博舍

语音识别技术原理概述! 语音识别的基本原理 所谓语音识别,就是将一段语音信号转换成相对应的文本信息,系统主要包含特征提取、声学模型,语言模型以及  人工智能语音识别技术原理是什么意思

语音识别技术原理概述! 语音识别的基本原理 所谓语音识别,就是将一段语音信号转换成相对应的文本信息,系统主要包含特征提取、声学模型,语言模型以及 

来源:雪球App,作者:手机技术资讯,(https://xueqiu.com/3075605687/130174699)

语音识别的基本原理

所谓语音识别,就是将一段语音信号转换成相对应的文本信息,系统主要包含特征提取、声学模型,语言模型以及字典与解码四大部分,其中为了更有效地提取特征往往还需要对所采集到的声音信号进行滤波、分帧等预处理工作,把要分析的信号从原始信号中提取出来;之后,特征提取工作将声音信号从时域转换到频域,为声学模型提供合适的特征向量;声学模型中再根据声学特性计算每一个特征向量在声学特征上的得分;而语言模型则根据语言学相关的理论,计算该声音信号对应可能词组序列的概率;最后根据已有的字典,对词组序列进行解码,得到最后可能的文本表示。

声学信号预处理

作为语音识别的前提与基础,语音信号的预处理过程至关重要。在最终进行模板匹配的时候,是将输入语音信号的特征参数同模板库中的特征参数进行对比,因此,只有在预处理阶段得到能够表征语音信号本质特征的特征参数,才能够将这些特征参数进行匹配进行识别率高的语音识别。

首先需要对声音信号进行滤波与采样,此过程主要是为了排除非人体发声以外频率的信号与50Hz电流频率的干扰,该过程一般是用一个带通滤波器、设定上下戒指频率进行滤波,再将原有离散信号进行量化处理实现的;之后需要平滑信号的高频与低频部分的衔接段,从而可以在同一信噪比条件下对频谱进行求解,使得分析更为方便快捷;分帧加窗操作是为了将原有频域随时间变化的信号具有短时平稳特性,即将连续的信号用不同长度的采集窗口分成一个个独立的频域稳定的部分以便于分析,此过程主要是采用预加重技术;最后还需要进行端点检测工作,也就是对输入语音信号的起止点进行正确判断,这主要是通过短时能量(同一帧内信号变化的幅度)与短时平均过零率(同一帧内采样信号经过零的次数)来进行大致的判定。

声学特征提取

完成信号的预处理之后,随后进行的就是整个过程中极为关键的特征提取的操作。将原始波形进行识别并不能取得很好的识别效果,频域变换后提取的特征参数用于识别,而能用于语音识别的特征参数必须满足以下几点:

1、特征参数能够尽量描述语音的根本特征;

2、尽量降低参数分量之间的耦合,对数据进行压缩;

3、应使计算特征参数的过程更加简便,使算法更加高效。基音周期、共振峰值等参数都可以作为表征语音特性的特征参数。

目前主流研究机构最常用到的特征参数有:线性预测倒谱系数(LPCC)和Mel倒谱系数(MFCC)。两种特征参数在倒谱域上对语音信号进行操作,前者以发声模型作为出发点,利用LPC技术求倒谱系数。后者则模拟听觉模型,把语音经过滤波器组模型的输出做为声学特征,然后利用离散傅里叶变换(DFT)进行变换。

所谓基音周期,是指声带振动频率(基频)的振动周期,因其能够有效表征语音信号特征,因此从最初的语音识别研究开始,基音周期检测就是一个至关重要的研究点;所谓共振峰,是指语音信号中能量集中的区域,因其表征了声道的物理特征,并且是发音音质的主要决定条件,因此同样是十分重要的特征参数。此外,目前也有许多研究者开始将深度学习中一些方法应用在特征提取中,取得了较快的进展。

声学模型

声学模型是语音识别系统中非常重要的一个组件,对不同基本单元的区分能力直接关系到识别结果的好坏。语音识别本质上一个模式识别的过程,而模式识别的核心是分类器和分类决策的问题。

通常,在孤立词、中小词汇量识别中使用动态时间规整(DTW)分类器会有良好的识别效果,并且识别速度快,系统开销小,是语音识别中很成功的匹配算法。但是,在大词汇量、非特定人语音识别的时候,DTW识别效果就会急剧下降,这时候使用隐马尔科夫模型(HMM)进行训练识别效果就会有明显提升,由于在传统语音识别中一般采用连续的高斯混合模型GMM来对状态输出密度函数进行刻画,因此又称为GMM-HMM构架。

