博舍

人工智能的历史、现状和未来 人工智能各个领域的著名人物是

人工智能的历史、现状和未来

2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄

2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄

2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国

2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士

厉害了!细数中国人工智能十大领军人物!

第九名:徐伟-百度杰出科学家

在百度这样一个拥有大量高水平科学家、研究人员和工程师的公司里,徐伟是唯一获“杰出科学家”称号的人。徐伟在研发PaddlePaddle时做出了卓越的科技贡献受到了高度评价。PaddlePaddle是一个全新的深度学习开源平台,已于2016年下半年对外开放。PaddlePaddle经历了三年的研发,现可用于搜索排名、定向广告、图像识别、机器翻译和无人驾驶汽车等多个方面。

徐伟拥有清华大学学士学位,卡内基梅隆大学硕士学位,加入百度前曾在NEC实验室和Facebook担任研究员。

第八名:朱频频-小i机器人总裁兼CTO

小i机器人是中国领先的人工智能对话平台,为全国大部分机器人和虚拟助手提供支持。小i机器人于2001年在上海成立,为大中型企业、政府机构及5亿用户提供技术服务。

朱频频在空间领域拥有众多专利——聊天机器人系统、SMS机器人系统,使得小i机器人在对话界面方面占据技术优势。除运营小i机器人外,朱频频也是中国科学院的科学博士,任职于多个人机交互治理委员会,获奖无数。

第七名:林元庆-百度深度学习实验室主任

林元庆是百度深度学习实验室(IDL)主任,实验室旗下包括硅谷人工智能实验室、大数据实验室、增强现实实验室及深度学习研究所。他与徐伟一起代表百度牵头筹建了深度学习技术及应用国家工程实验室。该实验室由中国政府出资,清华大学、北京航空航天大学共建。

在加入百度之前,林元庆曾任美国NEC实验室媒体分析部门主管,带领团队致力于计算机视觉研究,开发移动搜索和无人驾驶汽车。林元庆拥有清华大学光学工程硕士学位和宾夕法尼亚大学电子工程博士学位。

第六名:何晓飞-滴滴研究院院长

滴滴出行是中国的Uber,每天产生的实时数据多达50TB,驾驶路线超90亿条。滴滴研究院被称为滴滴出行的“大脑”,是由滴滴公司成立的机器学习研究所,用于预测用户需求,减轻不良影响,同时也开发自动驾驶技术。

何晓飞本科毕业于浙江大学,获计算机科学学士学位,后取得芝加哥大学博士学位。在加入滴滴研究院之前,他曾在雅虎搜索实验室担任研究科学家,后在浙江大学任教,专注于应用数学和数据分析,解决图形识别、多媒体和计算机视觉方面的重要问题。

第五名:周靖人-阿里云首席科学家兼副总裁

阿里云于2009年成立,是目前阿里发展最快的业务。与亚马逊云计算服务类似,阿里云运用其强大的计算能力处理数百万次线上购物交易。

周靖人带领团队在阿里巴巴云数据科学技术研究所进行大数据和人工智能研究,推动阿里巴巴在语言、自然语言、图像与视频处理及大规模机器学习等人工智能技术开发。

在加入阿里巴巴之前,周靖人在微软担任工程经理,负责开发大数据平台,为Windows、Office和Bing提供支持。他拥有中国科学技术大学学士学位,哥伦比亚大学计算机科学博士学位。

第四名:张潼-腾讯人工智能实验室主任

人工智能领域的顶尖人才十分抢手。张潼去年从百度离职去往腾讯,负责新成立的人工智能实验室。此前他是百度大数据实验室负责人,也曾在IBM和雅虎工作过,在罗格斯大学担任过教授。

张潼旗下拥有超过50名科研人员与250多名工程师团队,致力于拓展腾讯在机器学习、计算机视觉、语音识别、自然语言处理等方面的能力,并将人工智能新技术运用于微信等大众产品。

第三名:王海峰-百度副总裁,人工智能技术平台体系负责人

吴恩达从百度离职后,王海峰接任成为了百度AI技术平台体系(AIG)的负责人。该平台包括深度学习实验室、大数据实验室、硅谷AI实验室、增强现实实验室、自然语言处理部、人工智能平台部等部门。

