一个是认知能力中,创造性需求的大幅上升。这表明在人工智能时代企业将进行业务重组,要求员工在高价值工作领域创新工作方式和取得突破;另一个是社会情感能力中,对灵活性的需求有所提升。这反映出企业需要员工充分发挥主动性,去发现生产流程中的问题、发现新的社会需求,而不仅仅是执行指令。
表42017年、2035年最需要的前10项重要能力
资料来源:作者根据西村崇(2017)整理。
(三)符合时代要求的能力要件
综合以上研究,笔者认为,在人工智能时代,能力的首要内容应该是与人工智能有关的新知识、新技能。此外要在人工智能的学习与应用过程中提高社会情感能力,主要是指与人沟通的方法与相关知识。再者,劳动者的能力结构要向高层次升级,应重点发展高层次认知能力。具体概括为两个方向:一是应用人工智能技术创造新产品、新服务的能力,这里称作创造性思维能力;二是发现新问题和解决新问题的能力,这里称作环境应变能力,包括主动学习与战略性学习、解决复杂问题等。在人工智能时代,对于劳动者而言,重要的是使能力结构升级以符合技术发展需要,不仅认知能力要达到新水平,还要与工作方式变化相匹配,而且与人工智能技术互补的社会情感能力也要同步发展。鉴于此,人工智能时代的能力要件可归纳为以下四个方面。
1.人工智能知识
正如读、写、算是工业社会所必须的基本能力一样,对于要在人工智能技术条件下工作的劳动者而言,人工智能的基础知识是不可缺少的。这是以往时代所没有的全新的能力。所谓的人工智能知识,首先是数学知识。因为人工智能的基础就是数理模型,主要包括概率、统计、线形代数等内容;其次是数据科学,是在计算机上收集、解析数据的知识和技能,需要有数理和计算机语言知识,需要计算机操作能力。有了这两方面的知识,就可以形成关于人工智能的新技能:能够使用程序语言,利用既成模块,编制、操作或使用具有简单的感应、解析、反馈等智慧行为的自动化装备。劳动者掌握了人工智能的新技能,不仅可以理解新设备的基本机制,甚至可以研究更先进的人工智能、或利用人工智能来提高生产效率。根据领域、岗位、业务的不同,涉及人工智能的内容会有所不同。国家的教育、经济以及科技部门应该与企业联手设计内容、层次不同的教材,设定认知资格制度,作为评价人才的标杆。
2.社会交流能力
在人工智能时代,要创造新价值,人际或社会交流能力愈发显得重要。创造新产品、新服务及新的工作模式,意味着要对现状有充分的了解,利用人工智能对现状进行改变、重组。这需要周边很多人及社会的理解、帮助及合作。因此,在人工智能时代,人应该提高自身的社会交流能力,能简明扼要地说明目的,开诚布公地寻求理解与帮助,诚实守信地与人合作。社会交流能力的基础是情感,所以人在情绪、意志等方面的情商以及对于文化艺术的审美都非常重要。人工智能时代社会交流能力的特点,就是大量运用网络社交媒体、互联网等工具。这些工具有其便捷之处,但也存在虚假信息等伦理道德问题以及易受黑客攻击的脆弱性问题。社会交流能力与创造性思维能力一样,需要长时间的培养,需要社会氛围的支撑。社会交流能力的特殊之处在于它涉及性格,而性格有天生的因素。所以,在学校教育以及企业教育中,既要传授基本的交流方法,也要考虑个人性格中的天生因素,因人施教,调动有利因素,培养能够从社会中学习、有益于社会的人才。
3.创造性思维能力
