博舍

金忠孝:疫情期间上汽集团人工智能应用案例 人工智能应用相关案例有哪些内容呢

金忠孝:疫情期间上汽集团人工智能应用案例

案例二:完全理解人工智能的内容

这跟我前面提的问题关系很大,即怎样发挥人工智能在企业里的价值,应该用哪种人工智能技术提高企业核心竞争力。

我不敢写人工智能到底是什么,人工智能有哪些内容,所以就引用了Gartner的一张图来解释这个问题。大家在左边这张图上看到什么问题没有?这张图上Gartner对人工智能技术的理解分了几大块:感知智能、推理、计算智能、优化技术、自然语言处理、知识工程、多智能体的计算。从这种图上面,大家可以感受到人工智能研究的核心内容。我们再看右边这张图,2019年中国AI产业生态图谱,它涉及到通用AI技术及平台。这里面包含计算机视觉、智能语音、自然语音处理、机器学习这几大块内容。

通过对这张图的分析,你对人工智能有没有更多的思考?现在有些人,特别是一些传统做IT或做技术的人,认为人工智能就是视觉,这样的公司有商汤科技或依图,代表着中国在这个领域的独角兽公司。还有人认为中国上市公司里代表人工智能的的是科大讯飞,人工智能就是语音识别。当然人工智能还会涉及到自然语言处理、知识图谱、机器学习、深度学习,现在都非常热门。在很多企业的领导眼里,人工智能就是计算机图像识别、语音识别、自然语言处理这几个重要的技术。所以基本上国内的融资或者投资百分之七八十都集中在计算机视觉、语音识别这几大领域。

这样就会造成什么问题呢?首先,对企业来说,这个技术能否大大提高企业的核心竞争力。如果你的企业是跟上汽汽车相关的,要做智能驾驶,那就需要感知技术,很多企业不造汽车就用不上这一技术。再者,人工智能能为企业带来多少核心价值?从左右两张表上,我只想说明一个问题,感知智能、计算机视觉、自然语言处理不是人工智能的全部,决策推理、计算智能、逻辑推理、最优化技术等这些也是人工智能。

我从九十年代就开始学习人工智能,但那时没有人工智能专业,我原来是做机器人方向,研究的是agent-based的推理技术。我们那时候学人工智能,不只有视觉和语音,我们研究的还有决策优化、计算智能、搜索技术、专家系统、决策推理等。90年代也没有现在这么强大的算力,当然也没有大量的数据,所以计算机视觉,语音识别效果还是比较差的。在上汽集团这个人工智能实验室里,做的内容不仅是计算机视觉和语音,同时有很多研发人员在做决策优化、推理、计算智能等内容,是一个比较综合的人工智能实验室。

案例三:无人驾驶,人工智能皇冠上的明珠

我认为,无人驾驶是人工智能皇冠上的明珠。无人驾驶技术也不仅是感知,它包括感知、定位、决策、控制,而且每一个技术都是非常复杂的,它是人工智能里特别难以实现的一个领域。无人驾驶做得好不好,水平高不高,看什么呢?看量产。我个人不认同有些评测机构说哪家公司的无人驾驶技术最高,我比较看好的是特斯拉,但特斯拉的无人驾驶技术在很多机构的评测里面得分都比较低。我认为,能够量产的无人驾驶技术才是真正的技术,能够量产的人工智能技术才是真正的人工智能技术,能够给企业带来真正核心竞争力的人工智能技术才是真正的人工智能技术。所以,我们实验室就是沿着这个思路,所有的人工智能技术、人工智能研发团队做的成果都必须是能够量产的,能够变成结果的。

上汽人工智能实验室对人工智能要求是什么?我们叫四个导向。第一,用户导向,我们实验室的人工智能技术必须是有用户需求的。第二,价值导向,人工智能的实现必须是有价值的。第三,结果导向,人工智能必须产生结果,这个结果是可以验证的。第四,市场导向,市场对我们的人工智能有评价,这个人工智能够产生多少的经济价值。我们一直坚持这四个导向,按照这四个导向去落实我们的人工智能。

无人驾驶也是我们实验室投入非常大的部分,因为我们有客观需求。上海市政府对上汽特别照顾,在全世界为上汽找来了一个非常优秀的同桌——特斯拉。上汽在人工智能领域和特斯拉还有较大的量产差距,我们团队基本上天天都在加班,紧锣密鼓地追赶。我们知道与特斯拉的差距不小,特别在人工智能的感知定位和决策控制领域;另外实验室研究无人驾驶领域也为上汽集团的人工智能积累了非常多的技术,不仅可以用在无人驾驶上,也可以用在多种场景下,例如智能出行、智能制造和智能物流等。