同时,随着深度学习的发展,通过深度神经网络来完成声学建模,形成所谓的DNN-HMM构架来取代传统的GMM-HMM构架,在语音识别上也取得了很好的效果。

高斯混合模型

对于一个随机向量x,如果它的联合概率密度函数符合公式2-9,则称它服从高斯分布,并记为x∼N(µ,Σ)。

其中,µ为分布的期望,Σ为分布的协方差矩阵。高斯分布有很强的近似真实世界数据的能力,同时又易于计算,因此被广泛地应用在各个学科之中。但是,仍然有很多类型的数据不好被一个高斯分布所描述。这时候我们可以使用多个高斯分布的混合分布来描述这些数据,由多个分量分别负责不同潜在的数据来源。此时,随机变量符合密度函数。

其中,M为分量的个数,通常由问题规模来确定。

我们称认为数据服从混合高斯分布所使用的模型为高斯混合模型。高斯混合模型被广泛的应用在很多语音识别系统的声学模型中。考虑到在语音识别中向量的维数相对较大,所以我们通常会假设混合高斯分布中的协方差矩阵Σm为对角矩阵。这样既大大减少了参数的数量,同时可以提高计算的效率。

使用高斯混合模型对短时特征向量建模有以下几个好处:首先,高斯混合模型的具有很强的建模能力,只要分量总数足够多,高斯混合模型就可以以任意精度来逼近一个概率分布函数;另外,使用EM算法可以很容易地使模型在训练数据上收敛。对于计算速度和过拟合等问题,人们还研究出了参数绑定的GMM和子空间高斯混合模型(subspaceGMM)来解决。除了使用EM算法作最大似然估计以外,我们还可以使用和词或音素错误率直接相关的区分性的误差函数来训练高斯混合模型,能够极大地提高系统性能。因此,直到在声学模型中使用深度神经网络的技术出现之前,高斯混合模型一直是短时特征向量建模的不二选择。

但是,高斯混合模型同样具有一个严重的缺点:高斯混合模型对于靠近向量空间上一个非线性流形(manifold)上的数据建模能力非常差。例如,假设一些数据分布在一个球面两侧,且距离球面非常近。如果使用一个合适的分类模型,我们可能只需要很少的参数就可以将球面两侧的数据区分开。但是,如果使用高斯混合模型描绘他们的实际分布情况,我们需要非常多的高斯分布分量才能足够精确地刻画。这驱使我们寻找一个能够更有效利用语音信息进行分类的模型。

隐马尔科夫模型

我们现在考虑一个离散的随机序列,若转移概率符合马尔可夫性质,即将来状态和过去状态独立,则称其为一条马尔可夫链(MarkovChain)。若转移概率和时间无关,则称其为齐次(homogeneous)马尔可夫链。马尔可夫链的输出和预先定义好的状态一一对应,对于任意给定的状态,输出是可观测的,没有随机性。如果我们对输出进行扩展,使马尔可夫链的每个状态输出为一个概率分布函数。这样的话马尔可夫链的状态不能被直接观测到,只能通过受状态变化影响的符合概率分布的其他变量来推测。我们称以这种以隐马尔可夫序列假设来建模数据的模型为隐马尔可夫模型。

对应到语音识别系统中,我们使用隐马尔可夫模型来刻画一个音素内部子状态变化,来解决特征序列到多个语音基本单元之间对应关系的问题。

在语音识别任务中使用隐马尔可夫模型需要计算模型在一段语音片段上的可能性。而在训练的时候,我们需要使用Baum-Welch算法[23]学习隐马尔可夫模型参数,进行最大似然估计(MaximumLikelihoodEstimation,MLE)。Baum-Welch算法是EM(Expectation-Maximization)算法的一种特例,利用前后项概率信息迭代地依次进行计算条件期望的E步骤和最大化条件期望的M步骤。

语言模型

语言模型主要是刻画人类语言表达的方式习惯,着重描述了词与词在排列结构上的内在联系。在语音识别解码的过程中,在词内转移参考发声词典、词间转移参考语言模型,好的语言模型不仅能够提高解码效率,还能在一定程度上提高识别率。语言模型分为规则模型和统计模型两类,统计语言模型用概率统计的方法来刻画语言单位内在的统计规律,其设计简单实用而且取得了很好的效果,已经被广泛用于语音识别、机器翻译、情感识别等领域。

