前瞻研究:电商领域人工智能发展与趋势
人工智能技术虽然还处在持续发展和创新的阶段,但也应认识到在人工智能与“电子商务”高速发展的背景下,传统零售行业正在经历翻天覆地的变化。现今,传统零售业与电子商务领域正在进行多方面的融合。人工智能赋能的电子商务领域解决方案和产品在近几年内争先落地,在零售业的各个环节中掀起狂风浪潮。
随着电子商务的普及,零售业内领先企业与初创公司都在试图整合前沿技术,进行电子商务领域人工智能技术应用落地的尝试以抢占新兴市场份额。在此背景下与人工智能相关的机器学习、计算机视觉、强化学习等技术已经在不同场景下逐步落地。
一、人工智能在电子商务领域的市场规模
电子商务领域主要是指基于互联网如淘宝、亚马逊、京东等的多维度商品销售平台,或者如特斯拉、耐克、Casper品牌直接运营的网络门店。受益于数字化与人工智能技术的发展,近年来电子商务领域的运营成本正在逐年下降,并且由于其低门槛的人人都可为商家的销售模式,电子商务扩展极其迅速。全球电商市场的销售额在2018年为2.8万亿美元,到了2021年能够增加75%,达到4.9万亿美元。其中中国是全球规模最大、最活跃的电商市场,B2C的销售额、消费者人数均占据全球第一。根据阿里研究院的报告不完全统计,有近80%的电子商务卖家使用过人工智能相关工具,而随着盈利的增加人工智能工具的使用频率也在日益增长。
图:人工智能电子商务领域工具商品门类使用率以及工具使用频率
二、人工智能技术在电子商务领域的应用
电子商务领域的人工智能应用目前集中于计算机视觉,自然语言处理和强化学习:
计算机视觉技术:在电子商务平台购物的过程中,产品照片的影响至关重要。无论是商家想要借助算法去设计产品的海报,还是根据顾客对于产品外观的品味推荐搭配的产品,计算机视觉技术的应用前景都非常广阔。
自然语言处理技术:在用户搜索时,为了更好地让用户找到匹配的商品,电子商务平台的搜索和排序算法中利用了大量自然语言处理技术来分析搜索的关键词和产品的文字介绍。尤其是针对突然出现并畅销的爆款产品,传统的排序算法无法快速地作出应对,自然语言技术能够更好地帮助客户找到他们想要寻找的商品。
强化学习技术:电子商务领域的一个重要指标是转化率,比如搜索的转化率、页面浏览的转化率、商品排序的转化率等,为了提升这些转化率,不少大的电商平台已经在借助强化学习技术来预测用户针对网页的反馈行为,从而更好地优化搜索和产品页面的排序。
三、人工智能技术在电子商务领域的应用场景
产品搜索:搜索是电商领域非常高频且重要的用户行为,用户为了找到心仪的商品,会通过关键词甚至实物图片进行搜索,其中关键词搜索和产品匹配涉及自然语言处理技术,而“以图搜图”的产品图片搜索依赖于计算机视觉技术;另一方面,在搜索结果的排序上,如阿里巴巴等大型电商平台也会基于强化学习技术进行排序的优化。个性化的推荐系统:除了搜索,用户也会浏览网站的页面去挑选产品,因此电商平台通常会推出诸如“猜你喜欢”、“相关产品”、或者“别人也在看”这些功能来向顾客推荐更多相关的产品。这些结果都是基于机器学习算法学习用户过往的浏览和购买行为,个性化地为他们推荐相关的产品。
动态定价:市场的供需关系总是在动态变化,而基于供需关系的定价也会受到影响,电商需要根据实时的库存、顾客购买的需求之间的平衡进行价格的调整,才能最大化自己的利益。基于这一需求,不少电商平台会基于机器学习算法和自身的数据进行动态的产品定价,从而实时针对现在甚至未来的供需关系进行商品价格调整。
欺诈风险控制:电商平台是信用卡盗刷的重灾区,在信用卡普及的欧美市场尤其如此。盗刷者会递交大量的虚假订单,然后通过取消退款的方式获得现金。信用卡盗刷和欺诈对于电商平台的稳定运作产生恶劣的影响。因此电商平台也会通过机器学习技术预测和判断欺诈性的信用卡交易,及时阻止交易发生,从而控制平台上的风险。
其它场景:由于人工智能技术在电子商务领域的场景极为复杂,本报告仅基于所选人工智能技术案例有局限性的进行了场景划分,故并不包含人脸识别,活体验证等热门应用领域。
四、人工智能技术在电子商务领域应用代表案例
