博舍

2023年人工智能领域发展七大趋势 人工智能 趋势 未来展望论文

2023年人工智能领域发展七大趋势

2022年人工智能领域发展七大趋势

有望在网络安全和智能驾驶等领域“大显身手”

人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。

美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。

增强人类的劳动技能

人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。

比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。

总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。

更大更好的语言建模

语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。

2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。

众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。

网络安全领域的人工智能

今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。

随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。

人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。

人工智能与元宇宙

元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。

人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。

低代码和无代码人工智能

2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。

美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。

自动驾驶交通工具

数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。

特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。

此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。

创造性人工智能

在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。

2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)

【纠错】【责任编辑:吴咏玲】

新一代人工智能的发展与展望

随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。

人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。

当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。

事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。

未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。

作者:徐云峰

catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]

人工智能的发展与未来

随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。

现如今,各种AI产品已经逐步进入了我们的生活|Pixabay

19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。

20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。

至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。

智能,是一种特殊的物质构造形式。

就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?

图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。

英国数学家,计算机学家图灵

这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。

虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。

1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。

而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。

而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。

而这之后,人工智能的发展也与图灵的想象有所不同。

现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。

但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。

人工智能让芯片的处理能力得以提升|Pixabay

从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。

虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。

参考文献

[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.

[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.

[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.

[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.

[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.

[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987

作者:张雨晨

编辑:韩越扬

[责编:赵宇豪]

人工智能在临床领域的研究进展及前景展望

人工智能(artificialintelligence,AI)最初由JohnMcCarthy在1956年提出[1],KAPLAN和HAENLEIN[2]将AI描述为系统性处理并学习外部数据以实现特定目标和任务的能力。AI是指可模仿人类智能特征的计算机算法,其成功得益于计算能力及数据可用性的巨大增长。过去十年来,基于机器学习(machinelearning,ML)算法的AI应用已在计算机视觉(computerversion,CV)等领域中取得了巨大突破。AI的研究内容主要包括机器学习、神经网络、智能机器人、自然语言理解、语义识别和图像处理等[3]。

20世纪70年代开始,AI方法被应用于医疗领域以提升疾病诊治的效率,进而出现了医学人工智能(artificialintelligenceinmedicine,AIM)[3]。20世纪80年代后,决策树、随机森林、支持向量机等多种ML算法被提出,使AIM得以发展成熟。经典ML算法可分为有监督学习、无监督学习及强化学习等3类。ML是当今最常用的AI技术,其数学模型是基于庞大的训练数据集而设计的。自21世纪以来,深度学习(deeplearning,DL)的出现使AIM进入了崭新的发展阶段。目前DL已成为AI领域最流行的研究方法。

目前,医学界已利用AI技术对临床实践的不同步骤进行自动化研究,为临床决策提供支持。在各医学领域中应用AI方法有利于提高诊断的准确性并减少时间和人力消耗。基于AI的最新进展,智能筛查、智能诊断、风险预测和辅助治疗等是正经历颠覆性转变的典型应用。

当今,我们比既往任何时候都更接近AI的临床应用,基于AI的个性化远程医疗时代即将到来,如图1。因此,临床领域的专业人士均需了解AI技术的基础知识,帮助医学界获得AI相关的背景知识,包括AI的研究进展及前景展望,旨在带来更高质量的研究并激发新的研究方向。

医学数据可从便携式检查仪器中收集,随即通过互联网传输到远程医疗平台;基于AI的远程医疗平台将分析医疗数据进行诊断,并为用户提供个人精确医疗的补充建议图1基于AI的个性化远程医疗示意图图选项1AIM的常见技术

AI的发展主要出现了符号主义和连接主义两个历史方向(图2)。20世纪80年代开始流行的专家系统是符号主义的经典例子;自20世纪90年代以来,基于连接主义的学习方法逐渐兴起,其优势在于由数据而非人工专家提供准确性保证[4]。

图2AI技术的发展方向图选项1.1机器学习

机器学习(machinelearning,ML)的概念由SAMUEL在1959年提出,可表述为数据赋予计算机无需明确编程即可学习的能力[5]。QUINLAN(1986年)[6]提出了决策树(decisionTree,DT)算法,可依据既定规则完成数据分类。VLADIMIR(1995年)提出了支持向量机(supportvectormachines,SVM),它是一种广泛使用的监督ML算法,常用于分类和回归问题[7]。HO(1998年)[8]提出了随机森林(randomforest,RF)算法,可有效完成特征提取。

近年来,ML已被越来越多地应用于医疗领域,旨在帮助医师预测疾病及预后效果。ML的发展已经达到了重要的里程碑,可获得与人类专家相似甚至更好的准确率。典型的监督任务包含回归和分类,无监督任务包含降维、聚类、离群值检测等,而半监督学习是介于有监督和无监督之间的混合框架,其应用示例包括使用部分标记数据对图像进行分割或分类等[9]。三者关系见图3。

红色、蓝色代表已知的两个分类,灰色代表未分类标签;有监督学习依赖于已知的输入-输出对;若某些输出标签难以获得或代价高昂,则可考虑使用半监督学习;若无可用标签,则无监督学习允许获取更具探索性的数据方法A:有监督学习;B:半监督学习;C:无监督学习图3有监督、半监督及无监督学习展示图选项

ML技术仍存在较大的不足及改进空间。临床医师希望了解临床决策所依据的科学基础,以便能独立判断有效性并确保其适用于各类患者。然而,临床医师无法从ML技术中直观地获取底层机制,进而了解如何针对特定临床情况提出具体建议,这通常被称为“黑箱”问题。尤其是当临床医师的既往经验与AI方法的建议存在冲突时,医师往往会对AI方法缺乏信任,推进“可解释AI”的工作可能会在将来解决此问题。

1.2深度学习

自20世纪90年代以来,ML方法不断发展和改进,进一步诞生了目前流行的深度学习(deeplearning,DL)。DL一词最早由AIZENBERG和HINTON等于21世纪初提出[10],是指ML算法的一个子集,其称为“深度”的原因是在多个层次上分层组织,可自动从大数据中提取有意义的特征。图像识别的发展包括文本识别、数字图像识别和目标识别3个阶段。近年来,基于DL技术的图像处理逐渐被提出与推广,出现了一些以全自动医学图像检测分类和分割为目的的研究。

