博舍

人工智能的利弊好处和危害都有哪些 人工智能的负面影响具体例子有哪些呢

人工智能的利弊好处和危害都有哪些

随着技术成为我们日常生活中的一部分,人工智能已经成为辩论和讨论的主题,先进的技术在各个领域都得到了广泛的应用,为改善人民生活水平作出了巨大贡献。尽管如此,仍不能确定人工智能的未来,让我们深入研究一下,看看人工智能的利弊?都有哪些好处和哪些危害!

人工智能的好处有哪些

1、减少出错机会

由于机器所做的决策是基于先前的数据记录和算法组合,因此出现错误的机会减少了。这是一项成就,因为解决了需要进行计算困难的复杂问题,可以在没有任何误差范围的情况下完成。

2、正确决策

机器完全没有情感会使它更有效率,它们能够在短时间内做出正确的决定。最好例子是它在医疗保健领域的应用。将人工智能工具整合到医疗保健领域,通过最大限度地降低错误诊断风险,提高治愈率。

3、在危险情境下实施人工智能

在某些人身安全易受伤害的情境下,可以使用装有预定算法的机器。如今,科学家们正在利用复杂的机器来研究海底,在那里人类生存很困难。

这是人工智能有助于克服的最大限制之一。

4、可以连续工作

与人类不同,机器不会累,即使它必须连续工作几小时。这对人类来说是一个重大好处,人类需要时间休息来提高效率。然而,就机器而言,它们的效率不受任何外部因素影响,也不会妨碍持续工作。

人工智能给我们带来的弊端

1、实施起来很昂贵

当将安装、维护和修理的成本结合起来时,人工智能是一个昂贵的提议,那些拥有巨额资金的人和企业可以实施。然而,没有资金的企业和行业会发现很难将人工智能技术应用到他们的流程或战略中。

2、对机器的依赖

随着人类对机器依赖程度的不断增加,我们正处在一个人类难以在没有机器帮助情况下工作的时代。我们过去用过它,毫无疑问,我们将来也会继续用到它,我们对机器的依赖只会增加。因此,人类的心理和思维能力会随着时间推移而降低。

3、取代低技能工作

到目前为止,这是技术专家们首要关注的问题。人工智能很可能会取代许多低技能工作。由于机器可以24*7不间断工作,因此与人类相比,企业更喜欢投资机器。随着我们走向自动化世界,几乎每一项任务都将由机器完成,有可能出现大规模失业。这方面的一个实际例子是无人驾驶汽车,如果无人驾驶汽车开始出现,未来数百万司机将会失业。

4、工作限制

人工智能机器被编程为根据它们所接受的训练和编程来完成某些任务。依靠机器来适应新环境,勇于创新,跳出框框思考将是一个巨大的错误。这是不可能的,因为它们的思维仅限于它们接受过训练的算法。

对待人工智能,我们应该以客观的角度去看待它,扬长避短,充分利用人工智能的优点。希望小编的理解能够帮助你们更进一步了解人工智能。

人工智能技术对环境污染的影响机制述评

[关键词]人工智能技术;环境污染;全球价值链分工;经济增长;绿色经济

一、引言

人工智能(ArtificialIntelligence,简称AI)技术诞生于20世纪50年代,被称为世界三大尖端技术之一,在第四次科技革命中处于核心地位,为人类社会创造了巨大的经济效益和社会效益。随着数字革命的兴起,德国、日本、中国、美国、欧盟、英国等国家和国际组织先后制定了相关战略和规划,高度重视人工智能的发展,并投入了大量研发资金来打造新一轮产业竞争优势。

目前,社会各界对人工智能的定义尚未达成普遍共识,不同领域的学者给出了不同的解释。传统的人工智能是指开发创造能够模仿、学习和替代人类智能的“思维机器”,驱使机器学习人类行为的思考方式,让机器做本需要人的智慧才能做到的事情[1][2][3]。芬莱森(Finlayson)(2010)则认为,人工智能作为一种战略技术,其核心内容是建立在数字化、信息化基础上的智能化转型[4]。然而随着理论研究和应用领域的扩大,人工智能已成为涉猎广泛的一门科学,其不仅要依靠计算机算法层面的支持,而且更强调思维能力和自主决策能力,即像人一样理性思考和行动的系统[5][6]。