王海峰的技术专长在于自然语言处理和机器翻译。他撰写过100余篇有关人工智能的学术论文,并将自己的专业知识运用于百度在神经语言程序学、计算机数学、语音识别、知识图谱、个性化推荐和深度学习等多个方面的开发。王海峰在哈尔滨工业大学获得计算机科学学士学位、硕士学位和博士学位后,同时现在是哈尔滨工业大学的兼职教授。

第二名:陆奇-百度集团总裁兼COO

陆奇加入百度后领导公司的AI战略工作,推动公司内部的整合与协作。每个百度业务部门,包括自动驾驶的AI团队都向陆奇汇报。百度发言人表示:“在陆奇带领下,我们有信心顺利推进公司战略实施,百度有信心成为世界一流的技术公司和人工智能的领导者。”

加入百度之前,陆奇经史蒂夫•鲍尔默(SteveBallmer)亲自招聘加入微软,最终成为应用与服务集团的执行副总裁。陆奇在IBM研究实验室开始职业生涯,之后加入雅虎,升任搜索广告集团的执行副总裁。他在复旦大学完成计算机科学学士学位,并被卡内基大学教授埃德蒙•克拉克(EdmundM.Clarke)邀请在卡内基大学(CMU)攻读博士学位。

第一名:李开复-创新工场联合创始人,谷歌中国前总裁

李开复曾就职于苹果、微软和谷歌,是全球公认的科技领导者。他拥有哥伦比亚大学计算机科学学士学位和卡内基梅隆大学博士学位。2009年9月从谷歌离职后他创办了创新工场,积极投资中美科技和人工智能领域的创业公司。

李开复在中国深受推崇,在中国社交网站上有五千多万粉丝,他已经成为中国科技发展趋势的标志性“预言家”。李开复近日向CNBC记者表示,人工智能是“比电力、工业革命、互联网、移动互联网等所有人类科技革命加起来都更伟大的奇迹”。返回搜狐,查看更多

盘点人工智能各专业领域的上市公司有哪些

人工智能发展的核心是技术创新,也是各企业的发展方向。目前市场形成以海康威视和科大讯飞为龙头的智能板块,各种细分领域百花齐放的局面,现盘点各专业领域的人工智能上市公司。

科大讯飞:作为中国智能语音与人工智能产业领导者,专业从事智能语音及语言技术研究、软件及芯片产品开发、语音信息服务及电子政务系统集成。在语音合成、语音识别、口语评测、自然语言处理等多项技术上拥有国际领先的成果。6月27日,《麻省理工科技评论》(MITTechnologyReview)全球50大最聪明企业榜单发布,科大讯飞首次上榜名列全球第六,在同期上榜的中国公司中位居第一,科大讯飞作为中国人工智能产业领导品牌获得广泛共识,成为国际人工智能竞争格局中的代表性中国力量。

海康威视:为公安、交通、司法、文教卫、金融、能源和智能楼宇等众多行业提供专业的细分产品、IVM智能可视化管理解决方案和大数据服务。在视频监控行业之外,公司基于视频技术,将业务延伸到智能家居、工业自动化和汽车电子等行业。IHS于今年6月发布2016年全球视频监控设备市场研究报告,报告显示,海康威视2016年在CCTV和视频监控的全球市场份额提升到21.4%,连续六年(2011-2016)蝉联IHS全球视频监控市场份额第一位。

四维图新:在车载前装地图及动态交通信息服务一直处于领先地位,且目前已初步具备“高精度地图+芯片+算法+系统平台”核心能力,战略布局全面。是国内第一个实现精度达20cm的ADAS地图的商业化的公司,同时也是全球第三家、中国第一家通过TS16949(国际汽车工业质量管理体系)认证的导航地图企业。

华宇软件:业务范围涵盖法院、检察院、司法行政、食品安全、各级党委和政府部门以及各行业大型企事业单位;服务内容覆盖信息系统的全生命周期。在公司法院业务领域下的法庭业务线下的某些产品上和科大讯飞的智慧法院存在竞争关系。

东方网力:为行业用户、运营商和企业用户提供全面的视频监控应用解决方案和高品质视频存储产品,并通过领先的视频中间件技术,为城市反恐应急、互联网、智慧城市、平安城市、移动互联网提供视频应用支撑。2015年9月与商汤科技共同投资设立深圳市深网视界科技有限公司。