目前,卷积神经网络(convolutionalneuralnetwork,CNN)被广泛应用于医学图像处理,该架构具有两条路径以提取不同尺度的特征;此后树状结构的多任务全卷积网络(FCN)被提出,具有高效的端到端网络结构[11]。RONNEBERGER等[12]提出了U形卷积网络(U-Net),在各种医学图像分割任务中表现良好,目前已成为医学图像分割的基准网络,见图4。

U-Net包含编码器(下采样)、解码器(上采样)和跳跃连接部分,有利于高效提取医学图像特征图4U-Net网络结构图选项

当前,DL在医学图像领域的应用已得到了广泛进展,但其仍存在一定的应用限制。首先,医学数据集具有不均衡性,且往往为单中心、少样本量数据,但DL对于高质量大数据的依赖性较强,可能带来较大的经济学成本。其次,DL模型中学习参数量较多、存在过拟合风险,在应用中缺乏稳定性与可重复性。最后,与ML技术类似,DL同样存在“黑箱”问题,影响了临床应用中医患双方的接受程度。因此,应选择适宜的医疗领域应用DL技术,以提升辅助诊治的准确性。

1.3专家系统

专家系统(expertsystem,ES)是模拟人类专家决策能力的计算机系统,它可利用现有的知识系统推理和解决一系列复杂问题,是较早获得成功的AI软件之一[13]。ES的开发阶段大致可分为启蒙期(1965-1971年)、发展期(1972-1977年)和成熟期(1978年至今)3个阶段。当前,ES已经表现出了较强的临床决策能力,在疾病筛查及诊断等方面具有较大优势。但ES较为依赖人工专家,而人工专家可能犯错或具有主观倾向性。后续应用中仍需整合医师的临床经验和患者病史,进而提升系统的准确性。此外,ES的应用中需要不断更新医学知识和发现,进而为临床医师提供前沿诊断和治疗计划。

1.4智能机器人

1979年,美国机器人研究所提出了智能机器人(intelligentrobots,IR)的概念,将其定义为一种可重新编程的多功能机械手,旨在利用各种编程材料、部件、工具以执行任务[14]。自20世纪80年代开始,IR已逐渐被应用于外科手术。目前,经FDA批准的机器人手术系统包括宙斯(ZUES)、达芬奇(DaVinci)和自动内窥镜系统等。IR具有微创、精准及智能的优势,已被广泛应用于骨科、妇科、泌尿科及口腔科等诸多领域。

既往临床实践中应用的IR往往是移动能力受限的离散型机器人。近年来,连续型机器人被提出,是一种具有“无脊椎动物”柔性结构的新型仿生机器人,其具有灵活的弯曲特性及良好的环境适应性,将有望逐渐取代离散型机器人、成为未来外科手术的主力军[15]。但IR目前仍然存在成本较高、体积较大及应用范围受限等劣势。

1.5医疗物联网

物联网可被定义为具有通信和传感能力的网络物理系统的普遍存在,目前已被广泛应用于医疗领域,进而诞生了医疗物联网(theInternetofmedicalthings,IoMT)的概念[16]。IoMT主要采用移动传感器收集医疗相关的人体数据,进而支持临床诊治决策,具有较好的经济性、易用性和可访问性[17]。

IoMT使用各种传感器实时监测患者的健康状况,进而实时获取体温、心率、脉搏及血氧等生命体征。这些医疗设备监控患者的健康状况,收集临床数据并通过远程云数据中心发送给医生。基于IoMT的可穿戴医疗系统可以提供连续监测功能并收集大量医疗数据,进而为医师提供预测患者未来状况的有效依据。

2AIM的典型应用2.1智能筛查

目前AIM技术已应用于多种恶性肿瘤的筛查中,可对疑似癌变区域的良恶性进行自动筛查。表1总结了近几年AIM技术应用于智能筛查方面的典型实例。

表1AIM技术在智能筛查方面的典型应用第1作者年份AI技术应用领域应用效果WU[18]2019DL胃癌盲点漏诊率5.9%CHEN[19]2020DL胃癌盲点漏诊率3.4%KIANI[20]2020DL肝癌测试准确度84.2%MORI[21]2018ML结肠癌预测准确率98.1%WANG[22]2019DL结肠癌腺瘤检出率29.1%SU[23]2020DL结肠癌腺瘤检出率28.9%LIU[24]2020DL结肠癌腺瘤检出率27.0%WANG[25]2020DL结肠癌腺瘤检出率34.1%VANDENBERGHE[26]2017DL乳腺癌分类准确率83.1%STEINER[27]2018DL乳腺癌转移检出率91.0%BARINOV[28]2019ML乳腺癌AUC值86.5%MANGO[29]2020ML乳腺癌AUC值87.0%LOTTER[30]2021DL乳腺癌灵敏度提升14.0%YOO[31]2018ML甲状腺癌检出灵敏度92.0%MASOOD[32]2018DL+IoMT肺癌分类准确率84.6%SIM[33]2020DL肺癌平均灵敏度70.3%URUSHIBARA[34]2021DL宫颈癌AUC值93.2%ESTEVA[35]2017DL皮肤癌分类效果与医师相当ABRÁMOFF[36]2018DL糖尿病视网膜病变灵敏度87.2%KANAGASINGAM[37]2018DL糖尿病视网膜病变特异度92.0%KEEL[38]2018DL糖尿病视网膜病变灵敏度92.3%NATARAJAN[39]2019DL糖尿病视网膜病变灵敏度85.2%WU[40]2019DL白内障AUC值99.7%LIN[41]2019DL白内障准确率87.4%WU[42]2018DL角膜炎灵敏度89.3%ML:经典机器学习;DL:深度学习;IoMT:医疗物联网;AUC:ROC曲线下面积表选项2.1.1消化肿瘤的筛查

