博舍

人工智能的三大学派 人工智能行为主义主要观点

人工智能的三大学派

二、连接主义学派

连接主义,又称仿生学派或生理学派,是一种基于神经网络和网络间的连接机制与学习算法的智能模拟方法。连接主义强调智能活动是由大量简单单元通过复杂连接后,并行运行的结果,基本思想是,既然生物智能是由神经网络产生的,那就通过人工方式构造神经网络,再训练人工神经网络产生智能。

1943年形式化神经元模型(M-P模型)被提出,从此开启了连接主义学派起伏不平的发展之路。1957年感知器被发明,之后连接主义学派一度沉寂。1982年霍普菲尔德网络、1985年受限玻尔兹曼机、1986多层感知器被陆续发明,1986年反向传播法解决了多层感知器的训练问题,1987年卷积神经网络开始被用于语音识别。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下基础。1989年反向传播和神经网络被用于识别银行手写支票的数字,首次实现了人工神经网络的商业化应用。

与符号主义学派强调对人类逻辑推理的模拟不同,连接主义学派强调对人类大脑的直接模拟。如果说神经网络模型是对大脑结构和机制的模拟,那么连接主义的各种机器学习方法就是对大脑学习和训练机制的模拟。学习和训练是需要有内容的,数据就是机器学习、训练的内容。

连接主义学派可谓是生逢其时,在其深度学习理论取得了系列的突破后,人类进入互联网和大数据的时代。互联网产生了大量的数据,包括海量行为数据、图像数据、内容文本数据等。这些数据分别为智能推荐、图像处理、自然语言处理技术发展做出卓著的贡献。当然,仅有数据也不够,2004年后大数据技术框架的行成和图形处理器(GPU)发展使得深度学习所需要的算力得到满足。

在人工智能的算法、算力、数据三要素齐备后,连接主义学派就开始大放光彩了。2009年多层神经网络在语音识别方面取得了重大突破,2011年苹果工作将Siri整合到iPhone4中,2012年谷歌研发的无人驾驶汽车开始路测,2016年DeepMind击败围棋冠军李世石,2018年DeepMind的Alphafold破解了出现了50年之久的蛋白质分子折叠问题。

近年来,连接主义学派在人工智能领域取得了辉煌成绩,以至于现在业界大佬所谈论的人工智能基本上都是指连接主义学派的技术,相对而言,符号主义被称作传统的人工智能。

虽然连接主义在当下如此强势,但可能阻碍它未来发展的隐患已悄然浮现。连接主义以仿生学为基础,但现在的发展严重受到了脑科学的制约。虽然以连接主义为基础的AI应用规模在不断壮大,但其理论基础依旧是上世纪80年代创立的深度神经网络算法,这主要是由于人类对于大脑的认知依旧停留在神经元这一层次。正因如此,目前也不明确什么样的网络能够产生预期的智能水准,因此大量的探索最终失败。

三、行为主义学派

行为主义,又称进化主义或控制论学派,是一种基于“感知——行动”的行为智能模拟方法,思想来源是进化论和控制论。其原理为控制论以及感知——动作型控制系统。

该学派认为:智能取决于感知和行为,取决于对外界复杂环境的适应,而不是表示和推理,不同的行为表现出不同的功能和不同的控制结构。生物智能是自然进化的产物,生物通过与环境及其他生物之间的相互作用,从而发展出越来越强的智能,人工智能也可以沿这个途径发展。

行为主义对传统人工智能进行了批评和否定,提出了无须知识表示和无须推理的智能行为观点。相比于智能是什么,行为主义对如何实现智能行为更感兴趣。在行为主义者眼中,只要机器能够具有和智能生物相同的表现,那它就是智能的。

这一学派的代表作首推六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。另外,著名的研究成果还有波士顿动力机器人和波士顿大狗。你可以在网上搜到它们各种炫酷的视频,包括完成体操动作,踹都踹不倒,稳定性、移动性、灵活性都极具亮点。他们的智慧并非来源于自上而下的大脑控制中枢,而是来源于自下而上的肢体与环境的互动。

行为主义学派在诞生之初就具有很强的目的性,这也导致它的优劣都很明显。其主要优势便在于行为主义重视结果,或者说机器自身的表现,实用性很强。行为主义在攻克一个难点后就能迅速将其投入实际应用。例如机器学会躲避障碍,就可应用于星际无人探险车和扫地机器人等等。不过也许正是因为过于重视表现形式,行为主义侧重于应用技术的发展,无法如同其他两个学派一般,在某个重要理论获得突破后,迎来爆发式增长。这或许也是行为主义无法与连接主义抗衡的主要原因之一。



四、总结

综上所述,我们可以简略地认为符号主义研究抽象思维,连接主义研究形象思维,而行为主义研究感知思维。符号主义注重数学可解释性;连接主义偏向于仿人脑模型;行为主义偏向于应用和身体模拟。

从共同性方面来说,算法、算力和数据是人工智能的三大核心要素,无论哪个学派,这三者都是其创造价值和取得成功的必备条件。行为主义有一个显著不同点是它有一个智能的“载体”,比如上文所说到的“机器狗”的身体,而符号主义和连接主义则无类似“载体”(当然你也可以认为其“载体”就是计算机,只不过计算机不能感知环境)。

人类具有智能不仅仅是因为人有大脑,并且能够保持持续学习。机器要想更“智能”,也需要不断学习。符号主义靠人工赋予机器智能,连接主义是靠机器自行习得智能,行为主义在与环境的作用和反馈中获得智能。连接主义和行为主义都使用强化学习方法进行训练。三者之间的长处与短板都很明显,意味着彼此之间可以扬长补短,共同合作创造更强大的强大的人工智能。比如说将连接主义的“大脑”安装在行为主义的“身体”上,使机器人不但能够对环境做出本能的反应,还能够思考和推理。再比如,是否用可以符号主义的方法将人类的智能尽可能地赋予机器,再按连接主义的学习方法进行训练?这也许可以缩短获得更强机器智能的时间。

相信随着人工智能研究的不断深入,这三大学派会融合贯通,可共同为人工智能的实际应用发挥作用,也会为人工智能的理论找到最终答案。

左小波先生,自92年进入IT行业,一直从事着信息系统的研发及企业IT管理工作,在行业多年的浸润下,积累了丰富的数字化建设经验,形成了独到见解。对人工智能有着浓厚的兴趣,时刻对人工智能技术保持观察、学习、思考、分享

客户案例(部分)返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