案例四:共享出行,最复杂的调度优化算法

共享出行解决的是优化调度的问题,资源的最优化使用。如果大家研究过人工智能,研究过调度算法,就会知道这也是非常难的一个分支。这个项目要解决哪些问题?我们要解决上汽的共享出行,共享化更加有效的核心就是调度算法。除了共享更有效,还要保证安全,保证服务质量。单靠人工去服务这么多的客户是比较困难的,我们就用了人工智能客服。上汽共享出行核心的人工智能技术有智能客服、优化调度、多模态应用。

上汽的共享出行业务规模做大之后,最难的人工智能技术就是优化调度,它对调度的约束条件、规则、精准度、实时性要求是非常高的。这个领域是真正有挑战的项目,所以我们在优化调度这个领域也积累了非常多的人工智能算法。今天我介绍的是人工智能在制造领域的应用,因为很多在座的CIO都是制造领域的。我觉得制造业的未来就是大规模的个性化制造——C2B。那么C2B如何来实现?核心也是要靠人工智能。

案例五:C2B人工智能,制造业的AI明珠

我把C2B人工智能称之为制造业的AI明珠。在制造业里面最难的人工智能就是C2B。大规模个性化定制要使C端的个性化需求跟B端企业端的成本、效率、响应时间匹配起来,这是一个非常大的挑战,涉及到的变量是成百上千个,有零部件的采购、整个工程制造、制造的大数据MS、供应链大数据SAP。未来,大企业解决大规模个性化定制唯一的途径就是人工智能算法。售后的数据、用户者精准画像、智能客服、选配、成本、需求、生产排程的全部串连,靠人不可能做到最佳,人工智能能够发挥它的功效。每一个决策的效率提高一点点,产生的价值都是非常大的。

案例六:供应链AI,能产生巨大的经济效益

供应链AI能做什么?能产生巨大的经济效益。我们在这个领域做了好几个项目,产生的经济价值都非常明显。对一个企业领导来说,要先让他尝到人工智能的甜头。企业总经理肯定非常关心利润,供应链的人工智能就能够帮助他完成这件事情。

从这张图上,大家也可以感受到工业链的人工智能非常复杂。它把我前面讲的八个领域全部包括。感知智能,将工厂、流水线、仓库、装载工具等全部串起来,可以感知供应链上发生什么事情。预测功能可以预测哪个环节需要处理,哪个环节有风险,万一出现意外情况如何处理。实时分析功能可以分析供应链哪个地方有瓶颈。智能推荐功能能够推进供应管理人员做预防优化的方案。决策功能帮助供应链管理员做最佳的决策。供应链人工智能网,真的是工业人工大脑。

案例七:物流人工智能,很值得拥有

物流也是一个非常大的人工智能应用场景。物流上的人工智能又能做什么呢?最核心的就是预测供需:运输多少东西、怎么运、要准备多少运力、要多少仓库、整个供应链都怎样布点、全国各范围内有哪些网络、每个区要多少个网络、运输订单最佳分配、运输成本如何成本最低……这也是一个非常庞大的决策网络。在这种情况下,人工智能也是非常有价值的。每一个物流的人工智能项目决策规模都是非常大的,我们实验室在这里面取得了非常多的成果。

案例八:营销+AI,以客户为中心不再停留在口头上

真正做到以客户为中心,在人工智能时代就要充分利用人工智能技术。要将跟客户相关的口碑、对产品认知、客户的关怀、产品的售后服务的这些数据转化成为用户的满意度和可信度。这里面涉及到非常多的决策、数据分析所、智能交互技术等,所以这是一个非常复杂的人工智能,我们实验室在这方面也有成功的解决方案。

案例九:我们的智能制造AI产品SmartGo

智能制造领域怎样快速实现人工智能价值?我们实验室推出了SmartGo。这个产品的基本的思路就是从需求预测出发,我们有一个专门的需求预测模型,对于怎么生产,怎么更高效率,怎么成本更省,有生产排程人工智能算法,根据算法,我们帮企业实现供应链全局最优化。这三个是制造里面的核心环节,我们会结合起来做一个全局的组合优化,快速实现降本增效。

优化涉及到的变量非常复杂,靠人不可能很快做出一个最优的算法,在这种情况下人工智能是非常有价值的。我们将这个产品在集团里面推广,现在已经推广了几十家企业,效果优秀。