WU等(2019年)[18]及Chen等(2020年)[19]各自构建了基于DL的食管胃十二指肠内镜(esophagogastroduodenoscopy,EGD)图像处理系统,实现食管、胃及十二指肠疾病的早期筛查,盲点漏诊率各自降至了5.9%和3.4%,均明显低于未使用AI技术的传统方法。KIANI等(2020年)[20]构建了基于DL的肝脏病理图像处理系统,实现了肝细胞癌、胆管癌的自动筛查,在验证集上准确率为88.5%,在独立测试集上准确度为84.2%。MORI等[21]构建了基于ML的结肠镜图像分析系统,主要用于区分需要切除的腺瘤和不需要切除的非肿瘤息肉,其预测准确率为98.1%。WANG等(2020年)[25]构建了基于DL的结肠镜图像处理系统,结果表明AI组腺瘤检出率(adenomadetectionrate,ADR)明显优于传统组,可有效提高结肠镜下息肉及腺瘤的筛查效率。

2.1.2其他肿瘤的筛查

VANDENBERGHE等(2017年)[26]提出了基于DL的切片病理图像分析系统,可实现乳腺癌的自动诊断、分类,以病理学结果为金标准时的总体准确率达到了83.1%。STEINER等(2018年)[27]提出了基于DL的胸部CT处理系统,转移检测的灵敏度达到了91.0%,实现了转移性乳腺癌的自动筛查。LOTTER等(2021年)[30]提出了一种具有注释效率的DL方法,该方法在乳房X光片分类等方面实现了最先进的性能,相较于乳腺影像专家,AI方法的平均灵敏度提升了14.0%。YOO等(2018年)[31]提出了基于DL的超声图像分析系统,将甲状腺癌的筛查灵敏度由84.0%提升至92.0%,实现了甲状腺结节良恶性的自动筛查。MASOOD等(2018年)[32]构建了基于IoMT和DL的肺部CT图像处理系统,实现了肺结节的恶变阶段预测,分类准确率达到了84.6%。

2.1.3眼科疾病的筛查

NATARAJAN等(2019年)[39]利用DL方法处理视网膜图像,实现了糖尿病视网膜病变的自动筛查及严重程度分级,AI方法诊断严重病变的灵敏度和特异度各自为100.0%和88.4%,诊断总体病变的灵敏度和特异度各自为85.2%和92.0%。WU等(2019年)[40]构建了基于DL的眼部图像处理系统,白内障分类的ROC曲线下面积(areaundercurve,AUC)达到了99.3%~99.7%,实现了白内障的自动筛查及协作管理。WU等(2018年)[42]关于真菌性角膜炎诊断的研究表明,自动菌丝检测技术的灵敏度为89.3%、特异性为95.7%,AUC值为94.6%,可及时、准确、客观和定量地为真菌性角膜炎提供评估标准。

目前,AI智能筛查已广泛应用于肿瘤及眼科疾病的筛查中。但需要注意的是,模型准确性对医师的临床决策存在重大影响,当模型预测不准确时,其辅助筛查的效果往往大幅降低。此外,对于发病率较低、样本量较少的疾病,假阳性的存在是不容忽视的问题,建议采用人工审查的方式再次验证。因此,将AI模型应用于临床时仍存在较大挑战,当设计AI工具时应考虑模型辅助筛查的潜在负面影响。

2.2智能诊断

当前,ML、DL、ES及IoMT技术均已应用于各类疾病的诊断,取得了较好的自动化效果,AIM技术应用于智能诊断的典型实例总结见表2。

表2AIM技术在智能诊断方面的典型应用第1作者年份AI技术应用领域应用效果ESHEL[43]2017ML疟疾灵敏度99.0%TURBÉ[44]2021DL艾滋病准确率97.8%MINAEE[45]2020DLCOVID-19灵敏度98.0%HUANG[46]2020DLCOVID-19严重程度预测AHUJA[47]2021DLCOVID-19准确率99.4%SHORFUZZAMAN[48]2021DLCOVID-19精确度95.5%QUIROZ[49]2021MLCOVID-19AUC值96.0%ARBABSHIRANI[50]2018DL脑卒中AUC值84.6%TITANO[51]2018DL脑卒中AUC值73.0%NAGARATNAM[52]2020DL脑卒中上门时间缩减45minLO[53]2021DL脑卒中AUC值99.27%BIBI[54]2020DL+IoMT白血病平均准确率99.6%HAMEDAN[55]2020ES慢性肾病灵敏度95.4%PARK[56]2019DL动脉瘤预测准确率85.9%WONG[57]2018ML溃疡预测准确率84.3%BIEN[58]2018DL膝关节外伤AUC值93.7%LINDSEY[59]2018DL骨折灵敏度91.5%FU[60]2019DL骨折可视化骨折分析YAO[61]2019DL+IoMT胆囊结石预测结石化学成分ML:经典机器学习;DL:深度学习;IoMT:医疗物联网;ES:专家系统;COVID-19:新型冠状病毒肺炎;AUC:ROC曲线下面积表选项2.2.1传染疾病的诊断

2020年,新型冠状病毒肺炎(coronavirusdisease2019,COVID-19)的爆发为AIM技术提供了适宜的应用时机。AIM技术在COVID-19的诊断、分型、风险预测和辅助治疗等方面均取得了较好的进展。SHORFUZZAMAN等(2021年)[48]提出了一种结合迁移学习理念的深度学习融合框架,实现了对COVID-19患者的智能诊断,融合模型的分类精确度达到了95.5%。QUIROZ等(2021年)[49]证实,ML方法可用于COVID-19的自动严重程度评估,其有助于对COVID-19患者进行分类诊断,AUC值为96.0%、灵敏度为84.5%、特异度为92.9%,继而可确定后续诊治的优先级。

2.2.2内科疾病的诊断

随着医学影像技术的发展及临床诊断精度的提升,基于DL技术的临床诊断方法得到了蓬勃发展。ARBABSHIRANI等[50]及TITANO等(2018年)[51]各自构建了基于DL的颅脑CT图像处理系统,AUC值达到了73.0%和84.6%,实现脑卒中等急性神经事件的自动检测。LO等(2021年)[53]基于DL提出了缺血性脑卒中自动诊断方法,灵敏度为98.1%、特异度为96.9%、AUC值为99.3%,可有效为临床医师提供急性缺血性卒中的诊断建议。BIBI等(2020年)[54]开发了一个基于DL和IoMT的系统,实现了白血病的快速安全识别与分类,平均准确率达到了99.6%;该系统可让医患双方实时沟通白血病的检测、诊断及治疗,进而有效节省临床医师的时间和精力。HAMEDAN等(2020年)[55]利用ES对慢性肾病进行分析,将AIM技术与人工专家意见结合,结果表明ES预测慢性肾病的效果较好,准确率、灵敏度和特异度分别为92.1%、95.4%和88.9%。