阿里巴巴:阿里巴巴自2014年起开始推出自行研发的以图搜图工具“拍立淘“,拍立淘主要被应用在阿里巴巴的国内电商平台淘宝网和海外电商平台全球速卖通中,帮助用户更便捷地通过照片搜索自己想要找的服装、配饰等产品,至今已拥有每日数千万用户。
Pinterest:Pinterest于2017年推出了以图搜图引擎VisualLens,如今每月达到6亿次搜索。Pinterest还将VisualLens产品化开放给合作的电商品牌,如美国著名零售商Target就将VisualLens整合到自己的电商平台中,使得顾客可以通过图片匹配Target数据库中的商品。
StitchFix:基于个性化推荐系统的时尚电商,利用用户的喜好和购买行为数据为用户提供一对一个性化的优质推荐。StitchFix于2017年上市,到2018年12月市值为18亿美元。
亚马逊:研究显示亚马逊自身以及第三方卖家在亚马逊线上市场(AmazonMarketplace)中通过算法实现大量的动态定价。100件随机挑选的商品在一年内的价格浮动可达260%,调整的频率也从五天一次到一天一次不等。对于第三方卖家来说,动态调价能够帮助他们获取更多被展现给用户看、从而获得更多订单的机会。
五、人工智能技术在电子商务领域应用的局限性
冷启动问题:推荐系统、动态定价等技术都需要基于大量的数据,对于新进入电商平台的用户、或是全新品类的商品,因为缺乏足够多的数据,难以受益于这些技术。
算法的可扩展性:强化学习在电商领域搜索、排序等方面的应用里遇到了瓶颈,主要在于这些问题中存在了太多的决策空间,目前缺乏有效的方式使得算法能够扩展到大量级的问题。
长尾效应:长尾效应在电商领域非常普遍,少数商品获得了绝大多数的购买和点击,而多数商品的数据则非常缺乏,这使得算法非常容易地针对热门商品进行过度拟合。
六、自然语言处理技术的未来发展趋势
数据驱动的个性化:基于用户数据的个性化推荐和搜索算法将在电商领域越来越普遍,不同的是,更加多维的用户数据将会被结合使用,包括用户的社交行为、职业、喜好、品味等数据都会被算法使用。
专家与算法结合(HumanintheLoop):像StitchFix这样将算法与人类专家结合的运营模式将更加普遍,通过算法和专家意见相互补足,帮助电商平台更好地设计商品和推荐。
与线下零售结合:像“以图搜图”这样的技术提供了打通线上电商和线下零售的入口,尤其是在时尚领域。用户可以在线下品牌体验店、时装走秀等场合发现和体验商品,通过“以图搜图”这样的技术了解商品的详细信息并立即下单。商家可以由此拓展和丰富顾客的购物体验。
*本文为「智周」系列报告「核心版」,相应「深度版」的推出计划将在后续公布,敬请大家关注。针对「电商领域人工智能发展与趋势」这一主题,有哪些方向或主题,你希望在报告深度版中读到更详细的阐述与分析,欢迎留言,这将成为我们制作报告深度版的重要参考。
人工智能与教育丨教育领域人工智能的应用现状、影响与挑战——基于OECD《教育中的可信赖人工智能:前景与挑战》报告的解读与分析
OECD预测,人工智能将引发未来几十年教育领域的巨大变革,包括课堂教学与教育系统,且直接影响到教育政策制定者、教育管理者、教师、学生、家长等利益相关者。同时,人工智能将推动实现可持续发展目标4中的全球教育目标,即“确保包容公平的优质教育,并为所有人提供终身学习机会”。人工智能在教育领域的使用还将实现巨大的社会价值,提升人的创造力,减少经济、社会及性别层面的不平等问题,促进包容性和可持续发展,进而实现全人类福祉。
(二)人工智能在课堂教学中的应用现状