案例十:人工智能落地三部曲

什么叫人工智能三部曲?我们是从人工智能为企业创造更大的经济价值这个角度来规划的三部曲。

第一部,我们用六个月时间降本增效5%以上。在不改变你的企业现有业务流程、信息系统的情况下,选择几个典型应用场景,设计一个降本增效的目标。基于你现有的产品和数据,就可以做一个算法模型出来,然后来实现这个目标。有了第一步以后,企业的领导就感觉人工智能还是很有价值的。

第二部,我们在第一步的基础上再加六个月,总共十二个月。根据第一部的采集的数据对这个模型进行优化,增加更多的场景,会有更全面的AI技术开始介入,这时候降本增效可以按照10%的目标去做。然后通过这些模型认证,再增加一些新的训练的手段。第二部人工智能模型会更加全面,难度也更高,求解训练要求更高,所以它所需要的时间也会更长。

第三部,最终目标就是要把整个公司的运营模型逐步健全,各个领域都要介入人工智能,估算下来差不多要36个月的时间。有了第二部基础以后,公司上下基本上会对人工智能有一个清晰的认识。对企业来说,可以把它作为一个可行战略,这时候企业的一把手、分板块的副总经理、部门总监都已经逐渐认识到人工智能的价值,知道自己需要什么类型的人工智能。这样我们就可以介入更多资源、更多模型、更多决策、更多场景,用丰富的人工智能技术把企业的核心运营模型人工智能化。这时候,企业的人工智能真正到了落地健康阶段,后面就可以进入一个相对稳定的人机协作阶段。

这三个阶段做下去,要三年左右的时间。

互动问答环节:AI的多种发展方向

问题一:物流供应链是制造业尤其是汽车行业的重要环节,上汽是如何使用人工智能手段提高物流效率,实现降本增效?

物流供应链人工智能是非常有价值的,特别是在制造型企业里面。供应链人工智能对一个企业来说,也是降本增效比较重要的领域,上汽集团在这个领域人工智能算法的覆盖率已经非常高了。上汽的零部件入厂物流和整车物流的调度,都开始用人工智能算法来实现降本增效的。零部件物流算法非常复杂,它的决策变量差不多有六七十个,多目标优化问题难度高。我们在这个领域的研发人员有几十个博士,用了两年多的时间,拥有了具有核心竞争力的算法,帮助企业实现降本增效5%以上。

问题二:我国汽车智能化水平和产业发展的现状是怎样的?

无人驾驶技术是汽车智能化发展的方向,也是未来的发展方向。这一两年正在发生巨变,比如传统汽车马上就会进入智能汽车时代,智能汽车时代有非常多的机会,越来越多的高科技公司互联网公司纷纷进入汽车行业。国内很多BAT企业在做智能驾驶,国外有谷歌、苹果和其他一些高科技公司以及特斯拉都在做智能汽车。大家可以感受到智能汽车非常有前途,产业链规模巨大。全世界的智能汽车也刚刚起步,大家都有机会,就看谁的水平高。人工智能技术不能够停留在实验室,停留在一些试验车上,需要看量产车的情况,大规模量产的人工智能技术比试验车难好几十倍。汽车不是传统的产品,它对安全要求特别高,如果没有达到99.99%的可靠性,这个技术就不能随便使用。从目前的现状来说,我认为大家都要努力,没有谁比谁特别好,关键看量产水平,量产才能够证明人工智能技术多高。

我们国家对智能汽车发展也非常重视,2020年2月份发布了一份智能汽车发展国家战略,我对未来的中国智能汽车市场还是非常看好的,中国有可能将成为全世界最好的智能汽车市场。在技术上和市场上通过五到十年努力,中国的智能汽车可能在全世界排名前几位。跟手机一样,芯片和操作系统是制约整个中国智能汽车发展的主要问题,但这两个问题不会像智能手机一样,我们会自己解决,国内有实力的公司也越来越多。将来,中国的智能汽车会用上自己的芯片,自己的操作系统。

问题三:人工智能汽车被认为是未来发展的大趋势,你认为国内当下智能汽车存在哪些主要问题?人工智能汽车什么时候能最终面向市场?