人工智能技术使程序化的工作自动化,把人从单一循环、重度及危险的劳动中解放出来,给予人更多的时间,为人的创造性思维提供了更大的可能性。同时,人也必须发挥自己特有的创造性思维能力,才能在人工智能时代确立自身的存在价值。所谓创造性思维能力,是利用人工智能技术,结合自己所在的特定领域,去发现社会及市场需求,提出关于新产品、新服务以及新工作模式的能力。创造性思维能力包括抽象能力、综合能力和应用能力。抽象能力,就是能够概括出事物本质并发展成为概念的能力。借助抽象能力进行分析和推理,才会产生新的认识。综合能力,就是能够融会贯通,把不同领域的知识连接起来,进行整合、分析和再创造的能力。经济学家熊彼特认为,创新有五种形式,即产品创新、技术创新、原材料创新、市场创新和组织创新,它们无一不是生产要素间组合与创造的结果(约瑟夫·熊彼特,2016)。利用人工智能提出关于新产品、新服务以及新工作模式的设想,是对人工智能与其他知识进行融合与创造的过程,所以需要综合能力。应用能力,是能够把知识应用于解决现实问题,也就是解决问题的能力。其中的关键是有目的意识,能够发现问题,使创造性活动具有经济价值与社会意义。而这恰恰是人类特有的能力,无法用计算机程序再现。创造性思维能力,需要长时间的培养,从幼儿园到大学、甚至到就业之后都必须接受持续的教育或启发。同时,要在家庭教育、学校教育和社会上形成鼓励独创、容许差异的宽松氛围。
4.环境应变能力
环境应变能力,就是能够根据不同情境作出不同决策的能力。在人工智能时代留给人的工作基本上都是非程序化工作,它们不可事先预测,也无法编制操控指南,需要劳动者根据自身掌握的知识、经验、常识以及悟性来灵活行动。现阶段的人工智能可以通过大样本学习来增加经验和提高应变能力,但世界是复杂的,很多变化都带有偶然性,解决方案没有经验可循,这限制了样本数量,从而制约了人工智能应变能力的提高。与人工智能不同的是,人所特有的生命体的构造使得其对事物的理解在很多情况下只需要小样本学习和借助常识就可以完成(李开复,王咏刚,2017)。在以往的人才培养中,人们也注意到了环境应变能力,但人工智能时代的特殊之处在于劳动者要接触更为复杂的数字技术,而数字技术的进步日新月异,人们为了防止知识的陈腐化,要能够主动学习,因为仅仅靠教师或上级安排的在岗或离职学习完全不够,要根据自己的具体情况,不间断地吸取新知识。战略性学习,是具有前瞻性的、有长远目标的学习。这个长远目标,可以是对自己所在领域发展前景的预测、自我发展方向的判断,也可以是对企业战略的理解,提前着手学习新知识,当环境变化时就可以游刃有余地应对。人工智能时代的劳动者往往处于与自动化设备合作的作业环境中,生产过程中的故障不仅有硬件的问题,也有计算控制系统的问题,只有在对硬件、软件充分理解的基础上,才能解决现场工作中的复杂问题。总而言之,人工智能时代的环境应变能力,有其鲜明的时代要求,在学校教育和企业教育中必须使用有针对性的教学方法来培养有用人才。
以上归纳了符合人工智能时代要求的四个方面的能力,这四个方面的能力并不是独立存在的,它们之间有着不可分割的联系。人工智能知识是新时代劳动者能力的基础,有了它才能够驾驭自动化设备,进行新产品、新技术及新价值的创造。创造性思维是人工智能时代劳动者能力的核心,突出显示了人的智慧价值。而社会交流能力和环境应变能力则对人的气质或性格提出了新要求,要求处于人工智能时代的劳动者区别于越来越聪明的自动化设备,在纷繁复杂的社会和飞速变化的技术环境中发挥人的作用。
三、人工智能时代的劳动者能力培养
为了培养与人工智能时代相适应的人才,提高全社会的智慧水平,我们应该在理念、内容以及方式、手段上有所变革。
(一)突出个性化培养理念
在工业时代,大批量单品种生产是主流方式,为了提高效率实施机械化、专业化分工,产生了大量单一循环、目标明确的标准化工作岗位。企业将作业编成操作手册或计算机程序,要求劳动者达到按照手册或程序正确操作的能力标准。在这种体制下,劳动者和设备、产品一样都是标准化管理的对象,因此人才培养也是标准化的。体现在高等教育、职业教育及企业教育上,就是培养能够按照标准进行反复、简单作业的劳动者。教育方法基本上依靠大量、统一的习题,或反复练习。这样的理念与方法培养出来的学生或劳动者,只能做单纯的工作,其不仅在精度、速度方面要输给人工智能,并且会变得只能简单地对工作中的变化作出机械的反应,缺少发现问题、解决问题的能力,更谈不上创造新价值,而这种能力恰恰是人工智能时代的劳动者最需要的。因为程序化的工作都由人工智能完成,需要人来做的正是去发现工作系统的问题,不断地进行更新改进,提高生产效率,或者通过新思路、新方法创造新价值。因此,人工智能时代的人才培养,尤其要重视学习者的创造性思维能力,要在因材施教的理念下,充分发挥个人的潜在优势。