美国新课堂创新合作者(NewClassroomsInnovationPartners)基于人工智能开发了“面向每一个人的教学:数学”(TeachtoOne:Math)模式,可以在大数据的支持下根据每个学生的具体情况制定合适的学习与教学方案。2012年,该模式在芝加哥、纽约及华盛顿特区的8所学校试点实施,主要应用于初中数学。该模式的目标是对学生技能的发展与进步做出持续回应,定期评估学生的技能水平,通过人工智能算法定位内容传递,并为学生指定不同的教学模式。该模式依靠持续的形成性评估得出数据,以确定学生之间的学习差距。学生每天都可以访问电脑仪表盘(computerdashboard),获取个人进度信息、技能发展任务,以及各种教学资源的链接,学生可以按自定的步调进行学习。这个过程中生成的大量数据将反馈给基础信息系统。最新版“面向每一个人的教学:数学”模式能为学生个性化学习路径的每日重新配置和两周教学周期的设计提供信息,还能通过动态的电脑仪表盘为教师提供有关班级和学生表现的实时信息,帮助教师及时支持学生学习。
在中国,好未来教育集团的人工智能实验室开发了多种类型的数字方案,为学生高考备考提供帮助。其中,“适应性测试及学习计划”(adaptivetestandlearningplan)系统最具代表性。该系统从各方面数据中挖掘大量评估性问题,以更好地了解每一位学生当前的知识水平,有助于学生选择合适自身的线下课程。该系统还为学生设计和定制学习计划,将相关材料发送给学生家长,帮助家长了解孩子的备考问题。
2.为特殊需求学生的学习提供支持与帮助
全球各国(尤其是经济落后国家)长期面临如何为所有学生提供更具包容性的受教育机会的问题。包容性教育是可持续发展目标4所倡导的全球目标之一,目的是确保所有人士平等地获得各级各类教育。OECD认为,人工智能可以有效地支持特殊需求学生的学习,包括视听觉障碍或社交技能(语言或交流)障碍的学生,帮助特殊需求学生从教育中受益。
3.其他功能
(三)人工智能在学校管理与教育系统中的应用
人工智能在学校管理与教育系统层面的应用主要是预测模型及评估模型的建构,为教育机构和教育系统提供反馈,服务于教育决策。目的在于提高高质量初等、中等教育的学业完成率,减少学生辍学率,以及改造教育评估工具(如标准化评估工具等)。
1.创建预警系统,有效降低学生辍学率
辍学问题是一个重要的全球教育问题,不同发展水平的国家关注的学生辍学阶段不同。OECD报告称,在低收入国家,2015年高中阶段学生辍学率为60%;2018年小学、初中及高中教育的完成率分别是68%、44%和21%,该数字距离2030年普及教育的目标相差巨大。各国教育工作者及教育政策制定者希望寻求正确的指标来预测学生辍学情况,在此基础上找到正确的干预措施降低学生辍学率。因此,人工智能将成为重要的预测工具。相比其他工具,人工智能预警系统使用纵向数据作为预测基础,可进一步改善学校的辍学预警系统。在人工智能的辅助下,学校管理者能更创新地使用现有学生数据,改进和设计学校的干预措施,更有效地预测并降低学生辍学率。
人工智能预警系统已经在发展水平较高的国家得到广泛使用。以美国为例,许多数字供应商为地区和州的学校提供了人工智能预警系统,实时帮助学校校长和地区领导者应对学生辍学问题。人工智能预警系统的优点之一是能及时地为学校提供反馈。此外,该系统通常采用仪表盘的形式,使面临辍学风险的不同类型学生的情况可视化,并对这部分学生采取适当的干预措施。在发展水平较低、收入较低的国家,辍学问题同样是教育面临的一个严峻问题。例如,印度已经开发了辍学预警系统与对应的干预措施,并开展了有效性评估。
当前,人工智能预警系统虽在学校管理和教育系统中发挥了一定作用,但还未完全成熟。其局限性在于人工智能系统仍可能出现预测误差,即忽略一些需要帮助的学生,没有及时给予帮助。因此,使用人工智能预警系统的前提是必须保证人工智能提供的是可信任的且有使用价值的预测建议。
2.改进技能评估工具,扩展技能评估范围
在经济社会变革的时代中,综合技能的重要性与日俱增,如问题解决技能、协作技能、社交技能、情感技能等。由于大多数国家的教育系统评估方式仍以标准化评估为主要特征,各国教育政策制定者和人才市场倡导改进技能评估工具,在以知识内容与能力为主的评估范围基础上进行新的扩展,将各种综合技能纳入评估范围。