2.2.3外科疾病的诊断

基于DL的图像识别技术在临床诊断中具有重要意义,可提高外科病变部位预测的准确度。BIEN等(2018年)[58]提出了基于DL的膝关节MRI处理系统,实现前交叉韧带撕裂、半月板撕裂等膝关节外伤的自动检测,AI模型可以从内部和外部数据集中快速生成准确的膝关节病理分类。LINDSEY等(2018年)[59]构建了基于DL的X线图像处理系统,实现骨折的检测与定位;在应用AI技术辅助后,临床医师检测骨折的灵敏度由80.8%提升至91.5%,特异度由87.5%提升至93.9%。FU等(2019年)[60]着眼于CT图像分析系统,实现股骨间骨折的自动诊断及可视化分析,识别最可能的骨折断裂区域。

目前,一些新兴AI技术已被广泛应用于内、外科疾病及传染病的智能诊断中,在临床决策中发挥了重要作用。AI模型的能力受纳入训练集规模的限制,基于某类数据集训练的模型可能无法在另一类数据集中获得良好表现,应注重在模型训练中适当加入外部测试集以评估其泛化能力。此外,多数基于AI技术的智能诊断方法仅限于分析医学影像信息,但临床上有效的研究终点需要基于医师对患者各项指标的总体评估。因此,在未来的研究中,应注重各项临床数据的综合运用,提高AI模型的有效性与可推广性。

2.3风险预测

AIM可实现风险的自动评估与预警,提供有效的临床决策支持。AIM技术应用于疾病风险预测的典型实例见表3。

表3AIM技术在风险预测方面的典型应用第1作者年份AI技术应用领域应用效果MCCOY[62]2017ML败血症住院死亡率下降60.2%SHIMABUKURO[63]2017ML败血症住院死亡率下降58.0%GIANNINI[64]2019ML败血症预警特异度98.0%GINESTRA[65]2019ML败血症临床接受度45.0%CHEN[66]2018ML+IoMT糖尿病5G智能糖尿病系统KUMAR[67]2018ML+IoMT糖尿病移动医疗保健应用程序ROMERO-BRUFAU[68]2020ML糖尿病患者接受度58.0%BOUTILIER[69]2021ML糖尿病+高血压预测准确率91.0%CONNELL[70]2019ML肾衰竭移动检测应用程序AOKI[71]2020DL小肠破裂有效降低阅片时间BRENNAN[72]2019ML肾脏手术AUC值85.0%WIJNBERGE[73]2020ML心脏手术低血压时间缩减16.7minZHOU[74]2020MLCOVID-19预后相关标注物预测BOOTH[75]2021MLCOVID-19AUC值93.0%ML:经典机器学习;DL:深度学习;IoMT:医疗物联网;COVID-19:新型冠状病毒肺炎;AUC:ROC曲线下面积表选项2.3.1感染风险的预测

严重败血症的死亡风险较高,因此败血症风险预测是提高干预效果的重要保障。MCCOY等(2017年)[62]提出了基于ML的电子健康档案(electronichealthrecords,EHR)数据处理系统,实现了败血症的风险预测。相较于实施前,实施后与败血症相关的住院死亡率下降了60.2%。SHIMABUKURO等(2017年)[63]同样对败血症进行了风险预测,平均住院时间降低了3d,平均住院死亡率下降了58.0%。GIANNINI等(2019年)[64]利用ML分析EHR数据,可用低灵敏度但高特异性的标准对严重败血症和败血症休克进行早期预警,该AI方法的特异度为98.0%。GINESTRA等(2019年)[65]分析了临床医师对败血症预警系统的接受程度,结果表明临床接受程度仍存在较大提升空间。

2.3.2慢病风险的预测

CHEN等(2018年)[66]提出了5G智能糖尿病系统,为糖尿病患者生成全面的传感和分析,进而有效地为患者提供个性化诊断和治疗建议。KUMAR等(2018年)[67]设计了一种基于IoMT的移动医疗保健应用程序,实现了糖尿病的发病风险及其严重程度的判断。ROMERO-BRUFAU等(2020年)[68]利用ML分析患者数据,进而为血糖控制提供临床决策支持,患者接受度58.0%。BOUTILIER等[69]利用ML预测糖尿病及高血压的危险分级,将糖尿病预测准确率由67.1%提升至91.0%,将高血压预测准确率由69.8%提升至79.2%,且极大降低了糖尿病和高血压的预测成本。

2.3.3治疗风险的预测

围手术期风险的发生与医疗成本及死亡率的增加密切相关。在智能决策支持平台中构建数据驱动的预测风险方法有利于减少临床医师的工作负担,提升风险预测效率。BRENNAN等(2019年)[72]利用基于ML的EHR数据处理系统实现肾脏手术术后并发症风险的自动评估;当使用AI算法后,风险评估AUC值由69.0%提升至85.0%。WIJNBERGE等(2020年)[73]构建了基于ML的血流动力学指标分析系统,实现了心脏手术术中低血压风险的自动预警;AI干预可将低血压中位时间由32.7min缩减至8.0min。BOOTH等(2021年)[75]构建了基于ML的COVID-19个性化死亡率风险评分系统,结果表明C反应蛋白(CRP)、血尿素氮(BUN)、血清钙、血清白蛋白和乳酸等血清生物标志物与COVID-19的严重程度及死亡风险密切相关。

目前,基于AI方法的预警系统已被提出和小规模实施,其应用领域包括感染风险预测、慢性病风险预测及治疗风险预测等。但临床医师对此类工具的看法仍存在分歧,分析原因在于以ML、DL为代表的AI方法,一般具有不透明性、不确定性,存在预测效果不稳定的风险,使部分临床医师对利用复杂AI方法开发的工具缺乏信任。此外,既往风险预测仅局限于单中心研究,其泛化性能尚未得到充分验证,后续需要对更多的群体进行深入研究,充分评估AI方法的安全性和可推广性。在可预见的将来,AI不太可能取代临床医师,但AI可以依据医疗大数据提供相关建议,进而作为临床医师的高效辅助。