综上可见,虽然目前学术界对人工智能的概念尚未达成共识,但通过总结文献可以发现一些共性:人工智能应能替代人类来完成具体劳动任务;人工智能应具有学习能力。

改革开放以来,在我国经济快速增长的同时,也产生了严重的环境污染问题,如何提升环境污染治理效率成为困扰地方党委政府的重大难题。人工智能作为一项新的前沿技术,为环境污染治理开辟了新的路径,给环境污染治理带来了新的技术革新。但是,人工智能技术影响环境污染的机制是什么?这是一项值得深入研究的课题。基于此,本文拟对人工智能技术如何影响环境污染的相关研究文献进行梳理,以期为理论界和决策部门提供有益的借鉴与依据。

二、人工智能技术影响环境污染治理的机制

(一)促进技术进步的直接效应

研究表明,人工智能技术作为技术进步的一种具体表现形式,是新一代信息技术的代表,是科学技术发展的一次重大革新[7][8][9]。因此,人工智能通过技术进步会对环境污染治理带来直接效应,即人工智能技术的发展促进污染治理技术的提升。人工智能技术的快速发展催生出了一系列新产品并不断延伸到环保领域,为环境治理带来了新的工具,从而有效降低环境污染(见图1),具体而言:

(图1)直接技术进步效应

其次,人工智能与大数据相结合可以扩大环境监测的时空范围。郎芯玉、张志勇(2019)、张旭等(2020)研究发现,人工智能与大数据的结合降低了水污染数据处理的复杂性和成本[11][12],通过广泛安装环境污染传感器,增加监测的持续时间和频率,扩大了监测的覆盖面积。人工智能技术在自主检测设备中的应用,大大降低了收集环境信息的难度和成本,比如基于人工智能的无人驾驶飞行器、无人潜航器以及专用于监测空气污染物的街景车,可以对大气、水、土壤等污染信息进行长时间动态检测。

最后,人工智能技术可以为政府和非政府组织的环境预测、决策提供优化方案。即人工智能技术通过对各种环境数据进行定量分析,从而为环境治理主体(政府和非政府组织)提供决策依据。张伟、李国祥(2021)探讨了人工智能技术运用于环境数据分析、案例研究和数学建模,得出人工智能技术发展可以进行环境预测和辅助决策,从而为环境污染治理带来积极效应[13]。

从实践应用来看,当前已有不少政府和企业合作将人工智能用于环境污染治理领域的成功案例。例如2014年国际商业机器公司(IBM)借助人工智能,开发出一种可减缓北京严重空气污染的新方法,名为“绿色地平线”(GreenHorizon),通过综合多个不同模型的大量数据,该系统不仅可以提前预测北京不同地区空气污染的严重程度,还能给出如何将污染降低到最小的具体建议;微软在2017年推出“一切为了地球”(AllforEarth)计划,预计投入5000万美元用于人工智能的环境治理领域;阿里巴巴运用阿里云强大的计算能力,于2020年6月推出应对全球环境恶化的技术方案ET(EvolutionaryTechnology)环境大脑,实现对污染源的智能感知,并建立综合评估模型进行交叉分析,等等。这些现实案例充分证明了人工智能技术的发展会给环境污染治理带来积极效应。

(二)促进技术进步的间接效应

1.人工智能技术、经济增长与环境污染。传统的技术进步是通过带来新的经济增长点、扩大经济规模来影响环境污染治理。人工智能技术的发展同样会带来经济的高速发展、经济规模的扩大,从而对环境污染治理产生影响。