基于游戏的评估(Game-basedAssessment)为教育系统提供了评估综合技能的新工具。基于游戏的评估在形成性评估中具有很大的价值,通常使用人工智能模拟的增强现实、虚拟现实和自适应能力,不仅可以适应个别学生的能力,也可以用于总结性评估。例如,将评估项目合并到游戏环境中,使学生在一个有趣的、沉浸式体验的环境中展示他们的学习成果。该评估工具已被广泛且有效地应用于科学、技术、工程和数学(STEM)教育。
三、数字时代劳动者技能的变革与发展
(一)传统技能面临自动化引发的挑战
人工智能在经济领域得到迅速使用和传播的同时,正规教育系统应进一步培养劳动者的新知识与技能。OECD的一项最新研究预估,未来15~20年内,自动化会导致14%的现有工作消失,32%的工作可能会产生根本性变革。
人工智能在某些方面的能力已经超越人类,如记忆力和计算力。人工智能能够更高效地完成重复性和预测性的任务,以及大量数据处理、输入或分类的任务。但人类在沟通、情感、价值观、创造力等方面仍占据优势。因此,劳动者必须具备人工智能无法实现的技能,才能避免在工作中被机器取代。此外,2019年OECD发布的《OECD技能展望》(OECDSkillsOutlook)报告显示,当前人们对互联网的使用常常局限于获取信息与通信。培养更高阶的认知技能,即在技术含量高的环境中发挥读写能力、计算能力及问题解决能力,互联网的使用方式才能更多样化和综合化。
(二)综合认知技能的重要性增强
在数字时代,综合认知技能变得越来越重要。相对于其他综合技能而言,综合认知技能更难以自动化或被人工智能取代,是实现人类福祉与社会良性运转的重要技能。其中,创造力与批判性思维得到了新时代劳动力市场的需求与重视。由于互联网信息传播速度快,信息数量大,传播范围广,创造力与批判性思维对互联网使用者而言不可或缺。
拥有批判性思维的劳动者在使用互联网检索信息时,能够阅读复杂的数字文本,可以区分互联网信息来源是否可信。创造力能支持劳动者开发与建构新的问题解决方案,包括需要使用人工智能或机器人的方案。除创造力与批判性思维外,沟通、协作技能等社会情感技能也属于重要的综合认知技能。
(三)逐步推进实施综合技能培养
为了应对经济与社会的转型与变革,各国教育系统和教育机构制定了各种技能培养方案,帮助劳动者学习和掌握综合技能,适应人工智能带来的技能转型。
OECD国家的学校课程大都已经正式推进综合技能培养方案的实施,以各级学校学生和高等教育学生为对象,培养与发展学生的创造力、批判性思维及其他创新技能。综合技能的培养也在G20国家中越来越普及,包括中国和印度。但在综合技能培养过程中,各国教育工作者常常不了解综合技能的概念与意义,不清楚如何将综合技能的培养纳入日常教学实践中。为解决该问题,OECD与11个国家的学校网络开展合作,为教育决策者及教育一线工作者提供了针对性的课程和教案,支撑他们推进综合技能的培养方案。同时,OECD还提供了专业发展计划的案例,帮助教育工作者学习有效培养综合技能的成功经验,教育工作者才能够成功地调整教学方法和课程计划,进而有效地帮助学生在学习知识内容的同时,发展创造力和批判性思维等综合技能。
另一项重要的综合技能培养方案是开放充足的、针对性强的高等教育课程。在该方案推进过程中,STEM教育发挥了至关重要的作用,为学生提供了许多具有针对性的综合技能学习课程。同时,许多新课程开放计划与商业界合作后也取得了一定成果。OECD与15个国家的高等教育机构合作,计划未来在高等教育领域创新性地开发与实践综合技能培养课程。
四、人工智能给教育带来的问题与挑战
人工智能在教育领域的快速发展,给教育工作者和教育政策制定者带来了新的问题与挑战,主要源于对人工智能的信任度以及如何塑造人工智能的可信赖应用。
(一)建立公众对人工智能的信任
教育对人们未来就业和生活机会有巨大影响,人工智能在教育中的透明度、可解释性及问责制非常重要。例如,人工智能用于教育决策的制定将直接影响学生的个人利益。为了充分发挥人工智能在教育中的潜力,教育政策制定者、教育工作者及其他利益相关者应建立公众对人工智能的信任。