最简单又却又最常用的语言模型是N元语言模型(N-gramLanguageModel,N-gramLM)。N元语言模型假设当前在给定上文环境下,当前词的概率只与前N-1个词相关。于是词序列w1,...,wm的概率P(w1,...,wm)可以近似为

为了得到公式中的每一个词在给定上文下的概率,我们需要一定数量的该语言文本来估算。可以直接使用包含上文的词对在全部上文词对中的比例来计算该概率,即

对于在文本中未出现的词对,我们需要使用平滑方法来进行近似,如Good-Turing估计或Kneser-Ney平滑等。

解码与字典

解码器是识别阶段的核心组件,通过训练好的模型对语音进行解码,获得最可能的词序列,或者根据识别中间结果生成识别网格(lattice)以供后续组件处理。解码器部分的核心算法是动态规划算法Viterbi。由于解码空间非常巨大,通常我们在实际应用中会使用限定搜索宽度的令牌传递方法(tokenpassing)。

传统解码器会完全动态生成解码图(decodegraph),如著名语音识别工具HTK(HMMToolKit)中的HVite和HDecode等。这样的实现内存占用较小,但考虑到各个组件的复杂性,整个系统的流程繁琐,不方便高效地将语言模型和声学模型结合起来,同时更加难以扩展。现在主流的解码器实现会一定程度上使用预生成的有限状态变换器(FiniteStateTransducer,FST)作为预加载的静态解码图。这里我们可以将语言模型(G),词汇表(L),上下文相关信息(C),隐马尔可夫模型(H)四个部分分别构建为标准的有限状态变换器,再通过标准的有限状态变换器操作将他们组合起来,构建一个从上下文相关音素子状态到词的变换器。这样的实现方法额外使用了一些内存空间,但让解码器的指令序列变得更加整齐,使得一个高效的解码器的构建更加容易。同时,我们可以对预先构建的有限状态变换器进行预优化,合并和剪掉不必要的部分,使得搜索空间变得更加合理

语音识别技术的工作原理

首先,我们知道声音实际上是一种波。常见的mp3等格式都是压缩格式,必须转成非压缩的纯波形文件来处理,比如WindowsPCM文件,也就是俗称的wav文件。wav文件里存储的除了一个文件头以外,就是声音波形的一个个点了。下图是一个波形的示例。

图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。

分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取MFCC特征,根据人耳的生理特性,把每一帧波形变成一个多维向量,可以简单地理解为这个向量包含了这帧语音的内容信息。这个过程叫做声学特征提取。

至此,声音就成了一个12行(假设声学特征是12维)、N列的一个矩阵,称之为观察序列,这里N为总帧数。观察序列如下图所示,图中,每一帧都用一个12维的向量表示,色块的颜色深浅表示向量值的大小。

接下来就要介绍怎样把这个矩阵变成文本了。首先要介绍两个概念:

音素:单词的发音由音素构成。对英语,一种常用的音素集是卡内基梅隆大学的一套由39个音素构成的音素集。汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。

状态:这里理解成比音素更细致的语音单位就行啦。通常把一个音素划分成3个状态。

语音识别是怎么工作的呢?实际上一点都不神秘,无非是:

第一步,把帧识别成状态。

第二步,把状态组合成音素。

第三步,把音素组合成单词。

如下图所示:

图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。

那每帧音素对应哪个状态呢?有个容易想到的办法,看某帧对应哪个状态的概率最大,那这帧就属于哪个状态。比如下面的示意图,这帧在状态S3上的条件概率最大,因此就猜这帧属于状态S3。

那这些用到的概率从哪里读取呢?有个叫“声学模型”的东西,里面存了一大堆参数,通过这些参数,就可以知道帧和状态对应的概率。获取这一大堆参数的方法叫做“训练”,需要使用巨大数量的语音数据。

但这样做有一个问题:每一帧都会得到一个状态号,最后整个语音就会得到一堆乱七八糟的状态号,相邻两帧间的状态号基本都不相同。假设语音有1000帧,每帧对应1个状态,每3个状态组合成一个音素,那么大概会组合成300个音素,但这段语音其实根本没有这么多音素。如果真这么做,得到的状态号可能根本无法组合成音素。实际上,相邻帧的状态应该大多数都是相同的才合理,因为每帧很短。

解决这个问题的常用方法就是使用隐马尔可夫模型(HiddenMarkovModel,HMM)。这东西听起来好像很高深的样子,实际上用起来很简单:

第一步,构建一个状态网络。

第二步,从状态网络中寻找与声音最匹配的路径。

这样就把结果限制在预先设定的网络中,避免了刚才说到的问题,当然也带来一个局限,比如你设定的网络里只包含了“今天晴天”和“今天下雨”两个句子的状态路径,那么不管说些什么,识别出的结果必然是这两个句子中的一句。

那如果想识别任意文本呢?把这个网络搭得足够大,包含任意文本的路径就可以了。但这个网络越大,想要达到比较好的识别准确率就越难。所以要根据实际任务的需求,合理选择网络大小和结构。

搭建状态网络,是由单词级网络展开成音素网络,再展开成状态网络。语音识别过程其实就是在状态网络中搜索一条最佳路径,语音对应这条路径的概率最大,这称之为“解码”。路径搜索的算法是一种动态规划剪枝的算法,称之为Viterbi算法,用于寻找全局最优路径。

这里所说的累积概率,由三部分构成,分别是:

观察概率:每帧和每个状态对应的概率

转移概率:每个状态转移到自身或转移到下个状态的概率

语言概率:根据语言统计规律得到的概率

其中,前两种概率从声学模型中获取,最后一种概率从语言模型中获取。语言模型是使用大量的文本训练出来的,可以利用某门语言本身的统计规律来帮助提升识别正确率。语言模型很重要,如果不使用语言模型,当状态网络较大时,识别出的结果基本是一团乱麻。

这样基本上语音识别过程就完成了,这就是语音识别技术的工作原理。

语音识别技术的工作流程

一般来说,一套完整的语音识别系统其工作过程分为7步:

1、对语音信号进行分析和处理,除去冗余信息。

2、提取影响语音识别的关键信息和表达语言含义的特征信息。

3、紧扣特征信息,用最小单元识别字词。

4、按照不同语言的各自语法,依照先后次序识别字词。

5、把前后意思当作辅助识别条件,有利于分析和识别。

6、按照语义分析,给关键信息划分段落,取出所识别出的字词并连接起来,同时根据语句意思调整句子构成。

7、结合语义,仔细分析上下文的相互联系,对当前正在处理的语句进行适当修正。

语音识别原理有三点:

1、对语音信号中的语言信息编码是按照幅度谱的时间变化来进行;

2、由于语音是可以阅读的,也就是说声学信号可以在不考虑说话人说话传达的信息内容的前提下用多个具有区别性的、离散的符号来表示;

3、语音的交互是一个认知过程,所以绝对不能与语法、语义和用语规范等方面分裂开来。

预处理,其中就包括对语音信号进行采样、克服混叠滤波、去除部分由个体发音的差异和环境引起的噪声影响,此外还会考虑到语音识别基本单元的选取和端点检测问题。反复训练是在识别之前通过让说话人多次重复语音,从原始语音信号样本中去除冗余信息,保留关键信息,再按照一定规则对数据加以整理,构成模式库。再者是模式匹配,它是整个语音识别系统的核心部分,是根据一定规则以及计算输入特征与库存模式之间的相似度,进而判断出输入语音的意思。

前端处理,先对原始语音信号进行处理,再进行特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征。

推荐关注人工智能微信公众号:

推荐关注手机领域招聘公众号:

推荐关注手机技术资讯公众号:

要入群请加手机技术资讯管理员Lianjie0706,入群前请备注行业岗位地点:

 

语音识别技术介绍(超级详细)

精美而实用的网站,分享优质编程教程,帮助有志青年。千锤百炼,只为大作;精益求精,处处斟酌;这种教程,看一眼就倾心。

关于网站|关于站长|如何完成一部教程|公众号|联系我们|网站地图

Copyright©2012-2022biancheng.net,冀ICP备2022013920号,冀公网安备13110202001352号

语音识别技术基础理解

语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。

语音识别的基本原理

语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元,它的基本结构如下图所示:

image.png

未知语音经过话筒变换成电信号后加在识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模板。而计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表就可以给出计算机的识别结果。显然,这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。

语音识别系统构建过程整体上包括两大部分:训练和识别。训练通常是离线完成的,对预先收集好的海量语音、语言数据库进行信号处理和知识挖掘,获取语音识别系统所需要的“声学模型”和“语言模型”;而识别过程通常是在线完成的,对用户实时的语音进行自动识别。识别过程通常又可以分为“前端”和“后端”两大模块:“前端”模块主要的作用是进行端点检测(去除多余的静音和非说话声)、降噪、特征提取等;“后端”模块的作用是利用训练好的“声学模型”和“语言模型”对用户说话的特征向量进行统计模式识别(又称“解码”),得到其包含的文字信息,此外,后端模块还存在一个“自适应”的反馈模块,可以对用户的语音进行自学习,从而对“声学模型”和“语音模型”进行必要的“校正”,进一步提高识别的准确率。