(二)构建人工智能素养教育体系
把人工智能教育贯穿小学、初高中、大学以及工作后的全部阶段,提高全社会的人工智能基本素养。目前,包括中国在内的主要国家都已经在小学及初高中开展计算机编程教育,在大学实施更为专业的人工智能教育。同时,针对在职者的相关教育也极为重要。这是因为人工智能技术对劳动的影响面越来越广泛,工作甚至职业变得愈发不确定,在职者要提前做好转业与转岗的准备。为了维持社会经济的可持续发展,国家应该就全社会、全生涯的人工智能素养教育制定战略规划,集结教育及各行业行政管理部门的力量,从资金、设备、师资、教材、技术资格认定、学习费用补助等诸方面制定具体措施。对于义务教育的中小学阶段,应该完善每个学校的信息网络,要使高速Wi-Fi网络覆盖全部校区,使每个学生都有自己专用的终端设备(电脑或平板电脑)。在教室等集体授课的场所,安装可以触屏输入、可以数据储存传递的电子黑板,在教学过程中使用人工智能设备。当前,教育界中能担任人工智能教学的教师人才十分欠缺。国家应该制定紧急行动计划,至少要在5年内填补中小学相关基础素养课程的空白,使每个学校至少有一名该学科的教师。教师的来源,可以直接从博士毕业生、企业的工程师等专业人才中招聘,可以不受教师资格的约束。在大学阶段,理工科要学习高度的人工智能技术,文科及美术、音乐等学科,也要开设人工智能专业课程,因为今后人工智能将在模拟人的艺术感受方面深入发展,需要既懂艺术又懂人工智能的人才。由于人工智能技术发展很快,要组织学术界和企业界的力量,及时更新课程,并且根据人在不同生涯阶段的特点编制有针对性的教材。应该利用大数据来补充劳动力市场信息系统并监控不断变化的技能需求,以适应所提供的课程与教材(OECD,2016)。要尽快设立国家人工智能技术资格认定制度,使学习成果能在社会上受到评价,提高学习者的学习积极性。对于在职人员的学习,应给予费用和时间上的支持。对于企业实施的员工培训,应该以减免培训费等激励政策给予扶持。
(三)实施问题导向及跨学科合作探讨的学习方式
创造性思维能力、社会交流能力的具体表现是能够利用人工智能技术解决现实问题,以及能够利用人工智能创造新产品、新服务与新工作模式。以往“满堂灌”的学习方式难以培养这些能力,今后应该加强问题导向及跨学科合作探讨方式的学习。所谓问题导向,就是有明确、真实并且具体的现实问题,解决这些问题是学习的目的。这需要企业与学校共同制订学习目标,引导学生进行社会实践。问题导向的学习方式,还需要学习材料具有现实性。数据要真实,设备及材料要先进,教材要能够反映前沿理论与实践。跨学科合作探讨学习包含四个方面,首先是跨学科的学习内容,即学生根据具体问题学习数学、统计、数据、人工智能以及物理、化学、生物、艺术等多学科知识,这需要打破以往文理分科的界限;其次是跨学科的学习成员,即打破以往班级学习约束,组成由不同专业背景学生构成的小组,尤其是大学阶段要尽可能采取这种办法;再次是小组学习方式,即在教师指导下以小组为中心进行讨论和得出解决方案。同时,要构筑互联网学习平台,教师与学生之间、学生与学生之间有充分的提问—反馈—讨论的渠道。跨学科合作探讨形式的学习方法,不仅有利于提高学习自主性和团队合作性,也有助于进行知识碰撞、知识整合和知识创造,从而提高综合能力和应用能力。