智能汽车肯定是未来的发展趋势,其实现在就已经发生了。举个例子,特斯拉已经是一个能够让大家感受到的智能汽车,而且是大规模量产的智能汽车,现在很多公司里也在规划类似的产品。

国内人工智能汽车主要存在问题,我认为还是核心技术的问题,芯片和智能汽车的操作系统。智能汽车复杂度远远比智能手机高,智能汽车里跟系统相关的源代码都是要超过1.5亿或2亿行,这是什么概念?Windows系统是五六千万行代码,但智能汽车代码要到2亿行。它是一个非常复杂的智能系统,又与驾驶相关,关系到个人的生命相关,所以难度很高。整个汽车行业,从德国最典型的VW大众到其他一些企业,全世界的汽车企业都在开始转型,中国在智能汽车领域初期机会更多,因为我们没有包袱,不像德国大众,它转型的时候有很多已经存在的包袱。

智能汽车什么时候面向市场?其实你会发现它已经存在在市场中了,而且会变得越来越聪明,具备学习功能力,能够辅助驾驶,还有更好人机交互。它现在智商还没有那么高,现在汽车智商估计也就一两岁小孩的水平,但随着整车技术智能化水平的提高,它的智商也会越来越高。这是一个人车交互的过程,以后你开车开得越多,车也会越来越聪明。中国的智能汽车市场是一个生态圈,没有一家企业能够把这个市场全部垄断掉,每个汽车公司只要找到自己的细分市场,都是有机会的。

问题四:AI+5G的时代将会给智能网联汽车带来怎样的机遇?又会对未来交通造成什么影响?

AI+5G肯定能为智能汽车带来非常多的机会,能够加速技能智能汽车发展。未来整个汽车工业就是智能汽车+共享出行,这两个刚好是充分利用了AI+5G技术。有了AI+5G技术,中国的汽车工业真正到了变革的时代,挑战很大,机会更多。

问题五:您对百度的阿波罗计划怎么看?

一个计划的好坏,要看用户,要以用户为中心,看用户肯不肯为你的技术买单,人工智能水平高不高,用户说了算。有多少用户在用这个技术,他愿意为这个技术付钱吗?举个例子,苹果手机很少做广告,很少参加世界大赛拿什么奖,在学术会议上发表的论文也不是很多,但以用户为中心做得非常好。从这个角度去看,对于百度的阿波罗计划,大家都会有自己的理解和思考。我们实验室也是将用户为中心放第一位的,所有计划都应该以用户为中心,去体现技术的价值。

所有的人工智能技术都要以用户为中心。我们做的AI技术能给用户创造多少价值,用户能否因为这个价值给你付钱,付多少钱。从技术本身来说,以用户为中心的技术就是用户说了算。

问题六:曹操专车目前还是亏损状态,宝马奔驰设立了共享出行事业部,但去年也有裁撤计划。针对这个情况您怎么看?

现在国内所有的共享汽车应该都是亏损的,但是汽车共享是趋势。不管目前是否亏损,肯定是要去做的。共享汽车市场规模巨大,只是我们现在还没有很好的找到一种商业模式,让这个项目良性发展。有这么大的用户需求,共享汽车肯定很有前途。上汽集团的共享汽车目前也是亏损的,还在持续投入,因为它是一个不可逆转的趋势。

汽车共享化的要求不是烧多少钱,而是我们要尽快找到一种比较好的商业模式,改进运营效果。我认为,汽车共享化还是要跟区块链技术有机结合,要形成区块链+人工智能+商业模式的路子,汽车共享化未来很有前途。返回搜狐,查看更多

人工智能的历史、现状和未来

2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄

2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄

2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国

2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士

人工智能和机器人技术的使用案例

人工智能和机器人技术正在给科技领域带来巨大的变化。人们在20年前的梦想现在已经变成了现实。从制造厂的自动化系统到餐馆里的自助机器人,科技不断发展,推动人类文明的进步。

在当今世界,人工智能和机器人作为问题解决者、伙伴和响应者为人类提供服务。如今,当人们与某家网站上的在线助理聊天时,通常以为是与客服交流,实际上却与聊天机器人聊天。人工智能技术已经取得了长足的进步,但不会止步于此。

[[360078]]

人工智能和机器人技术正在多个领域得到应用

当人们谈论人工智能和机器人技术时,其实并不特定用于某个行业。它们得到几乎所有行业和部门的青睐,例如国防、医疗保健、汽车、健身、教育、零售、制造业、游戏等。

可以肯定地说,人工智能机器和计算机将会积极管理大部分交易。这只是一个开始。人工智能、机器学习、机器人技术必将在未来几年中得到进一步发展。数据在这些系统的开发中起着至关重要的作用,因为数据使这些机器能够自行学习。以下讨论一下人工智能和机器人技术的应用以及它们如何塑造人类的未来。

人工智能和机器人如今在哪里使用?