语音识别是模式识别的一个分支,又从属于信号处理科学领域,同时与语音学、语言学、数理统计及神经生物学等学科有非常密切的关系。语音识别的目的就是让机器“听懂”人类口述的语言,包括了两方面的含义:其一是逐字逐句听懂并转化成书面语言文字;其二是对口述语言中所包含的要求或询问加以理解,做出正确响应,而不拘泥于所有词的正确转换。

自动语音识别技术有三个基本原理:首先语音信号中的语言信息是按照短时幅度谱的时间变化模式来编码;其次语音是可以阅读的,即它的声学信号可以在不考虑说话人试图传达的信息内容的情况下用数十个具有区别性的、离散的符号来表示;第三语音交互是一个认知过程,因而不能与语言的语法、语义和语用结构割裂开来。

声学模型:语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节概率的计算和音节到字概率的计算。

搜索:连续语音识别中的搜索,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜索所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设置一个长词惩罚分数。

系统实现:语音识别系统选择识别基元的要求是,有准确的定义,能得到足够数据进行训练,具有一般性。英语通常采用上下文相关的音素建模,汉语的协同发音不如英语严重,可以采用音节建模。系统所需的训练数据大小与模型复杂度有关。模型设计得过于复杂以至于超出了所提供的训练数据的能力,会使得性能急剧下降。

听写机:大词汇量、非特定人、连续语音识别系统通常称为听写机。其架构就是建立在前述声学模型和语言模型基础上的HMM拓扑结构。训练时对每个基元用前向后向算法获得模型参数,识别时,将基元串接成词,词间加上静音模型并引入语言模型作为词间转移概率,形成循环结构,用Viterbi算法进行解码。针对汉语易于分割的特点,先进行分割再对每一段进行解码,是用以提高效率的一个简化方法。

对话系统:用于实现人机口语对话的系统称为对话系统。受目前技术所限,对话系统往往是面向一个狭窄领域、词汇量有限的系统,其题材有旅游查询、订票、数据库检索等等。其前端是一个语音识别器,识别产生的N-best候选或词候选网格,由语法分析器进行分析获取语义信息,再由对话管理器确定应答信息,由语音合成器输出。由于目前的系统往往词汇量有限,也可以用提取关键词的方法来获取语义信息。

语音识别技术原理-工作原理解读

首先,我们知道声音实际上是一种波。常见的mp3等格式都是压缩格式,必须转成非压缩的纯波形文件来处理,比如WindowsPCM文件,也就是俗称的wav文件。wav文件里存储的除了一个文件头以外,就是声音波形的一个个点了。下图是一个波形的示例。

image.png

图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。

分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取MFCC特征,根据人耳的生理特性,把每一帧波形变成一个多维向量,可以简单地理解为这个向量包含了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很多细节,声学特征也不止有MFCC这一种,具体这里不讲。

至此,声音就成了一个12行(假设声学特征是12维)、N列的一个矩阵,称之为观察序列,这里N为总帧数。观察序列如下图所示,图中,每一帧都用一个12维的向量表示,色块的颜色深浅表示向量值的大小。

image.png

消除噪声和不同说话人的发音差异带来的影响接下来就要介绍怎样把这个矩阵变成文本了。首先要介绍两个概念:

音素:单词的发音由音素构成。对英语,一种常用的音素集是卡内基梅隆大学的一套由39个音素构成的音素集,参见TheCMUPronouncingDictionary。汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。

状态:这里理解成比音素更细致的语音单位就行啦。通常把一个音素划分成3个状态。

语音识别是怎么工作的呢?实际上一点都不神秘,无非是:

第一步,把帧识别成状态(难点)。第二步,把状态组合成音素。第三步,把音素组合成单词。

如下图所示:

image.png

图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。

那每帧音素对应哪个状态呢?有个容易想到的办法,看某帧对应哪个状态的概率最大,那这帧就属于哪个状态。比如下面的示意图,这帧在状态S3上的条件概率最大,因此就猜这帧属于状态S3。

image.png

那这些用到的概率从哪里读取呢?有个叫“声学模型”的东西,里面存了一大堆参数,通过这些参数,就可以知道帧和状态对应的概率。获取这一大堆参数的方法叫做“训练”,需要使用巨大数量的语音数据,训练的方法比较繁琐,这里不讲。