现阶段,包括中国在内的一些国家都在进行问题导向及跨学科合作探讨学习方式的实践,诞生了STEAM(Science,Technology,Engineering,Art,Mathematics)教育课程、问题/项目导向型教育课程(Problem/Project-BasedLearning:PBL)、创新思维课程等方法。但这些方式都处在发展过程中,需要专家和学者不断吸取有益经验对其进行改进。日本为了培养人工智能人才,制定了国家战略推行STEAM教育,并研究整理了具体案例,为各学校及企业提供参考材料。如日本某职业高中与企业合作,开展了STEAM教育课程。该课程的项目之一是设计使用便利的人工智能设备,推进智能化农业生产。项目分四个阶段进行。第一阶段引发学生对农业和机器人的兴趣,使用4个课时。教师启发学生考虑联系农业作业的实际需求,确定制作机器人的具体内容。企业技术专家介绍机器人控制语言,演示机器人的动作。学生进行讨论,得出关于制作方向的结论;第二阶段进行机器人控制与数学、物理等学科知识的应用,使用4个课时。具体任务有两个,一个是解剖分析现有农业机械,获得感性、基础认识,再使用控制语言设计机器人基本雏形,另一个是运用数学知识,探讨马达转速与机器人动作的关系,设计控制程序,制作马达。企业技术专家讲解高感度彩色感应器、图像识别等技术,联系物理知识,讲解关于摩擦作用的处理方法;第三阶段学习机器人开发的基本程序,使用4个课时。技术专家讲解现实社会中技术人员如何编写“产品规格书”、通用计算机语言、数据解析工具等,引导学生继续使用控制语言模块制作机器人;第四阶段进行总结和演示,使用4个课时。学生演示、讲解自己制作的机器人的特点以及与农业作业的关联。同时,教师引导学生梳理学习内容,激发今后学习机器人技能的兴趣(经济产业省,2019)。
(四)利用人工智能技术提高学习效率,增强学生的创造性思维能力、社会交流能力
现阶段的人工智能已经可以代替教师对学生进行辅导,提高学生的学习效率,如X-Tech、EdTech、LearnTech等技术。这些工具可以根据每个学生的实际情况,给出不同的学习指导方案,提高学习效率。有国外学校在教学中引进了人工智能系统,学生使用平板电脑阅读数学教材、做习题。人工智能系统收集所有学生的学习信息,包括答案、解题过程、速度、集中力、理解力等,在此基础上判断出每个学生的强、弱项,给出符合个人学习水平的阅读材料和习题,大大提高了学习效率。该学校利用人工智能对小学六年级学生进行了初中一年级上学期的数学课程教育,常规需要14周的学习内容仅用2周就完成了,并且学生们的考试成绩都超过了常规教育的平均点。如果能如此高效地接受知识,学生就可以把时间更多地用在联系实际的项目学习以及体育、艺术等活动上,强化学生创造力和社会交流能力的培养。如果说铅笔、笔记本、橡皮是传统必需的学习工具,那么当前与互联网无障碍连接的电子终端已经成为人工智能时代学习的必要工具。国家应该尽快完善义务教育、高中教育、大学教育和在职教育的电子化环境,引进人工智能设备,提高全社会的学习效率。
目前,人工智能正以前所未有的速度部分或完全替代人的劳动,社会生产率将会大大提高。我们必须精准理解人工智能对职业、劳动和能力的影响,从国家层面制定战略规划,运用市场经济杠杆和政策手段提高包括义务教育、高中教育、高等教育和在职教育在内的生涯教育的人工智能基本素养,维持社会经济的稳定发展。
参考文献
[1]陈明生.人工智能发展、劳动分类与结构性失业研究[J].经济学家,2019(10):66-74.
[2]丁晨.从适应到引领:人工智能时代职业教育发展的机遇、挑战与出路[J].中国职业技术教育,2019(13):53-59.
[3]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.