目前现有研究从理论和实证层面都证明人工智能会带来经济增长。以任务模型为代表的理论模型大多认为工业机器人、自动化与人工智能等新兴生产方式会促进经济增长,这一点也得到了相关实证分析的证实。例如,格雷茨(Graets)、迈克尔斯(Michaels)(2018)基于1993-2007年的行业面板数据的计量检验发现,人工智能等新兴生产方式使得经济增长速度提高了0.37%[14]。杨光、侯钰(2020)使用机器人国际联合会(IRF)发布的工业机器人数据证明机器人的使用确实对经济增长具有促进作用,特别是随着人口红利消失,效果将更加显著[9]。阿西莫格鲁(Acemoglu)、雷斯特雷波(Restrepo)(2017)、陈秋霖等(2018)研究发现,在经历快速老龄化的国家中,年轻和中年劳动力的稀缺可以促进机器人(和其他智能化生产)的充分采用,从而促进总产出的增加[15][16]。程承坪、陈志(2021)认为,人工智能技术可以直接和间接带来经济增长,直接增长效应表现为促进劳动生产率的提升和产业链的延长,间接增长效应表现为人力资本供给的增加、市场效率和政府治理效率的提高[17]。阿吉翁(Aghion)等(2017)将人工智能技术引入到商品和服务的生产函数中,得出人工智能技术会带来经济总的平衡增长。在知识的非竞争性导致收益递增的条件下,人工智能技术还可以产生某种形式的奇点,甚至可能带来经济在有限的时间内获得无限的收入[18]。林晨等(2020)从优化资本结构的角度探讨了人工智能技术对经济增长的影响机制,认为人工智能技术的发展可以降低住房和基建支出对居民消费的挤压,使资本更多流向实体经济,成为新的经济增长点[19]。

环境污染问题与经济增长速度有着非常密切的联系。就现有研究而言,经济增长对环境污染的影响大致可分为三个阶段。第一个阶段是1972年以美国学者梅多斯(Meadows)为代表的罗马俱乐部提出的“增长极限说”,该理论认为工业化必然造成对自然和生态环境的极度破坏,通过模拟计算预计2100年到来之前,工业化将达到最高点,但同时人类将面临严重的粮食缺乏、资源枯竭,人口也将停止增长,社会因此而崩溃。第二个阶段是1991年美国经济学家格罗斯曼(Grossman)和克鲁格(Krueger)提出的环境库兹涅茨曲线假说(EKC),认为经济增长与环境污染呈倒“U”型关系,即环境污染随着经济增长由上升到下降的变化趋势,这是最为主流接受的一种假说。该假说认为新技术诞生之后,随着经济高速发展、人均收入不断提高,从而带来污染排放的增多。但随着技术不断成熟,经济进一步增长,一方面,因生产者环保意识提升,主动减少生产过程中的污染物排放;另一方面,政府加大环境规制力度,倒逼生产者采用清洁生产技术,从而使环境污染得到有效控制。第三个阶段是对环境库兹涅茨曲线假说的质疑,部分研究结论证实经济增长与环境污染之间的关系不仅呈现出倒“U”型形态,而且呈现出“U”型、“N”型、单调上升型、单调下降型等形态,不同污染物的排放与经济增长之间的关系也呈现出差异性,这些都对环境库兹涅茨曲线假说提出了挑战[20][21][22]。

总之,学者们从理论和实证层面都已经证明了人工智能技术的发展会带来经济增长和经济规模的扩大,但人工智能通过经济增长对环境污染产生影响的方向尚不明确(见图2),是否符合环境库兹涅茨曲线假说的倒“U”型还需要进一步的实证检验。

(图2)间接技术进步效应

2.人工智能技术、全球价值链分工与环境污染治理。人工智能技术通过改变国际生产分工和贸易模式,提高一国在全球价值链体系中的分工地位,促进价值链升级,进而对一国的环境污染产生影响。一般来说,处于全球价值链高端的国家,主要从事产品研发、品牌销售运营等高技术、高附加值活动,资源消耗水平低,能源利用率高,污染物排放相对较少。相比之下,处于全球价值链低端的国家,则主要从事低附加值和高能耗的加工、装配和制造过程,容易带来大量污染物的排放。因此,全球价值链分工地位的提升将减少一国的环境污染。