但这样做有一个问题:每一帧都会得到一个状态号,最后整个语音就会得到一堆乱七八糟的状态号,相邻两帧间的状态号基本都不相同。假设语音有1000帧,每帧对应1个状态,每3个状态组合成一个音素,那么大概会组合成300个音素,但这段语音其实根本没有这么多音素。如果真这么做,得到的状态号可能根本无法组合成音素。实际上,相邻帧的状态应该大多数都是相同的才合理,因为每帧很短。

解决这个问题的常用方法就是使用隐马尔可夫模型(HiddenMarkovModel,HMM)。这东西听起来好像很高深的样子,实际上用起来很简单:

第一步,构建一个状态网络。第二步,从状态网络中寻找与声音最匹配的路径。

这样就把结果限制在预先设定的网络中,避免了刚才说到的问题,当然也带来一个局限,比如你设定的网络里只包含了“今天晴天”和“今天下雨”两个句子的状态路径,那么不管说些什么,识别出的结果必然是这两个句子中的一句。

那如果想识别任意文本呢?把这个网络搭得足够大,包含任意文本的路径就可以了。但这个网络越大,想要达到比较好的识别准确率就越难。所以要根据实际任务的需求,合理选择网络大小和结构。

搭建状态网络,是由单词级网络展开成音素网络,再展开成状态网络。语音识别过程其实就是在状态网络中搜索一条最佳路径,语音对应这条路径的概率最大,这称之为“解码”。路径搜索的算法是一种动态规划剪枝的算法,称之为Viterbi算法,用于寻找全局最优路径。

image.png

这里所说的累积概率,由三部分构成,分别是:

观察概率:每帧和每个状态对应的概率转移概率:每个状态转移到自身或转移到下个状态的概率语言概率:根据语言统计规律得到的概率

其中,前两种概率从声学模型中获取,最后一种概率从语言模型中获取。语言模型是使用大量的文本训练出来的,可以利用某门语言本身的统计规律来帮助提升识别正确率。语言模型很重要,如果不使用语言模型,当状态网络较大时,识别出的结果基本是一团乱麻。

这样基本上语音识别过程就完成了,这就是语音识别技术的原理。

语音识别技术原理-语音识别系统的工作流程

一般来说,一套完整的语音识别系统其工作过程分为7步:

①对语音信号进行分析和处理,除去冗余信息。②提取影响语音识别的关键信息和表达语言含义的特征信息。③紧扣特征信息,用最小单元识别字词。④按照不同语言的各自语法,依照先后次序识别字词。⑤把前后意思当作辅助识别条件,有利于分析和识别。⑥按照语义分析,给关键信息划分段落,取出所识别出的字词并连接起来,同时根据语句意思调整句子构成。⑦结合语义,仔细分析上下文的相互联系,对当前正在处理的语句进行适当修正。

音识别系统基本原理框图

image.png

语音识别系统基本原理结构如图所示。语音识别原理有三点:①对语音信号中的语言信息编码是按照幅度谱的时间变化来进行;②由于语音是可以阅读的,也就是说声学信号可以在不考虑说话人说话传达的信息内容的前提下用多个具有区别性的、离散的符号来表示;③语音的交互是一个认知过程,所以绝对不能与语法、语义和用语规范等方面分裂开来。

预处理,其中就包括对语音信号进行采样、克服混叠滤波、去除部分由个体发音的差异和环境引起的噪声影响,此外还会考虑到语音识别基本单元的选取和端点检测问题。反复训练是在识别之前通过让说话人多次重复语音,从原始语音信号样本中去除冗余信息,保留关键信息,再按照一定规则对数据加以整理,构成模式库。再者是模式匹配,它是整个语音识别系统的核心部分,是根据一定规则以及计算输入特征与库存模式之间的相似度,进而判断出输入语音的意思。

前端处理,先对原始语音信号进行处理,再进行特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征。

用深度学习进行语音识别机器学习并不总是一个黑盒

如果你知道神经机器翻译是如何工作的,那么你可能会猜到,我们可以简单地将声音送入神经网络中,并训练使之生成文本:

image.png

一个大问题是语速不同。一个人可能很快地说出「hello!」而另一个人可能会非常缓慢地说「heeeelllllllllllllooooo!」。这产生了一个更长的声音文件,也产生了更多的数据。这两个声音文件都应该被识别为完全相同的文本「hello!」而事实证明,把各种长度的音频文件自动对齐到一个固定长度的文本是很难的一件事情。

为了解决这个问题,我们必须使用一些特殊的技巧,并进行一些深度神经网络以外的特殊处理。让我们看看它是如何工作的吧!