[4]毛旭,张涛.人工智能与职业教育深度融合的促动因素、目标形态及路径选择[J].教育与职业,2019(24):53-59.
[5]南旭光,汪洋.人工智能时代职业教育治理的限时挑战与路径选择[J].教育与职业,2018(18):25-30.
[6]潘文轩.人工智能技术发展对就业的多重影响及应对措施[J].湖湘论坛,2018(4):146-153.
[7][美]S.J.Russell,P.Norvig.人工智能:一种现代的方法(第3版)[M].殷建平,等译.北京:清华大学出版社,2018.
[8]王君,张于喆,张义博,等.人工智能等新技术进步影响就业的激励与对策[J].宏观经济研究,2017(10):169-181.
[9]万昆.人工智能技术带来的就业风险及教育因应[J].广西社会科学,2019(6):185-188.
[10][奥]约瑟夫·熊彼特.经济发展理论[M].何畏,等译.北京:商务印书馆,2016.
[11]安宅和人.人工知能はビジネスをどう変えるか[J].DiamondHarvardBusinessReview,2015(11):43-58.
[12]池迫浩子,宮本晃司.家庭、学校、地域社会におけるスキルの育成:国際的エビデンスのまとめと日本の教育実践·研究に対する示唆[R/OL].2015-08-27.https://berd.benesse.jp/feature/focus/11-OECD/pdf/FSaES_20150827.pdf.
[13]経済産業省.“未来の教室”実証事業成果報告:ベジタリア株式会社[R/OL].2019-07-12.https://www.learning-innovation.go.jp/verify/z0044/.
[14]野口悠纪雄.AI入門講座[M].東京:東京堂出版,2018.[15]西村崇.AI時代に必要なスキルは「対人関係力」と「創造力」、アデコが調査報告[EB/OL].2017-05-17.https://xtech.nikkei.com/it/atcl/news/17/051701429/.
[16]D.H.Autor,L.F.Levy,R.J.Murnane.Theskillcontentofrecenttechnologicalchange:anempiricalexploration[J].QuarterlyJournalofEconomics,2003(4):1279–1333.
[17]D.H.Autor.Whyaretherestillsomanyjobs?Thehistory andfutureofworkplaceautomation[J].JournalofEconomicPerspectives,2015(3):3–30.
[18]H.Bakhshi,J.M.Downing,M.A.Osborneetal.Thefuture ofskills:employmentin2030[R/OL].2017-12-30.https://futureskills.pearson.com/research/assets/pdfs/technical-report.pdf.
[19]T.H.Davenport,J.Kirby.Beyondautomation[J].Harvard BusinessReview,2015(6):59-65.
[20]D.J.Deming.Thegrowingimportanceofsocialskillsinthelabormarket[J].NBERWorkingPaper,2015:21473.
[21]C.B.Frey,M.A.Osborne.Thefutureofemployment:how susceptiblearejobstocomputerisation?[R].WorkingPaper,OxfordMartinProgrammeonTechnologyandEmployment,2013.
[22]J.J.Heckman,T.Kautz.Hardevidenceonsoftskills[J].LaborEconomics,2012:451-464.
[23]ShotaroTani.Isyourjobrobot-ready?Ourinteractive calculatorletsyoufindouthowthreatenedyouare[R/OL].2017-04-22.https://asia.nikkei.com/Economy/Is-your-job-robot-ready.
[24]C.J.Weinberger.Theincreasingcomplementaritybetweencognitiveandsocialskills[J].TheReviewofEconomicsandStatistics,2014(5):849-861.
[25]WorldEconomicForum.Thefutureofjobs:employment,skillsandworkforcestrategyforthefourthindustrialre-volution[R/OL].2016-01-18.https://reports.weforum.org/future-of-jobs-2016/preface/.
[26]WorldEconomicForum.Thefutureofjobsreport2018:Centrefortheneweconomyandsociety[R/OL].2018-09-17.https://www.weforum.org/reports/the-future-of-jobs-report-2018.
[27]OECD.Skillsforsocialprogress:thepowerofsocialand emotionalskills[R/OL].2015-12-30.OECDSkillsStudies,OECDPublishing,Paris,http://dx.doi.org/10.1787/9789264226159-en.