人工智能技术如何影响全球价值链分工?在以人工智能技术为代表的新技术革命背景下,全球价值链中各国的地位和国际分工将面临深刻的调整。第一,从成本角度看,人工智能降低了贸易和生产成本,提高了生产效率,提升一国在全球价值链体系中的分工地位。吕越(2020)基于中国行业层面数据的实证研究发现,人工智能技术的采用会显著提升行业的全球价值链位置。究其原因在于人工智能技术的运用能减少低端生产环节的劳动使用量,进而降低了企业的生产成本,提高了企业的劳动生产率[23]。刘亮等(2020)的研究也得出了类似的结论[24]。第二,从创新角度看,人工智能通过技术创新深化了全球价值链分工。刘斌(2010)认为人工智能技术将一国的创新投入和创新产出发挥其引致效应,即引致创新投入(研发投入)和创新产出(专利申请数量)的增加,从而带来一国价值链分工地位的提升[3]。第三,从资源配置角度来看,刘斌(2010)指出人工智能技术的发展带来了劳动和资本两类核心生产要素的配置效率提升,进而促进一国企业全球价值链分工地位升级[3]。总之,无论是国家、行业还是微观企业层面,人工智能都能显著提升一国的全球价值链分工地位,促进一国全球价值链升级。

全球价值链分工地位和参与程度如何影响一国的环境污染治理?近年来,随着全球投入产出表的编制,全球价值链分工测算方法、指标也在不断改进,使得更多国内外学者们开始关注全球价值链分工对环境污染的影响问题。然而大部分文献均基于格罗斯曼(Grossman)和克鲁格(Kruege)的经典模型,将规模效应、结构效应以及技术效应作为控制变量或门槛变量,分析全球价值链分工对碳排放的影响机制。许统生和薛智韵(2011)、余娟娟(2017)、徐辉和苗菊英(2018)则认为全球价值链分工可通过结构、技术与规模效应影响企业污染的水平[25][26][27]。还有部分文献基于构建全球价值链分工位置和参与度指标,讨论其对环境污染的影响。

首先,通过构建全球价值链位置指标,大部分学者得出了全球价值链位置的提升能显著降低一国污染排放的说法,即一国全球价值链位置越高,越处于上游,污染排放越少。陶长琪、徐志琴(2019)分别从行业和国家层面实证分析全球价值链嵌入位置对贸易隐含碳排放的作用,发现全球价值链位置的提升能有效减少碳排放[28]。曲晨耀等(2020)基于2000-2014年17个制造业的面板数据,探讨了全球价值链位置对中国制造业经济绿色转型的影响,研究发现,提高全球价值链位置能够快速推动中国制造业的经济绿色转型[29]。孙传旺(2019)基于2000-2011年全球60个国家的面板数据的实证研究认为,一国的全球价值链位置与其碳效率(carbonefficiency,是对生产主体产生碳足迹效率的一种量化测度方法)存在显著的正相关关系。全球价值链位置与其碳效率的正相关关系在经济发展较为落后的发展中国家尤为显著,这意味着在发展中国家提高全球价值链位置可以更大程度地减少碳排放,减少环境污染[30]。王腊芳等人(2020)计算了中国制造业全球价值链活动的总平均生产长度并检验了全球价值链生产长度对能源强度的影响,其研究结果发现全球价值链总平均生产长度显著影响能源消耗强度,并呈现倒“U”型非线性关系[31],这在一定程度上表明一国全球价值链位置对污染排放的影响呈先升后降的趋势。

其次,大部分学者的研究表明全球价值链参与度与环境污染呈非线性关系,即全球价值链参与度对环境污染存在门槛效应。具体而言,王静(2019)基于1995-2011年期间62个国家和地区的面板数据,估算了一国全球价值链参与度对二氧化碳排放的影响,研究发现,全球价值链的参与度与人均二氧化碳排放量之间呈现倒“U”型关系[32]。曲晨耀等(2020)通过阈值回归发现,当参与度超过一定阈值时,全球价值链参与度对绿色经济转型的影响由抑制变为促进[29]。王玉燕等(2015)研究发现,全球价值链参与度通过“链中学效应”促进污染减排,但某些行业可能存在“俘获锁定效应”,即被锁定在附加值低且污染高的生产环节,这些行业的全球价值链参与度与污染排放之间可能表现为“U”型关系[33]。杨飞等(2017)的实证研究发现,中国全球价值链参与度对污染排放的影响存在门槛效应[34]。也有研究认为,全球价值链参与度与一国的环境污染存在线性关系,即全球价值链参与度对环境污染有负向影响。赵国梅等(2020)基于2000-2014年42个国家的数据,研究得出,全球价值链参与度与碳排放强度之间存在负向关系,特别地,与发达国家相比,发展中国家的全球价值链参与对隐含碳排放强度的负向影响更大[35]。总之,关于全球价值链分工对环境污染的影响,由于学者们对全球价值链分工指标选取方法的不同,即部分学者采用全球价值链位置指标,部分学者采用全球价值链参与度指标来衡量全球价值链分工程度,因而得出了不同的结论。