将声音转换成比特(Bit)

声音是作为波(wave)的形式传播的。我们如何将声波转换成数字呢?让我们使用我说的「hello」这个声音片段举个例子:

image.png

我说「hello」的波形

声波是一维的,它在每个时刻都有一个基于其高度的值(声波其实是二维的,有时间,还有振幅(即这个基于高度的值))。让我们把声波的一小部分放大看看:

image.png

为了将这个声波转换成数字,我们只记录声波在等距点的高度:

image.png

给声波采样

这被称为采样(sampling)。我们每秒读取数千次,并把声波在该时间点的高度用一个数字记录下来。这基本上就是一个未压缩的.wav音频文件。

「CD音质」的音频是以44.1khz(每秒44100个读数)进行采样的。但对于语音识别,16khz(每秒16000个采样)的采样率就足以覆盖人类语音的频率范围了。

让我们把「Hello」的声波每秒采样16000次。这是前100个采样:

image.png

每个数字表示声波在一秒钟的16000分之一处的振幅。

数字采样小助手

因为声波采样只是间歇性的读取,你可能认为它只是对原始声波进行粗略的近似估计。我们的读数之间有间距,所以我们必然会丢失数据,对吧?

image.png

数字采样能否完美重现原始声波?那些间距怎么办?但是,由于采样定理,我们知道我们可以利用数学,从间隔的采样中完美重建原始声波——只要我们的采样频率比期望得到的最高频率快至少两倍就行。我提这一点,是因为几乎每个人都会犯这个错误,并误认为使用更高的采样率总是会获得更好的音频质量。其实并不是。

预处理我们的采样声音数据

我们现在有一个数列,其中每个数字代表1/16000秒的声波振幅。

我们可以把这些数字输入到神经网络中,但是试图直接分析这些采样来进行语音识别仍然很困难。相反,我们可以通过对音频数据进行一些预处理来使问题变得更容易。

让我们开始吧,首先将我们的采样音频分成每份20毫秒长的音频块。这是我们第一个20毫秒的音频(即我们的前320个采样):

image.png

将这些数字绘制为简单的折线图,我们就得到了这20毫秒内原始声波的大致形状:

image.png虽然这段录音只有****1/50****秒的长度,但即使是这样短暂的录音,也是由不同频率的声音复杂地组合在一起的。其中有一些低音,一些中音,甚至有几处高音。但总的来说,就是这些不同频率的声音混合在一起,才组成了人类的语音。为了使这个数据更容易被神经网络处理,我们将把这个复杂的声波分解成一个个组成部分。我们将分离低音部分,再分离下一个最低音的部分,以此类推。然后将(从低到高)每个频段(frequencyband)中的能量相加,我们就为各个类别的音频片段创建了一个指纹(fingerprint)。想象你有一段某人在钢琴上演奏C大调和弦的录音。这个声音是由三个音符组合而成的:C、E和G。它们混合在一起组成了一个复杂的声音。我们想把这个复杂的声音分解成单独的音符,以此来分辨C、E和G。这和语音识别是一样的道理。我们需要傅里叶变换**(FourierTransform)来做到这一点。它将复杂的声波分解为简单的声波。一旦我们有了这些单独的声波,我们就将每一份频段所包含的能量加在一起。

最终得到的结果便是从低音(即低音音符)到高音,每个频率范围的重要程度。以每50hz为一个频段的话,我们这20毫秒的音频所含有的能量从低频到高频就可以表示为下面的列表:

image.png

列表中的每个数字表示那份50Hz的频段所含的能量

不过,把它们画成这样的图表会更加清晰

image.png

你可以看到,在我们的20毫秒声音片段中有很多低频能量,然而在更高的频率中并没有太多的能量。这是典型「男性」的声音。

如果我们对每20毫秒的音频块重复这个过程,我们最终会得到一个频谱图(每一列从左到右都是一个20毫秒的块):

image.png

「hello」声音剪辑的完整声谱

频谱图很酷,因为你可以在音频数据中实实在在地看到音符和其他音高模式。对于神经网络来说,相比于原始声波,从这种数据中寻找规律要容易得多。因此,这就是我们将要实际输入到神经网络中去的数据表示方式。