人工智能和机器人是自动化任务的强大组合。近年来,人工智能已广泛应用在机器人解决方案中,为以前的应用带来了学习能力和灵活性。尽管这两种技术还处于起步阶段,但二者结合使用时效果很好。

1.虚拟助手和聊天机器人

虚拟助手和聊天机器人以其惊人的自动化水平推动着世界的发展和进步,并降低成本、提高生产力。虚拟助手是人工智能和机器学习的一种表现形式,通过模拟与人的对话。虚拟助理和聊天机器人被设计成使用自然语言处理(NLP)的功能来遵守自动规则。最近的技术进步显著提高了它们的性能,Siri、GoogleAssistant、Alexa都是虚拟助手的典型产品。

从回答诸如时间和天气之类的基本问题,虚拟助手将逐渐成为人们的得力助手。更好的是,它们可以与家中的家用电器设施完美融合。采用物联网技术,人们可以命令虚拟助手打开房屋中的灯具、空调、电视等电器。

2.农业

机器人技术和人工智能是农业可持续发展未来的最佳选择。几个世纪以来,由于环境污染、过度耕作、劳动力短缺以及人口增长,粮食供应链面临危机,它正威胁着人们最基本的生活需求。人工智能和自动化可以减轻农业劳动力老龄化的影响。有了自主无人机、自动驾驶农业机械等,农民可以花更多的时间专注于创造可持续的农业收成。

Deere公司是一家著名的农业设备制造商,因其自动驾驶机械而广受欢迎。此外,它还通过引进自动杂草喷洒器扩大了其农业服务范围。该公司利用先进的机器人技术、机器学习和计算机视觉来区分农作物和杂草以进行清除。此外,大数据正在帮助农民种植出更好的作物。大数据催生了处方农业,它使用基于网络的工具来创建地图或处方,告诉农民在某些作物和地区需要施用多少肥料。

3.自主飞行

自主飞行器使用计算机视觉技术在空中盘旋,同时避开障碍物快速移动。随着人工智能的引入,这些飞行器变得越来越智能。从鸟瞰图监视到安全监视、录像、救援任务等功能,无人机正在革新并取代许多工作岗位。计算机视觉在自动飞行中的应用包括障碍物检测、避免碰撞、自我导航,以及目标跟踪。

机器学习可以给自动驾驶飞行器的工作方式带来巨大的变化。在无人机捕捉实时数据的同时,还使用了机载智能系统,使其能够根据实时数据自己做出决策。

这些无人机可用于城市管理和智能城市,用于高级监视、快速面部识别或跟踪目标。它们对农业也非常有益,因为它们可以监测作物,检查土壤肥力,评估土壤成分,并帮助农作物生产。其他应用可能包括:

扫描或绘制房地产中建筑物的地形;军事侦察或与敌人作战;用于人员跟踪和面部识别。

4.零售、购物和时尚

零售业近年来已经从人工智能和机器学习中获益。人工智能正在帮助零售商通过数据分析更好地了解他们的目标市场。因为数据是数字世界的新货币,它可以决定业务成败。而零售商正在使用预测分析来帮助根据销售数据预测客户行为。电子商务网站正在使用基于客户的区域搜索趋势、位置和搜索历史记录的建议。此外,像亚马逊公司根据过去的销售数据为顾客提供产品推荐。

人工智能还帮助零售商通过定制发送给潜在客户的信息来增强他们的在线商店。内容生成是一个乏味的过程,但是通过人工智能的自然语言生成(NLG),零售商可以向客户发送有针对性的信息和报价。

机器人已经被引入管理库存和销售区域,从而提供更精确的精度并削减成本。而在时尚领域,人工智能应用在供应链和时尚商店。从服装的分类到缝纫衣物,这些平凡而繁杂的任务都是由人工智能系统来完成的,并具有更高的精度和更快的速度。机器人可以轻松精确地缝合,还可以检测织物材料中的缺陷,从而确保质量。

5.安全与监视

如今的机器人使用人工智能、远程传感器,高清摄像头以及快速的计算机处理程序满足不同需求,并提供了功能完善的安全系统。专家认为,机器人可以轻松地保护指定区域,它们可以使用地图软件来创建地理围栏。