综合以上研究,本文提出人工智能技术发展可以通过提升一国全球价值链分工地位,从而降低污染排放的论断,其机理在于:一国处于全球价值链高端的行业多为知识技术密集型产业,技术含量高,污染程度低,而处于全球价值链低端的行业多为能源和资本密集型行业,污染相对较高。人工智能技术的发展及其在工业生产中的运用,将使得一国更多的从事知识技术密集型行业的生产与分工,显著提升一国的全球价值链分工地位,降低污染物排放(见图2)。

三、未来研究方向与研究趋势展望

人工智能技术正在催生第四次工业革命,是第四次工业革命的新引擎,也引发了该命题的学术研究热潮,使得越来越多的学者关注人工智能与技术进步、经济增长、劳动力就业、全球价值链等的关系。人工智能技术目前已广泛应用于环境治理的各个层面,并将给环境污染治理带来变革。但实际上目前关于人工智能技术如何影响环境污染的相关研究尚不多,特别是关于传导机制的研究仍处于空白,只有少量的定性研究指出人工智能技术能够显著改善环境污染,提高环境治理能力。本文通过梳理人工智能技术与经济增长、全球价值链分工、环境污染等相关文献,得出人工智能技术作为新一代信息技术的代表会对环境污染产生直接和间接影响的结论。直接技术进步效应表现在人工智能技术发展催生出的一系列新技术和新产品可用于环境污染治理领域,减少一国的环境污染。间接技术进步效应一是表现为人工智能技术的发展会扩大经济规模,促进经济增长,从而对环境污染产生影响,但影响方向不明确,是否存在倒“U”型关系需进一步检验;二是表现为人工智能技术会提升一国的全球价值链分工地位,促进全球价值链升级,从而降低一国的环境污染。

目前直接研究人工智能对环境污染影响机制、指标构建、数据获取等方面尚存在如下不足,这些也是人工智能技术影响环境污染的进一步研究方向:

一是人工智能技术对环境污染的影响路径、机制复杂,难以用实证模型加以验证。人工智能技术对环境污染的影响既存在直接影响又存在间接影响,同时,在封闭经济环境和开放环境下的影响机制也不一样。人工智能技术直接运用于环境治理,能有效减少环境污染,但同时随着人工智能技术的发展、工业机器人的大量使用,生产力大幅度提高,生产规模扩大,也有可能加剧环境污染,或者存在非线性关系。在开放经济条件下,人工智能技术发展能显著提高一国全球价值链地位,从而减少该国的环境污染,但这一正向效应存在国家和行业异质性,即对于处于不同发展阶段的国家和不同污染和技术密集度的行业的影响效应是不同的。总之,如何将人工智能技术引入环境污染模型仍需进一步探索。

中国对人工智能应用于环境污染的相关研究还较为有限。中国作为最大的发展中国家,以往靠牺牲环境来获取发展速度的经济增长模式带来了巨大的污染治理压力,经济绿色转型发展迫在眉睫。人工智能技术在中国工业生产中的应用将对环境污染带来哪些效应?显然值得进一步深入探讨。

[参考文献]

[1]Minsky,M.1961,“StepsTowardArtificialIntelligent”,ProceedingsoftheIRE,Vo1.49(1).

[2]Min,H.2010,“ArtificialIntelligentinSupplyChainManagement:TheoryandApplications”,internationalJournalofLogistics:ResearchandApplications,Vo1.13(1).