从短声音识别字符

现在我们有了格式易于处理的音频,我们将把它输入到深度神经网络中去。神经网络的输入将会是20毫秒的音频块。对于每个小的音频切片(audioslice),神经网络都将尝试找出当前正在说的声音所对应的字母。

image.png

我们将使用一个循环神经网络——即一个拥有记忆,能影响未来预测的神经网络。这是因为它预测的每个字母都应该能够影响它对下一个字母的预测。例如,如果我们到目前为止已经说了「HEL」,那么很有可能我们接下来会说「LO」来完成「Hello」。我们不太可能会说「XYZ」之类根本读不出来的东西。因此,具有先前预测的记忆有助于神经网络对未来进行更准确的预测。

当通过神经网络跑完我们的整个音频剪辑(一次一块)之后,我们将最终得到一份映射(mapping),其中标明了每个音频块和其最有可能对应的字母。这是我说那句「Hello」所对应的映射的大致图案:

image.png

我们的神经网络正在预测我说的那个词很有可能是「HHHEE_LL_LLLOOO」。但它同时认为我说的也可能是「HHHUU_LL_LLLOOO」,或者甚至是「AAAUU_LL_LLLOOO」。

我们可以遵循一些步骤来整理这个输出。首先,我们将用单个字符替换任何重复的字符:

·HHHEE_LL_LLLOOO变为HE_L_LO·HHHUU_LL_LLLOOO变为HU_L_LO·AAAUU_LL_LLLOOO变为AU_L_LO

然后,我们将删除所有空白:

·HE_L_LO变为HELLO·HU_L_LO变为HULLO·AU_L_LO变为AULLO

这让我们得到三种可能的转写——「Hello」、「Hullo」和「Aullo」。如果你大声说出这些词,所有这些声音都类似于「Hello」。因为神经网络每次只预测一个字符,所以它会得出一些纯粹表示发音的转写。例如,如果你说「Hewouldnotgo」,它可能会给出一个「Hewudnetgo」的转写。

在我们可能的转写「Hello」、「Hullo」和「Aullo」中,显然「Hello」将更频繁地出现在文本数据库中(更不用说在我们原始的基于音频的训练数据中了),因此它可能就是正解。所以我们会选择「Hello」作为我们的最终结果,而不是其他的转写。

参考:https://zhuanlan.zhihu.com/p/24703268http://dataunion.org/28416.html

人工智能语音交互技术原理

关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。

人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。

语音识别系统构建过程整体上包括两大部分:训练和识别。训练通常是离线完成的,对预先收集好的海量语音、语言数据库进行信号处理和知识挖掘,获取语音识别系统所需要的“声学模型”和“语言模型”;而识别过程通常是在线完成的,对用户实时的语音进行自动识别。识别过程通常又可以分为“前端”和“后端”两大模块:“前端”模块主要的作用是进行端点检测(去除多余的静音和非说话声)、降噪、特征提取等;“后端”模块的作用是利用训练好的“声学模型”和“语言模型”对用户说话的特征向量进行统计模式识别(又称“解码”),得到其包含的文字信息,此外,后端模块还存在一个“自适应”的反馈模块,可以对用户的语音进行自学习,从而对“声学模型”和“语音模型”进行必要的“校正”,进一步提高识别的准确率。

语鼠,是一款人工智能语音鼠标,采用“硬件+语音算法”的独特技术,引入讯飞语音生态,通过人机交互彻底颠覆传统的鼠标功能及应用,为传统PC插上AI的翅膀。彻底解决打字难、打字慢、不会翻译等问题。

语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元,它的基本结构如下图所示:

语音识别是模式识别的一个分支,又从属于信号处理科学领域,同时与语音学、语言学、数理统计及神经生物学等学科有非常密切的关系。语音识别的目的就是让机器“听懂”人类口述的语言,包括了两方面的含义:其一是逐字逐句听懂非转化成书面语言文字;其二是对口述语言中所包含的要求或询问加以理解,做出正确响应,而不拘泥于所有词的正确转换返回搜狐,查看更多

人工智能语音如何实现

语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。

1、语音识别的基本原理

语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元,它的基本结构如下图所示:

  

 

未知语音经过话筒变换成电信号后加在识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模板。而计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表就可以给出计算机的识别结果。显然,这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。

语音识别系统构建过程整体上包括两大部分:训练和识别。训练通常是离线完成的,对预先收集好的海量语音、语言数据库进行信号处理和知识挖掘,获取语音识别系统所需要的“声学模型”和“语言模型”;而识别过程通常是在线完成的,对用户实时的语音进行自动识别。识别过程通常又可以分为“前端”和“后端”两大模块:“前端”模块主要的

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