这些机器人可以用来监视地面和建筑物内部情况。它们经过智能设计,使用GPS系统,可以轻松找到几厘米范围内的物体。所以当移动时知道自己的方位。他们可以每天用安全摄像头记录和存储数据。采用人工智能的安全系统是一个以高清摄像机为基础的自我监控系统。

最新的人工智能动力安全机器人使用面部识别技术来识别进入建筑物的人员的身份,并创建一个目录,其中包含定期访问者或熟人。

6.体育分析与活动

人工智能和机器人如今也应用在体育行业,以使体育比赛更精彩、更公平。体育活动对于某些人来说是一种情感所系,更重要的是价值数百亿美元的产业。全球的体育组织和协会都在尽最大努力获得竞争优势,并使用机器人技术和人工智能让体育爱好者有着更好的体验。

人工智能可以帮助运动员提高体能,发现队员的天赋。一些体育项目已经采用机器人裁判,而智能机器人可以帮助观众在体育场找到座位。对于那些不想到体育活动现场的人来说,采用VR耳机可以获得这样的体验,人工智能也在帮助俱乐部和团队根据之前的数据制定策略。

以下是体育产业采用的一些人工智能技术和措施:

智能应用程序和虚拟现实技术正在推动体育爱好者的参与度;机器裁判很快将成为现实;智能算法正在开发新游戏;人工智能正在帮助团队管理和支持人员寻找新的明星球员;人工智能正在协助俱乐部和球队保护其球员的健康。

7.制造与生产

随着机器人技术和人工智能的实施,可以看到制造业和生产行业的发展。在制造业中引入人工智能技术的主要原因是弥补劳动力不足,简化整个生产过程并提高效率。在以往,制造商需要花很多精力来管理任务系统。自从机器人接管以来,可以提高工作效率。

人工智能通过使产品决策更迅速、更智能来帮助制造行业。这是一个定制产品的时代,人工智能正在帮助制造商收集有用的客户数据,这些数据用于做出基于产品的决策。此外,它还帮助制造工厂降低整体生产成本。人工智能和机器人技术是制造业的未来。为了更好地了解机器人技术和人工智能在制造业中的重要性,可以了解它们的用例:

基于需求的生产;自动控制;损害控制和快速维护;产品设计和重新设计。

8.游戏

机器人技术和人工智能影响了计算机游戏的设计和玩法。人工智能正在帮助游戏开发人员创造新角色,并模仿人类的行为。人工智能在游戏中的主要作用是收集和处理从玩家那里获得的数据。最重要的是,它使游戏开发者能够根据他们的需求和期望来创建游戏。

人工智能算法的适应性和学习性允许创建真实自然的游戏环境。

最后但并非最不重要的一点是,基于人工智能的游戏具有出色的图形展现。在以往,通常需要由数百名开发人员组成的团队来创建出色的图形,但是采用人工智能,其整个过程实现自动化,这节省了大量时间、资金和资源。

结论

人工智能和机器人技术是未来的驱动力。在接下来的十年中,人们将会看到基于人工智能惊人的技术发展。人工智能是关于数据的,一旦正确实施,人工智能将使用给定的数据使人们受益,从而使大多数流程自动化,并使人们的工作和生活更轻松。

 

什么是人工智能人工智能的应用有哪些

什么是人工智能?

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

人工智能的应用有哪些

实际应用:机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。…研究范畴…自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式…应用领域…智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂等

应用领域

语音识别领域。除了大家已较为熟悉的科大讯飞输入法,一家叫作云知声的人工智能公司,最近开发了智能医疗语音录入系统,采用了国内面向医疗领域的智能“语音识别”技术,能实时准确地将语音转换成文本。这项应用不仅能避免复制粘贴操作,增加病历输入安全性,而且可以节省医生的时间。目前,一些医院已应用了这一技术。

金融智能投资领域。所谓智能投(资)顾(问),即利用计算机的算法优化理财资产配置。目前,国内进行智能投顾业务的企业已经超过20家,其面向的服务群体,就是那些并不十分富有、却有强烈资产配置需求的人群。

中国的BAT(百度、阿里、腾讯)都已涉足人工智能。2016年,“百度大脑”项目正式启动,致力于打造综合的人工智能平台;阿里巴巴推出了人工智能项目“ET”,未来将具备感知能力,并在交通、工业、健康等领域输出决策;腾讯已将人工智能的相关技术,应用于QQ、金融、微信业务板块。

而其他诸多企业都在开发人工智能的“对话机器人”(相当于“虚拟助理”),如微软的“小娜”、谷歌的“Allo”、苹果的Siri、百度的“度秘”等。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