2.4辅助治疗

AIM技术应用于辅助治疗已有较多案例,效果比较理想,见表4。

表4AIM技术在辅助治疗方面的典型应用第1作者年份AI技术应用领域应用效果BIRD[76]2021ML直肠癌治疗剂量规划YANG[77]2021ML前列腺癌准确率84.6%NICOLAE[78]2020ML前列腺癌有效降低规划时间KATZMAN[79]2018ML+IoMT乳腺癌预测个性化治疗建议MCNAMARA[80]2019ML乳腺癌预测准确率95.3%KHOZEIMEH[81]2017ES皮肤疣预测准确率83.3%VOERMAN[82]2019ML败血症成本降低49.0%RAWSON[83]2021ML败血症抗菌处方建议SEGAL[84]2019ML心脏病预警有效率85.0%WANG[85]2019ML心脏病指导治疗时机HOOSHMAND[86]2020DLCOVID-19研发潜在药物KE[87]2020DLCOVID-19研发潜在药物ZHANG[88]2020IR骨科手术提升操作准确性XIE[89]2021IR胆道手术安全性和可行性好MATTHEIS[90]2019IR咽喉手术切除效果彻底TROISI[91]2019IR肝脏手术术后恢复更快ML:经典机器学习;DL:深度学习;IoMT:医疗物联网;ES:专家系统;IR:智能机器人;COVID-19:新型冠状病毒肺炎表选项2.4.1治疗决策支持

放射治疗是多种肿瘤治疗的重要手段,治疗过程中需要密集地划定风险器官(organatrisk,OAR),进而为放疗提供指导,并预测预后。BIRD等[76]使用多中心数据集构建了ML模型,旨在获取适用于直肠癌准确、可推广的放疗方案。通过适当的验证研究和监管批准,以上方法可提高放疗的准确性和有效性。YANG等(2021年)[77]利用ML方法预测器官敏感性,进而估算出每个器官接受放射剂量的阈值,还分析了放射剂量与远期生活质量指标的相关性。NICOLAE等(2020年)[78]构建了基于ML的前列腺种植体规划系统,将治疗规划时间降至(2.38±0.96)min,为前列腺癌提供临床治疗决策支持。KATZMAN等(2018年)[79]提出了一个基于IoMT的智能健康监测系统,可展示个性化治疗建议并延长乳腺癌患者的生存时间。

2.4.2药物研发管理

处方错误可引发高发病率和医疗负担。现有的处方错误预警系统效果较差,且伴随严重的虚假预警风险。RAWSON等(2021年)[83]构建了基于ML的抗菌处方决策系统,为抗生素管理提供临床决策支持,AI处方建议已达到接近临床医师的水平。SEGAL等(2019年)[84]提出了基于ML的处方识别系统,实现心脏病患者处方错误的自动预警及纠错,临床有效率为85.0%。HOOSHMAND等(2020年)[86]利用DL方法寻求抑制COVID-19的潜在药物,可识别出副作用最小、前景最好的COVID-19药物。KE等(2020年)[87]利用DL方法识别具有治疗COVID-19潜力的上市药物,最终确定了80余种有能力抗击冠状病毒的潜在药物。

2.4.3机器人手术

目前,IR已广泛应用于骨科、胆道、咽喉及肝脏手术等领域。ZHANG等(2020年)[88]将IR技术应用于脊柱手术,可有效提升螺钉置入的准确性、减少术中透视次数并降低术后并发症发病率。XIE等(2021年)[89]利用达芬奇手术系统治疗1岁以下儿童胆道囊肿,结果表明IR具有较好的安全性与可行性。MATTHEIS等(2019年)[90]将经口机器人手术(TORS)应用于咽喉肿块切除,其可视化效果好,且未发生严重不良反应。TROISI等(2019年)[91]将IR用于肝脏手术,其优势包括减少失血与粘连,进而缩短入院时间与术后恢复时间。

当前,多种基于AI方法的决策支持工具已达到了与疾病专家判断一致的水平,可有效改善经验治疗决策、缩短治疗时间、降低成本。但目前多数辅助工具仅针对特定疾病,应用过程难度较高。用于分析的数据集中缺乏普遍接受和经过验证者,尤其是关于长期随访预后的数据,影响了决策支持工具的预测效果。增加病例的多样性有利于提高决策支持的价值。未来需扩充更多数据集,开发多中心、多站点规划系统以更好地进行临床治疗指导。

3AIM的前景展望3.1大数据质量治理

医疗大数据是指医疗过程中产生的庞大而复杂的数据集,包含临床数据、影像数据、基因数据和移动健康数据等。医疗大数据具有海量性、准确性、易变性、多元性和隐私性,其质量是AIM发展的核心保证。AI方法通常需要大量样本的训练数据以提高灵敏度,将AI方法与大数据结合可在未来实现更高的预测精度和更广泛的应用。优化数据的收集与整理过程、提升数据质量是未来AIM发展推广的关键。训练数据库的错误或偏差通常直接反映在模型行为中,并对模型性能及临床结果均产生重大影响,因此数据质量是发挥医疗大数据价值的必要条件。

当前,医疗大数据收集的自动化程度仍然较低,数据收集和整理过程存在时间较长、成本较高的劣势。且因为各个医疗系统信息孤岛问题的存在,现有医疗大数据在完整性、准确性、细致性和一致性等方面存在诸多问题。正如医师需要熟悉临床指南一样,临床团队也应熟悉AI时代数据收集和管理的指导原则。AI领域最流行的数据整理原则包括可查找性、可访问性、可操作性和可重复性,而在临床应用中还需考虑医学领域的特殊性。

3.2新技术赋能革新

通用人工智能(artificialgeneralintelligence,AGI)是未来AI发展的高级目标,旨在让AI像人脑一样自主学习、应用并解决各知识领域的问题。AGI的目标在于构建可媲美人类的AI,其实现方式、风险挑战是整个AI领域的研究热点问题。目前,强化学习、小样本学习及元学习等新型技术已被提出,可能成为AGI实现的重要契机,并为AIM的高质量未来发展赋能。