[28]OECD.Skillsforadigitalworld[R/OL].2016-12-30.https://www.oecd.org/els/emp/Skills-for-a-Digital-World.pdf.
刘湘丽.人工智能时代的工作变化、能力需求与培养[J/OL].新疆师范大学学报(哲学社会科学版),2020(04):1-12[2020-05-20].https://doi.org/10.14100/j.cnki.65-1039/g4.20200518.001.
人工智能教育的现状与前景分析
人工智能和教育的关系越来越密切,因为它可能革新我们的教学方式。相关数据表明,全球大约有2.65亿儿童不能上学,还有约6亿儿童的小学数学、写作、阅读等都不熟练,而人工智能作为新兴技术,已经剧烈改变了孩子们的教育模式。
人工智能可以让声音转换成文字,能通过拍照的方式将纸上的文字全部转换为电子文档,数学、物理等学科都可以通过人工智能来进行批改。也可以帮助说方言的孩子学习普通话和外语。技术的提升和机器的运算处理不断升级,都为人工智能的发展提供了极大的动力支持,也为教育带来了更加便捷的方式。
未来AI+教育应用场景
01
教育环境
利用计算技术实现物理空间和虚拟空间的融合、基于人工智能技术作为智能引擎,建立支持多样化学习需求的智能感知能力和服务能力。
02
学习过程
在各类人工智能技术的支持下,构建认知模型、知识模型、情境模型,并在此基础上针对学习过程中的各类场景进行智能化支持,实现学习者和学习服务的交流、整合、重构、协作、探究和分享。
03
教育评价
在试题生成、自动批阅、学习问题诊断等方面发挥重要的评价作用,还可以对学习者学习过程中知识、身体、心理状态的诊断和反馈,在学生综合素质评价中发挥不可替代的作用,包括学生问题解决能力的智能评价、心理健康检测与预警、体质健康检测与发展性评估,学生成长与发展规划等。
04
教师助理
替代教师日常工作中重复的、单调的、规则的工作,还可以增强教师的其他工作能力,使得教师能够处理以前无法处理的复杂事项。对学生提供以前无法提供的个性化、精准的支持,传授知识效率大幅度提升,有更多的时间与精力来关注每个学生的身心全面发展。
05
管理与服务
通过大数据的收集和分析建立起智能化的管理手段,形成人机协同的决策模式,洞察教育系统运行过程中问题本质与发展趋势,有效提升教育质量并促进教育公平。
人工智能在传统教育领域的广泛应用,为传统的教育模式注入了新的活力。推动了教学与管理模式的变革,也使教育在一次又一次的变革中不断探索新的方向。未来,在人工智能时代,全智能化、个性化的优质教育或许离我们并不遥远。返回搜狐,查看更多
人工智能给外语教育发展带来新机遇
1980年,未来学家托夫勒(Alvin Toffler)出版《第三次浪潮》,预言了信息化时代的到来。这才过去30多年,人类就迈过信息化而进入了人工智能时代。有人感叹,人工智能“翻译官”上岗,翻译人员是不是要丢饭碗了?外语专业的学生该怎么办?外语教育又将何去何从?这些疑问充分说明,外语教育正面临着重大发展机遇与挑战。
作为一项新兴技术,人工智能是从制造翻译机器开始的。借助机器翻译,不同语言环境下的人可以无障碍地进行交流。经过演进升级,以人工智能为支持的“神经网络机器翻译”逐渐占据了精度要求不高的中低端口笔译市场,对翻译服务业形成了不小冲击,但这并不意味着翻译人员就会丢掉饭碗。就机器翻译本身来说,语言学家做机器翻译的语料库,数学家把语料形式化和代码化,计算机科学家给机器翻译提供软件手段和硬件设备并进行程序设计。这个过程说明了人工翻译存在的必要性——因为语料库不能及时更新,机器翻译将无法满足人类的翻译需求。所以说,高端翻译仍然必不可少。