佳都科技:人脸识别技术和产品近几年发展迅速,但国际国内人脸识别算法评价体系不健全,而针对不同应用场景下的识别算法指标不具备可比性。基于深度学习人脸识别算法的公司,除了公司参股子公司云从科技外,还包括北京市商汤科技开发有限公司、北京旷视科技有限公司、上海依图网络科技有限公司等。全球范围内,提供人脸识别算法的厂家主要有NEC、Cognite(科理达)、Morpho、Neurotec等。

神州泰岳:公司目前已确立4大业务板块,即ICT运营管理、手游、人工智能与大数据、物联网通讯技术。自然语言处理作为公司人工智能的核心能力,未来公司将集中内外优秀资源,着力打造泰岳“认知+”的人工智能品牌,致力于成为中国乃至全球范围的人工智能自然语言语义理解第一品牌。

金溢科技:人工智能是智能交通技术发展的趋势之一,公司重视并已开展人工智能技术在智能交通领域的应用研究。如正在开发的基于视频流的智能车辆检测设备,将使用机器学习与人工智能方法,进行有无车辆状态及部分违停状态的自动识别。

熙菱信息:熙菱魔力眼智慧安防系列产品融合智能图像及大数据分析技术,应用包括视频联网、视频解析、人像识别,大数据建模分析等技术,助力公安实战,取得积极战果。

卓翼科技:逐步推行人工智能在生产过程中的应用,建设智慧型工厂,自研并应用了网络监控设备、生产测试设备等自动化设备,提高了生产效率、节约了人力成本。

拓斯达:注重多关节机器人领域,目前重点专注于工业机器人方向。

京东方A:为信息交互和人类健康提供智慧端口产品和专业服务的物联网公司,致力打造“芯屏气/器和”的物联网新生态,主要专注三件事:第一,不断提升新型显示技术和薄膜传感器技术,为互联网终端设备客户提供最佳人机交互产品和服务。第二,不断提升智能制造服务、智慧零售解决方案、智慧车联和智慧能源的核心能力,深化与各细分行业伙伴合作,拓展新应用。第三,将显示、传感、人工智能和大数据等技术与医学、生命科学跨界融合。

欧比特:在人工智能领域公司目前主要布局的是通过融合公司现有的SOC、SIP、图像处理、工业控制、软件设计、系统集成等技术,组建团队,深入探讨嵌入式人脸识别模块、嵌入式行为识别模块、嵌入式机器人视觉系统SLAM模块、飞行器飞控系统模块、飞行器视频拼接模块、飞行器三维图像重建模块等人工智能模块产品开发的可行性,迅速形成方案,开展研制。

东方国信:目前已经成功发布行云生态技术体系,行云生态可以为人工智能的实现,提供全结构化数据采集解析、大数据的高效存储计算、非结构化图像数据算法分析、复杂算法模型设计、云化资源管理等核心能力,已经具备实现人工智能在无人汽车方面的核心技术的基础研发实力,东方国信目前将人工智能技术主要注入在可快速落地的领域,如工业领域、国家安全领域、环境保护领域、农业领域、大数据分析运营领域等。

科大智能:携手复旦大学类脑智能科学与技术研究院共建复旦-科大智能智能机器人联合实验室。积极推动科研项目产业化的落地,实现“人工智能+健康”的战略布局。

久其软件:数字法庭产品在该领域占有过半市场,在以裁判文书自动生成为核心的人工智能领域取得了突破和领先。

埃斯顿:研发协作机器人及移动平台机器人;智能制造系统将重点研发如何实现机器人、自动化与信息化的有效连接,构成工业互联网系统的技术,从而实现通过对工业数据的全面深度感知、实时动态采集与分析,形成智能决策与控制,实现生产系统的智能化目标。

和而泰:研发与家庭生活相关的设备与产品,通过信息传感技术、电子技术、通讯技术、智能控制技术,增加数据获取与数据通讯功能,实现传统产品的智能化升级,并将设备运行数据、操作与控制数据等海量大数据直接传送到云平台,通过大数据平台取得的设备场景、自然环境、人体健康生命体征三类数据,经过数据建模、定义、分析等人工智能(AI)计算及有效融合,服务家庭、服务制造业及服务业等各产业。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