强化学习(reinforcementlearning,RL)又名增强学习,其应用特征为在交互中学习,利用交互所得信息调整学习策略,最终实现特定目标。在医学领域,RL可与DL技术结合为深度强化学习(deepreinforcementlearning,DRL),其优势在于综合了DL的感知能力及RL的决策能力,进而可获取实现目标的最优策略[92]。

小样本学习(few-shotlearning,FSL)可从少量样本中学习对象类别,一方面强调在少量样本中实施快速学习,另一方面强调对于新任务的泛化性能。医学数据往往存在样本量过少、数据标签有限和分布不均衡的问题,因此FSL将成为未来AIM的重要发展趋势之一。半监督、无监督或自监督学习有利于解决数据标签受限的问题;利用预训练过的模型(迁移学习)或组合模型(集成学习)同样是较为有效的联合策略。

元学习(metalearning)又名“学会学习”(learningtolearn),指利用既往的知识经验指导新任务的学习,可成为AI发展的又一个关键突破口[93]。当前DL的特征是只能从头开始训练,而元学习的提出有利于更好地利用既往知识,进而提高处理新任务的效率。将元学习和其他算法相结合有利于完成各项任务,例如用元学习方法实现RL或FSL。元学习方法还可与其他方法融合运用,进而发挥各自优势,如小样本元学习具有较高的实践价值。未来,元学习的发展目标是让AI拥有核心自主意识,是实现AGI的关键。

3.3多领域知识整合

AI方法从符号主义到连接主义的转变、从浅层架构到深层架构的转变等均为医学领域带来了颠覆性的变革。只有医学界逐步接受AI技术,并将所有特定领域的知识整合到最先进的AI方法中,下一代用于医疗应用的AI方法才会出现。当前,AI应用仍存在研究设计难、效果预期难及原理解释难等挑战。整合特定领域的知识不仅有助于提高AI模型的先进性能,还可提高结果的可解释性,有效解决当前AI方法的局限性。黑箱问题的解决有利于提升ML的准确性和算力,进而为医学领域作出更大贡献。

多学科研究领域的整合是AIM的重要发展方向,包括医学成像、图像融合、自然语言处理等,可对疾病诊治的整个过程进行追踪研究。此外,利用基因组学、蛋白组学、影像组学等多组学数据融合的方式进行疾病诊治同样是近年研究热点,值得进行深入研究[94]。

总体而言,在过去几年中AI方法已经达到了重要的里程碑,在自动化医疗实践方面具有较大的潜力。然而,要将这些AI方法安全、完善地集成到临床工作流程中仍需要计算机科学、统计学、数据科学和医学等多学科的共同努力,进而支持下一代强大的AI方法,确保基于AI解决方案的稳健性及可解释性。

3.4个性化医疗决策

在未来的发展中,AI在临床领域将面临更大的挑战。在数据挖掘和ML领域,研究人员发明了第五代无线技术(5G)及IoMT集成的连续机器人;在图像识别领域,需构建更有效的训练模式,以不断扩展数据集、为临床医师提供更多信息。

在过去十年中,随着我国、欧洲和美国的研究人员在AI领域取得了重大成就,与AI相关的文献数量也得到了迅速发展。借助5G网络的高速传输,远程协作手术的实时技术指导可保证手术的稳定性、可靠性及安全性。值得一提的是,中国正逐渐成为AI领域的领导者[95]。

为使每位患者获得最佳的治疗效果,个性化远程医疗的概念逐渐被提出和推广。为此,需要使用大数据训练并依据反馈更新高精度AI算法。随着便携式设备的发展,患者可在家完成简单的测试,并从AI计划中获得即时转诊建议。同时,所有数据也可发送至医疗中心,由医师检查并依据患者自身特点采取个性化治疗策略。通过这种方式,患者可显著减少就诊时间,同时仍能获得最佳的个性化治疗建议。在AI的帮助下,未来的患者可及时、准确地获得疾病相关的个性化医疗决策。我们有理由相信,基于AI的个性化远程医疗时代即将来临。

本文总结、梳理了人工智能在临床领域应用的常见技术及其典型应用,并对应用前景进行了展望。研究表明,机器学习(ML)、深度学习(DL)、专家系统(ES)、智能机器人(IR)和医疗物联网(IoMT)是最常用的AI技术,其应用领域包括智能筛查、智能诊断、风险预测和辅助治疗等。AI彻底改变了传统医学模式,显著提高了医疗服务水平,并在各个方面保障了人类健康。因此,医学AI具有十分广阔的发展前景,其未来发展方向包括大数据质量治理、新技术赋能革新、多领域知识整合及个性化医疗决策等。

人工智能应用领域的研究与展望

引言

20世纪的科技成就中,人工智能占据着重要的位置,它的研发使用是将智能机器人的技术、信息化技术、自动化技术和关于人类自身智能探索与研究融为一体的必然结果。随着人工智能的系列化研究与发展,如今,人工智能已经被广泛地应用于很多领域。但是关于人工智能的应用领域的综述并不多,本文就人工智能在不同领域应用发展趋势进行展望。

1人工智能的由来

人工智能是研究、开发模拟应用、延伸和拓展人的智能领域的理论、方法、技术以及应用系统的一门新的学科。相比于其他学科,人工智能的研究和发展历史是很短暂的,但是它的研究发展与应用却为人类生活带来了翻天覆地的变化,是人类发展历史的一个里程碑,将人类从繁重的体力劳动和脑力劳动中解放出来,同时帮助人类探索拓展了更多的未知领域。

1956年,麦卡赛和明斯基等科学家就提出了“人工智能”的理念,认为在未来机器将会以其独有的人工智能特点更好地服务于人类,代替人类来完成许多高难度、高强度和高危险系数类的工作。这一理念的提出引来了许多优秀科学家的青睐,随即对此展开了更深入的研究、探索、发展和应用[1]。