在其他方面,人工智能引导自主决策或建议(例如,基于人工智能的中小学/大学的自动招生决策)可能会出现两种情况:一是打破学校招生系统先前的偏见,提高公平性;二是引发无法预估的后果,如生源好的学校在人工智能新系统的引导下招生,如若其招生标准与算法缺乏透明度与解释性,学校的受益群体将产生变动。因此,增强对人工智能的信任只能依靠标准和算法的透明度和可解释性。关于如何解决透明度问题,OECD认为扩大人工智能的开放性是一种解决方案。但对于某些人工智能(如深度学习)而言,可解释性仍然是个很难解决的问题。
OECD国家在建立公众对人工智能的信任上有不同的方式和策略。欧盟建构了可信赖人工智能的准则,提出人工智能应该是透明的、可追溯的、可解释的。同时,欧盟认为公众应有权被告知他们正在与人工智能系统进行交互,并且应该将人工智能的优势与局限传达给人工智能的实践者或终端用户。
(二)解决个人数据隐私与安全问题
虽然人工智能对教育与学习带来了积极影响,能帮助学生对数字时代未来的发展做准备,但大多数人工智能的使用者仍是未成年人,且人工智能算法或数据本身存在一定偏差,会引发个人数据的隐私和安全问题。
人工智能引发的隐私及数据安全问题通常源于大规模的个人数据收集与使用。人工智能为了提高其功能的针对性与有效性,以收集与使用个人数据为主要方式,收集和存储数据的过程易产生个人隐私泄露的风险。人工智能引发的隐私与安全问题是双重的。一方面,教育机构会重复使用过去收集和储存的学生数据,但由于数据存储的时长、类型及长期使用的标准没有得到确定,许多学生家长对此存在担忧;另一方面,一些开发者会处于商业目的使用学生的个人数据。
关于如何解决人工智能及其应用带来的个人数据的隐私与安全问题,不同OECD国家和地区有各自的做法。例如,欧盟的《通用数据保护条例》(GeneralDataProtectionRegulation,GDPR)为个人数据的使用设定了相对严格的框架——仅允许特定条件使用数据,包括共享数据与存储数据。GDPR中最重要的原则之一是透明度、数据与存储限制及问责制。美国的《家庭教育权和隐私权法》(FamilyEducationalandPrivacyRightsAct)规定了在教育中使用个人数据的特定框架。
五、结语
人工智能正重塑着世界经济发展的新格局,引发人们经济、生活及工作的深刻变革。全球各国高度关注与重视人工智能的价值与潜力,相继制定了相关政策与规划,如美国的《为人工智能的未来做好准备》《国家人工智能研发战略规划》,英国的“现代工业战略”计划,日本的“人工智能产业化路线图”。我国于2017年发布了《新一代人工智能发展规划》,提出了“三步走”战略,又接着推出了《人工智能标准化白皮书(2018版)》,对人工智能的发展方向与应用展开了政策层面的规划。
教育信息化时代下,人工智能与教育的结合创新是未来教育变革的重要趋势。无论是改进课堂教学和教育系统,还是推动可持续发展目标4的实现,人工智能无疑展现了巨大潜力。随着教育技术行业持续壮大,G20国家也在进行大规模投资,人工智能在教育领域的普及将势不可挡。OECD的报告表明,人工智能在个性化学习、特殊需求学生学习、学生辍学问题的应用及技能评估工具的改进方面发挥了巨大作用。各国对人工智能的应用充分展现了其巨大的价值,有助于我们把握世界教育领域中人工智能的发展趋势,以及落实《G20人工智能原则》是否实现,促进人工智能在教育中的深入应用,推动下一步的研发与改进。由于人工智能在教育领域的应用大都处于新生阶段,尚未完全成熟,其决策准确性、解释性与透明度必然引起了社会的诸多质疑。为应对挑战,各国在人工智能应用的研究、开发、应用与推广过程中,应提高人工智能应用的透明度、可追溯性,增强可解释性,明确记录技术流程与人为决策等信息,建立数据与存储限制及问责制,构建更加可靠、更值得信赖、更安全及健全的人工智能系统。
作者简介:钟悦,上海师范大学国际与比较教育研究院硕士研究生;王洁,上海师范大学国际与比较教育研究院教授
来源:《世界教育信息》2021年第1期返回搜狐,查看更多
人工智能发展现状和未来趋势分析