与此同时,人工智能有效提升了外语教学的实用性、针对性。教师在教学中能够及时根据客观大数据调整方式方法,让学生在强互动和趣味性的环境中更好地学习与成长。而面对高端教育资源匮乏、基础教育“择校热”“大班额”、中西部欠发达地区乡村教育师资紧缺等实际问题,人工智能带来的变革让外语教育更加公平。
尽管机器翻译给人们带来了巨大便利,外语教育仍然不可替代:其一,从质的方面看,外语教育不是翻译技术的教育,而是一种价值教育、人文教育、跨文化教育,是人文交流的一种重要形式。其二,从量的方面看,外语教育不同于机器翻译的同质化生产模式,而是重在塑造跨文化交际能力。其三,从尺度方面看,外语教育遵循的不是物的尺度,而是充分考虑了人类文化的特殊性、交流情感的微妙性、翻译语境的差异化等人的内在尺度。
习近平总书记强调:“新一代人工智能正在全球范围内蓬勃兴起,为经济社会发展注入了新动能,正在深刻改变人们的生产生活方式。”外语教育工作者要把握这一历史契机,深化外语教育改革,使人工智能更好地为推动发展、造福人民服务。
一要积极推进理念变革。人工智能不会取代教师课堂教学,反而会促进外语教育的进步。人工智能技术与教育的融合,必然推动课堂教学方式的转变。在“互联网+”背景下,要不断丰富课程设置,增加智能翻译等技术应用类课程;推动教学方式转变,推进智慧教室、智慧校园建设,更加注重人工智能技术在课程教学中的运用。
二要加强统筹规划,实施分类指导。人工智能作为国家战略,需要在广泛调研的基础上,做好顶层设计,坚持科技引领、市场主导等基本原则,加快与外语教育深度融合。具体而言,就是要统筹规划各级各类外语教育人工智能平台,推进共建共享,避免重复建设;地方教育部门和各类型教育机构根据自身实际,多样化推进人工智能在外语教育领域的创新发展;重点做好贫困地区特别是中西部欠发达地区的外语基础教育人工智能平台建设,开展发音矫正等一对一智能辅导。
三要不断丰富教育内涵。在人工智能尚未代替人工翻译之前,外语教育必须未雨绸缪,将培养更高质量的“跨文化、多语种”复合型人才作为新时代外语教育的必然选择。通过结合“一带一路”倡议和中国文化走出去等国家战略的实施,强化外语教学作为文化教学和跨文化教学的学科意识,实现人工智能和人文教育有效结合,满足学生个性化成长发展的需求,培养集“专业知识+外语技能+文化素养”为一体的复合型人才。
(作者:蒋洪新,系湖南省中国特色社会主义理论体系研究中心特约研究员、湖南师范大学校长、教育部英语专业教学指导分委员会主任委员)
人工智能导论课程论文:人工智能及其发展趋势
摘要:人工智能,又简称AI,它是当今最火的一门科学,是研究使计算机来完能表现出人类智能的任务的学科。主要包括计算机实现智能的原理,制造类似于人脑的智能计算机,以及使计算机更巧妙些实现高层次的应用。人工智能科学,它起源于近代,在电气时代随着计算机科学的发展,以及生物学,脑科学等相关科学的发展,极大地推动了人工智能的发展。人工智能还涉及信息论、控制论、自动化、仿生学、生物学,数理逻辑、语言学、心理学等多门学科。导致其非常复杂,所以其研究领域也分成许多方面,从最开始的博弈论,专家系统,模式识别,神经网络,机器学习到现在大热的深度学习。其应用领域,也非常之多,比如机器翻译,语音交互,ORC,图像识别,智能驾驶等等。自从谷歌的阿尔法狗在围棋打败了人类棋手,人工智能也进入了一个新的发展阶段,如今各国,各大公司都在大力发展人工智能技术,争取在新时代把握先机,把握未来。人工智能即将在无人驾驶,机器翻译,语言交互等应用领域取得巨大成功。即使如此,人工智能现在还是处于弱人工智能阶段,人工智能还面临着许多问题和挑战。向强人工智能发展的道路上,仍然充满巨大的困难。
关键词:人工智能