[3]刘斌,潘彤.人工智能对制造业价值链分工的影响效应研究[J].数量经济技术经济研究,2020,(10).

[4]FinlaysonM.A.RichardsW,WinstonP.H.Computationalmodelsofnarrative:Reviewofaworkshop[J].AIMagazine,2010,(2).

[5]Cerka,P.Grigiene,J.andSirbikyte,G.,2015,“LiabilityforDamagesCausedbyArtificialIntelligence”,ComputerLaw&SecurityReview,Vo1.31(3).

[6]Li,D.andY.Du,2017,ArtificialIntelligencewithUncertainty,BocaRaton:CRCpress.

[7]Kromann,L.,J.R.Skaksen,andA.Sorensen.Automation,LaborProductivityandEmployment:ACrossCountryComparison[R].CEBR,CopenhagenBusinessSchool,2011.

[8]Brynjolfsson,E.andL.M.Hitt.Computingproductivity:Firm-levelEvidence[J].ReviewofEconomicsandStatistics,2003,85(4).

[9]杨光,侯钰.工业机器人的使用、技术升级与经济增长[J].中国工业经济,2020,(10).

[10]张文博.环境治理中的人工智能[J].国外社会科学前沿,2019,(10).

[11]郎芯玉,张志勇.浅谈人工智能在水质监测领域的应用[J].计算机产品与流通,2019,(12).

[12]王旭,王钊越,潘艺蓉,罗雨莉,刘俊新,杨敏.人工智能在21世纪水与环境领域应用的问题及对策[J].中国科学院院刊,2020,(9).

[13]张伟,李国祥.环境分权体制下人工智能对环境污染治理的影响[J].陕西师范大学学报(哲学社会科学版),2021,(3).

[14]Graetz,G.andG.Michaels.RobotsatWork:TheImpactonProductivityandJobs[J].ReviewofEconomicsandStatistics,2018,(5).

[15]AcemogluD,RestrepoP.Secularstagnation?Theeffectofagingoneconomicgrowthintheageofautomation[J].AmericanEconomicReview,2017,(5).

[16]陈秋霖,许多,周羿.人口老龄化背景下人工智能的劳动力替代效应:基于跨国面板数据和中国省级面板数据的分析[J].中国人口科学,2018,(6).

[17]程承坪,陈志.人工智能促进中国经济增长的机理——基于理论与实证研究[J].经济问题,2021,(10).

[18]AghionP,JonesB,JonesC.Artificialintelligenceandeconomicgrowth[R].NBERWorkingPaper,2017.

[19]林晨,陈小亮,陈伟泽,等.人工智能、经济增长与居民消费改善:资本结构优化的视角[J].中国工业经济,2020,(2).

[20]OnafoworaOA,OwoyeO.BoundstestingapproachtoanalysisoftheenvironmentKuznetscurvehypothesis[J].EnergyEconomics,2014,(44).

[21]AllardA,TakmanJ,UddinGS,etal.TheN-shapedenvironmentalKuznetscurve:anempiricalevaluationusingapanelquantileregressionapproach[J].EnvironmentalScienceandPollutionResearch,2018,25(6).

[22]LiuK,LinB.ResearchoninfluencingfactorsofenvironmentalpollutioninChina:Aspatialeconometricanalysis[J].JournalofCleanerProduction,2019,206(1).

[23]吕越,谷玮,包群.人工智能与中国企业参与全球价值链分工[J].中国工业经济,2020,(5).

[25]许统生,薛智韵.制造业出口碳排放:总量、结构、要素分解[J].财贸研究,2011,(3).

[26]余娟娟.全球价值链嵌入影响了企业排污强度吗——基于PSM匹配及倍差法的微观分析[J].国际贸易问题,2017,(12).

[27]徐辉,苗菊英.我国制造业承接外包的环境效应[J].环境经济研究,2018,(2).

[28]陶长琪,徐志琴.融入全球价值链有利于实现贸易隐含碳减排吗?[J].数量经济研究,2019,(1).