在计算机的应用普及之前,几乎没有什么机器设备可以分担人类的脑力劳动,特别是依据人脑的思维去对数据进行收集、处理、运算、判定、存储、积累、分析和选择决断。当计算机有了一定程度的发展和应用之后,能够代替人脑工作的软件才逐步被开发并应用到研究和生活中。由早期的各种复杂数据分析运算,一维、二维、三维和立体的测绘,继而发明并应用二维码的识别、无人机作业、月球车等各种模拟人类思维模式的应用,到后来人工智能云处理、对比、处理和建议等人脑无法准确、无误且快速处理大数据的运用。如今,人工智能的应用已经遍布人类生活的许多领域。

2人工智能的应用领域

现在人工智能在计算机领域的应用比较广泛,在其他领域的发展应用也是频见报道。随着人工智能“深、广、精”的研究、发展与应用,不久,必将迎来在更多领域的应用,未来的人工智能将更加智能,更加的人性化,更像个“人”一样进入人类生活,为人类社会的发展服务。

2.1人工智能在工业领域的应用

人工智能的应用在工业发展方面起着举足轻重的作用,它具有效率高、稳定可靠、重复精度好,可承担劳动强度大、危险系数高的作业等优势,已被广泛应用到了工业生产领域,如机器人焊接、机器人搬运、机器人装配、机器热打磨抛光和机器人喷涂电镀等。2018年,林远长等人研究得到焊接机器人在每米长度方向上焊接轨迹跟踪仿真误差为0.18mm,而实际跟踪误差为0.2mm,由此验证利用人工智能仿真误差与实际误差基本一致,完全满足工业生产需求[2]。赵猛研发发动机挠性飞轮盘螺纹装配工业机器人项目[3],提高装配的自动化和柔性化程度,保证装配质量和生产效率。用人工智能的机器人来代替普通工人去完成许多对人体有不良影响及人体生理条件限制而不能承受的工作,是20世纪工业发展的一个质的飞跃,是工业发展史的一个标志性的里程碑。

2.2人工智能在金融领域的应用

近来,随着人工智能的开发及应用,互联网金融更是取得了极其辉煌迅猛的发展。二维码支付、手机银行、网络借贷、P2P平台、淘宝、京东等逐渐成为人们茶余饭后议论的热点词汇。通过大数据库、云计算、计算机网络应用、区块数据链等最新IT技术,即可获取大量、精确的信息,更加个性化、定向化的风险定位模型,更科学、严谨的投资决策过程,更透明、公正的信用中介角色等,从而能大大地提高金融业务效率和服务水平,特别是一些技术应用,如大数据征信、供需信息、供应链金融等[4]。

2.3人工智能在信息安全领域的应用

数字密码安保模式伴随着互联网技术的不断发展,其弊端也逐步显露,一方面容易被破解,导致信息泄露,另一方面,对于越来越多的信息安保需求,对人脑的记忆力要求也越来越高。由此产生的各种困扰也越来越多,如忘记密码后,自动取款机无法取现、打不开文件、登录不了系统等问题层出不穷,因此信息安全问题越来越被人们所关注。但当人工智能和生物识别技术结合并深入发展之后,信息安全领域得到了一个全新的发展和提高。指纹解锁速度可达0.2s,支持多个指纹同时录入,且被广泛应用;iPhoneX的人脸识别解锁,支付宝的刷脸登录和考勤机器上的刷脸打卡等正渐渐步入人们的日常生活之中;人的虹膜具有惟一性,为实现信息认证、保障信息安全提供了理论基础。现实中也已经有电子厂商将这一技术运用到了实际产品当中,比如三星S系列的手机,就配备了虹膜识别技术,但是虹膜识别目前对环境的要求比较高,尤其是在暗光环境下识别效果还有待提升。相比于指纹识别,虹膜识别在完成产业化的道路上还有很长的路要走[5]。

2.4人工智能在医疗领域的应用

医疗领域的人工智能应用更加普遍,它正在成为改善人们身心健康的主力军,可为病人提供就诊前健康状况初步分析和评估、协同医师处理病人信息和改善服务质量、在医院精准地指导病人就医、节约医疗资源、缓解就医难的紧张局面等。医学领域,精准是非常重要的,因为任何偏差或者误判都会危及人体的健康乃至生命。2015年,杨宇面对心脏手术医疗机器人的异构式主从控制研究,充分运用人工智能[6],简化了手术操作,降低了操作风险。人工智能芯片能够存入大量的信息,并对这些信息进行高速地运算处理和判断,做出最准确的决策,这是目前人脑没有办法做到的[7]。人工智

能还可以根据患者的实际情况,收集所需要的数据,结合过去的数据进行计算和决策,从而得出最有效的治疗方案,以此减少医务人员的脑力劳动强度,合理利用医疗资源[8]。

3人工智能应用领域的展望

随着人工智能在数字理论技术、自动化控制、机器人应用等方面不断地研究发展,将来,机器必定会无限地接近人的各种行为,通过智能“视觉”“听觉”“触觉”“味觉”“嗅觉”来接收信息,传递信息;通过“电脑”来处理信息,选择和决策;通过智能输出端的“说”和“做”来传递信息发布需求和指令;通过智能肢体“行为”来响应与实施。在人类的日常工作、学习、医疗、安全和可持续发展等领域,人工智能都将尽最大的可能去为人类提供服务。然而无论人工智能发展到哪一步,依然无法在思维、精神、感触和情绪方面全盘取代人脑,仍旧不够人性化和智能化,只能跟随人类对自身智能的开发和研究而尽量接近人类[9]。与此同时,随着大数据类的人工智能的研究与开发,信息安全问题将会凸显,并且成为科学家以后很长一段时间的困扰和研究热点[10]。

4结语

总之,人工智能技术的发展是日新月异的,为将来在更多领域、更广泛的应用人工智能技术提供了更多的可能,但是,这一切都是基于人类对自身智能的充分了解和掌握。为此,还需要很多的知识和技术积累,针对人工智能更大量的应用,科研人员还需要做更多的工作。一方面是开发更多的未知智能,另一方面是完美地将人的智能转化成机器人的智能来为人类生存与发展服务。

人工智能的现状及今后发展趋势展望

3.10智能信息检索技术

信息获取和精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将人工智能技术应用于这一领域的研究是人工智能走向广泛实际应用的契机与突破口。