人工智能在竞技体育领域的应用,最有代表性的是阿尔法围棋,也就是我们熟知的AlphaGo。它是由谷歌旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发的人工智能机器人,主要工作原理是“深入学习”。2016-2017年,AlphaGo先后战胜了李世石、柯洁等世界围棋冠军,并在中国棋类网站上以“大师”为注册账号,在与中日韩数十名围棋高手的快棋对决中连赢60盘无一败绩。2017年5月27日,在战胜柯洁之后,AlphaGo团队宣布AlphaGo不再参加围棋比赛。2017年10月18日,DeepMind团队公布了最强版阿尔法围棋,代号AlphaGoZero。
据AlphaGo的开发团队介绍,最初的AlphaGo系统主要由四个部分组成:一是策略网络,给定当前局面,预测并采样下一步的走棋;二是快速走子,目标和策略网络一样,但在适当牺牲走棋质量的条件下,速度要比策略网络快1000倍;三是价值网络,给定当前局面,估计是白胜概率大还是黑胜概率大;四是蒙特卡洛树搜索,把以上这四个部分连起来,形成一个完整的系统。而AlphaGoZero则是在原版的基础上进一步提升,已不需要人类的数据,只让其自由地在棋盘上下棋,进行自我对弈。据团队负责人大卫·席尔瓦介绍,AlphaGoZero一开始甚至并不知道什么是围棋,只是从单一神经网络开始,通过神经网络强大的搜索算法,进行自我对弈。随着自我对弈次数增加,其神经网络逐渐调整,提升预测下一步的能力,最终赢得比赛。更为厉害的是,随着训练逐渐深入,AlphaGo团队发现它还能独立发现游戏规则,并走出新策略,为围棋这项古老游戏带来新的见解。
三、我国人工智能产业的发展现状
我国人工智能产业真正开始成长是在2013年,近年来更是突飞猛进。据统计,2018年我国人工智能赋能实体经济市场规模为251亿元,预计未来将快速增长,有望在2021年突破1000亿元,2023年突破2000亿元。按产业领域来分,2019年我国AI+安防占人工智能赋能实体经济比重达53.8%,其次是AI+金融,占比15.8%,AI+营销占比11.6%。
我国在人工智能相关论文发布数量、企业数量、融资总额、产业规模、专利申请数量等方面均居世界头部阵营,具有充分的市场竞争力。截至2019年,我国AI论文占全球AI论文比重为28%;活跃企业数1189家,占全球总数的22.08%;融资总额166亿美元,占全球比重达44.39%;相关产业规模达570亿元人民币;2008-2019年相关专利累计66508项,占全球总数的14.82%。
但与此同时,我国也存在缺乏人才储备的短板。截至2019年,我国人工智能领域相关的博士有413名,占全球总数比重仅1.88%;专家120名,仅占全球总数的2.22%。虽然我国人才储备不足,但已在全力补足,截至2020年,全国已有35所高等院校开设了Al专业,国际交流和国际人才引进也在不断加深,未来5年内将有大量从业者涌入市场。
重应用轻基础研发也是我国人工智能行业发展存在的另一大问题。2020年,我国应用层人工智能企业数占人工智能行业主导地位,占人工智能相关企业总数比重达到84.05%;其次是技术层,占比13.65%;基础层最低,仅占2.30%。近年来,中美两国在高科技方面的竞争,特别是美国对中国的打压,使得研发型企业远少于应用型企业的隐患显现。因此,政府开始重视人工智能基础层企业的培养,资本方逐渐重视AI芯片、机器学习算法、数据处理等产业链上游企业的发展,科技巨头企业更是提前进行了Al生态布局,建立了产业联盟。在各方的努力下,中国人工智能市场处于从局部向整体发展的上升期,行业前景良好。
总的来说,我国人工智能发展既有优势,也存在不足,目前我国正尽全力弥补短板,使人工智能产业更加健康、稳步发展,未来发展趋势定将逐渐向好。
总结
目前全球主要经济体在人工智能领域发展迅速,且竞争激烈。当前的国际环境对于我国发展人工智能来说既是一大挑战,也是难得的机遇。我国只有抓住这个机遇,在支持和鼓励应用层和技术层发展的同时,重视基础研发,培养人工智能领域相关人才,保持经济高速发展,才能在国际竞争中处于有利地位。返回搜狐,查看更多