[29]ChenyaoQu,JunShao,ZhonghuaCheng,CanembeddinginglobalvaluechaindrivegreengrowthinChina’smanufacturingindustry?[J].JournalofCleanerProduction,2020(268).

[30]ChuanwangSun,ZhiLi,TiemengMa,RunyongHe,Carbonefficiencyandinternationalspecializationposition:Evidencefromglobalvaluechainpositionindexofmanufacture[J].EnergyPolicy,2019(128).

[31]LafangWang,YoufuYue,RuiXie,ShaojianWang,HowglobalvaluechainparticipationaffectsChina’senergyintensity[J].JournalofEnvironmentalManagement,2020(260).

[32]JingWang,GuanghuaWan,ChenWang,ParticipationinGVCsandCO2emissions[J].EnergyEconomics,2019(84)1.

[33]王玉燕,王建秀,阎俊爱.全球价值链嵌入的节能减排双重效应——来自中国工业面板数据的经验研究[J].中国软科学,2015,(8).

[34]杨飞,孙文远,张松林.全球价值链嵌入、技术进步与污染排放——基于中国分行业数据的实证研究[J].世界经济研究,2017,(2).

[35]GuomeiZhao,CenjieLiu.Carbonemissionintensityembodiedintradeanditsdrivingfactorsfromtheperspectiveofglobalvaluechain[J].EnvironmentalScienceandPollutionResearch,2020,27(25).

[参考文献]

[1]Minsky,M.1961,“StepsTowardArtificialIntelligent”,ProceedingsoftheIRE,Vo1.49(1).

[2]Min,H.2010,“ArtificialIntelligentinSupplyChainManagement:TheoryandApplications”,internationalJournalofLogistics:ResearchandApplications,Vo1.13(1).

[3]刘斌,潘彤.人工智能对制造业价值链分工的影响效应研究[J].数量经济技术经济研究,2020,(10).

[4]FinlaysonM.A.RichardsW,WinstonP.H.Computationalmodelsofnarrative:Reviewofaworkshop[J].AIMagazine,2010,(2).

[5]Cerka,P.Grigiene,J.andSirbikyte,G.,2015,“LiabilityforDamagesCausedbyArtificialIntelligence”,ComputerLaw&SecurityReview,Vo1.31(3).

[6]Li,D.andY.Du,2017,ArtificialIntelligencewithUncertainty,BocaRaton:CRCpress.

[7]Kromann,L.,J.R.Skaksen,andA.Sorensen.Automation,LaborProductivityandEmployment:ACrossCountryComparison[R].CEBR,CopenhagenBusinessSchool,2011.

[8]Brynjolfsson,E.andL.M.Hitt.Computingproductivity:Firm-levelEvidence[J].ReviewofEconomicsandStatistics,2003,85(4).

[9]杨光,侯钰.工业机器人的使用、技术升级与经济增长[J].中国工业经济,2020,(10).

[10]张文博.环境治理中的人工智能[J].国外社会科学前沿,2019,(10).

[11]郎芯玉,张志勇.浅谈人工智能在水质监测领域的应用[J].计算机产品与流通,2019,(12).

[12]王旭,王钊越,潘艺蓉,罗雨莉,刘俊新,杨敏.人工智能在21世纪水与环境领域应用的问题及对策[J].中国科学院院刊,2020,(9).

[13]张伟,李国祥.环境分权体制下人工智能对环境污染治理的影响[J].陕西师范大学学报(哲学社会科学版),2021,(3).

[14]Graetz,G.andG.Michaels.RobotsatWork:TheImpactonProductivityandJobs[J].ReviewofEconomicsandStatistics,2018,(5).

[15]AcemogluD,RestrepoP.Secularstagnation?Theeffectofagingoneconomicgrowthintheageofautomation[J].AmericanEconomicReview,2017,(5).

[16]陈秋霖,许多,周羿.人口老龄化背景下人工智能的劳动力替代效应:基于跨国面板数据和中国省级面板数据的分析[J].中国人口科学,2018,(6).

[17]程承坪,陈志.人工智能促进中国经济增长的机理——基于理论与实证研究[J].经济问题,2021,(10).