3.11专家系统

专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。如在矿物勘测、化学分析、规划和医学诊断方面,专家系统已经达到了人类专家的水平。

4目前人工智能发展中所面临的难题

人工智能(AI)学科自1956年诞生至今已走过50多个年头,就研究解释和模拟人类智能、智能行为及其规律这一总目标来说,已经迈出了可喜的一步,某些领域已取得了相当的进展。但从整个发展的过程来看,人工智能发展曲折,而且还面临不少难题,主要有以下几个方面:

4.1计算机博弈的困难

博弈是自然界的一种普遍现象。它表现在对自然界事物的对策或智力竞争上。博弈不仅存在于下棋之中,而且存在于政治、经济;军事和生物的斗智和竞争之中。尽管西洋跳棋和国际象棋的计算机程序已经达到了相当高的水平,然而计算机博弈依然面临着巨大的困难。这主要表现在以下两个方面的问题。其一是组合爆炸问题,状态空间法是人工智能中基本形式化方法。若用博弈树来表示状态空间,对于几种常见的棋类,其状态空间都大得惊人,例如,西洋跳棋为10的40次方,国际象棋为10的120次方,围棋则是10的700次方。如此巨大的状态空间,现有计算机是很难忍受的。其二是现在的博弈程序往往是针对二人对弈,棋局公开,有确定走步的一类棋类进行研制的。而对于多人对弈,随机性的博弈这类问题,至少目前计算机还是难以模拟实现的。

4.2机器翻译所面临的问题

在计算机诞生的初期,有人提出了用计算机实现自动翻译的设想。目前机器翻译所面临的问题仍然是1964年语言学家黑列尔所说的构成句子的单词和歧义性问题。歧义性问题一直是自然语言理解(NLU)中的一大难关。同样一个句子在不同的场合使用,其含义的差异是司空见惯的。因此,要消除歧义性就要对原文的每一个句子及其上下文,寻找导致歧义的词和词组在上下文中的准确意义。然而,计算机却往往孤立地将句子作为理解单位。另外,即使对原文有了一定的理解,理解的意义如何有效地在计算机里表示出来也存在问题。目前的NLU系统几乎不能随着时间的增长而增强理解力,系统的理解大都局限于表层上,没有深层的推敲,没有学习,没有记忆,更没有归纳。导致这种结果的原因是计算机本身结构的问题和研究方法的问题。现在NLU的研究方法很不成熟,大多数研究局限在语言这一单独的领域,而没有对人们是如何理解语言这个问题作深入有效的探讨。

4.3自动定理证明和GPS的局限

自动定理证明的代表性工作是1965年鲁宾逊提出的归结原理。归结原理虽然简单易行,但它所采用的方法是演绎,而这种形式上的演绎与人类自然演绎推理方法是截然不同的。基于归结原理演绎推理要求把逻辑公式转化为子句集合,从而丧失了其固有的逻辑蕴涵语义。前面曾提到过的GPS是企图实现一种不依赖于领域知识,求解人工智能问题的通用方法。GPS想摆脱对问题内部表达形式的依赖,但是问题的内部表达形式的合理性是与领域知识密切相关的。不管是用一阶谓词逻辑进行定理证明的归结原理,还是求解人工智能问题的通用方法GPS,都可以从中分析出表达能力的局限性,而这种局限性使得它们缩小了其自身的应用范围。

4.4模式识别的困惑

虽然使用计算机进行模式识别的研究与开发已取得大量成果,有的已成为产品投入实际应用,但是它的理论和方法与人的感官识别机制是全然不同的。人的识别手段形象思维能力,是任何最先进的计算机识别系统望尘莫及的,另一方面,在现实世界中,生活并不是一项结构严密的任务一般家畜都能轻而易举地对付,但机器不会,这并不是说它们永远不会,而是说目前不会。”

5人工智能的发展前景。

5.1人工智能的发展趋势

技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。

5.2人工智能的发展潜力巨大

人工智能作为一个整体的研究才刚刚开始,离我们的目标还很遥远。但人工智能在某些方面将会有圈套的突破。

(1)自动推理人工智能最经典的研究分支,其基本理论是人工智能其它分支的共同基础。一直以来自动推理都是人工智能研究的最热门内容之一,其中知识系统的动态演化特征及可行性推理的研究是最新的热点,很有可能取得大的突破。

(2)机器学习的研究取得长足的发展。许多新的学习方法相继问世并获得了成功的应用,如增强学习算法、reinforcementlearning等。也应看到,现有的方法处理在线学习方面尚不够有效,寻求一种新的方法,以解决移动机器人、自主agent、智能信息存取等研究中的在线学习问题是研究人员共同关心的问题,相信不久会在这引起方面取得突破。

(3)自然语言处理是AI技术应用于实际领域的典型范例,经过AI研究人员的艰苦努力,这一领域已获得了大量令人注目的理论与应用成果。许多产品已经进入了众的智能信息检索技术在Internet技术的影响下,近年来迅猛发展,已经成为了AI的一个独立研究分支。由于信息获取与精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将AI技术应用于这一领域的研究是人工智能走向应用的契机与突破口。论文参考网。从近年的人工智能发展来看,这方面的研究已取得了可喜的进展。

6结束语

人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。

参考文献[1]吴康迪1智能体技术—人工智能的新飞跃[J]1科学对社会的影响,2000,(1)[2]王文杰.人工智能原理与应用[M].北京:人民邮电出版社,2004[3]王万良.人工智能及其应用[M].北京:高等教育出版社,2005[4]蔡自兴.人工智能基础[M].北京:清华大学出版社,1996[5]张仰森.人工智能原理与应用[M].北京:高等教育出版社,2004[6]李陶深.人工智能[M].重庆:重庆大学出版社,2002[7]林尧瑞,马少平.人工智能导论[M].北京:清华大学出版社,2001[8]M·明斯基.TechnologyReview.1983,(6)[9]http:öö202.120.159.3öthesis[EBöOL].人工智能研究的历史回顾,2002[10]孙珩著.浅谈人工智能的发展趋势[J].IT与网络,2002,(6) 

 2/2  首页 上一页 1 2

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