[18]AghionP,JonesB,JonesC.Artificialintelligenceandeconomicgrowth[R].NBERWorkingPaper,2017.

[19]林晨,陈小亮,陈伟泽,等.人工智能、经济增长与居民消费改善:资本结构优化的视角[J].中国工业经济,2020,(2).

[20]OnafoworaOA,OwoyeO.BoundstestingapproachtoanalysisoftheenvironmentKuznetscurvehypothesis[J].EnergyEconomics,2014,(44).

[21]AllardA,TakmanJ,UddinGS,etal.TheN-shapedenvironmentalKuznetscurve:anempiricalevaluationusingapanelquantileregressionapproach[J].EnvironmentalScienceandPollutionResearch,2018,25(6).

[22]LiuK,LinB.ResearchoninfluencingfactorsofenvironmentalpollutioninChina:Aspatialeconometricanalysis[J].JournalofCleanerProduction,2019,206(1).

[23]吕越,谷玮,包群.人工智能与中国企业参与全球价值链分工[J].中国工业经济,2020,(5).

[25]许统生,薛智韵.制造业出口碳排放:总量、结构、要素分解[J].财贸研究,2011,(3).

[26]余娟娟.全球价值链嵌入影响了企业排污强度吗——基于PSM匹配及倍差法的微观分析[J].国际贸易问题,2017,(12).

[27]徐辉,苗菊英.我国制造业承接外包的环境效应[J].环境经济研究,2018,(2).

[28]陶长琪,徐志琴.融入全球价值链有利于实现贸易隐含碳减排吗?[J].数量经济研究,2019,(1).

[29]ChenyaoQu,JunShao,ZhonghuaCheng,CanembeddinginglobalvaluechaindrivegreengrowthinChina’smanufacturingindustry?[J].JournalofCleanerProduction,2020(268).

[30]ChuanwangSun,ZhiLi,TiemengMa,RunyongHe,Carbonefficiencyandinternationalspecializationposition:Evidencefromglobalvaluechainpositionindexofmanufacture[J].EnergyPolicy,2019(128).

[31]LafangWang,YoufuYue,RuiXie,ShaojianWang,HowglobalvaluechainparticipationaffectsChina’senergyintensity[J].JournalofEnvironmentalManagement,2020(260).

[32]JingWang,GuanghuaWan,ChenWang,ParticipationinGVCsandCO2emissions[J].EnergyEconomics,2019(84)1.

[33]王玉燕,王建秀,阎俊爱.全球价值链嵌入的节能减排双重效应——来自中国工业面板数据的经验研究[J].中国软科学,2015,(8).

[34]杨飞,孙文远,张松林.全球价值链嵌入、技术进步与污染排放——基于中国分行业数据的实证研究[J].世界经济研究,2017,(2).

[35]GuomeiZhao,CenjieLiu.Carbonemissionintensityembodiedintradeanditsdrivingfactorsfromtheperspectiveofglobalvaluechain[J].EnvironmentalScienceandPollutionResearch,2020,27(25).

原文引用:喻春娇,李奥.人工智能技术对环境污染的影响机制述评,2022,(01):50-57

来源:《决策与信息》2022年第01期

作者:喻春娇(1971-),女,湖北京山人,湖北大学商学院教授,博士生导师,经济学博士,湖北开放经济研究中心副主任,主要从事国际贸易理论与政策、国际生产网络研究;李奥(1997-),女,湖北宜昌人,湖北大学商学院硕士研究生。

责编:李利林、编辑:邓汝濛返回搜狐,查看更多

人工智能的发展与未来

随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。

现如今,各种AI产品已经逐步进入了我们的生活|Pixabay

19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。

20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。

至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。

智能,是一种特殊的物质构造形式。

就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?

图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。

英国数学家,计算机学家图灵

这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。

虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。

1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。

而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。

而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。

而这之后,人工智能的发展也与图灵的想象有所不同。

现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。

但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。

人工智能让芯片的处理能力得以提升|Pixabay

从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。

虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。

参考文献

[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.

[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.

[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.

[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.

[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.

[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987

作者:张雨晨

编辑:韩越扬

[责编:赵宇豪]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