人工智能何以促进未来教育发展
原标题:人工智能何以促进未来教育发展自工业革命以来,人类社会的发展总是在技术与教育的角逐互动中前行。技术作为推动人类历史发展的核心推进力,与教育这一“人力资本发动机”竞相成为推动经济社会发展的主力。人工智能作为第四次工业革命的显著标签,其飞速发展正在逐步塑造社会、经济、生活等领域的业务新形态,也不断带来颠覆性、丰富性、创新性的新业态。面对人工智能技术对整个社会发展的刺激,教育如何发展,成为值得思考的重要问题。
人工智能凸显创新人才发展挑战
作为引发第四次科技革命的核心技术,人工智能促进社会经济和科技的指数级发展,对人力资本的质量与供给产生了新的需求,人工智能与人力资源之间的相互依存关系产生了前所未有的张力,教育的超前性更是受到前所未有的挑战。第一,知识增长的指数发展使得未来人才需要哪些方面的准备具有极大的不确定性。第二,智力劳动者比重增加,创新人才成为时代发展的刚需。人工智能技术与生产过程的深度融合,会极大压缩生产领域的从业者需求,特别是那些人工智能胜出的领域。第三,人工智能技术的兴起引发高技术产业、新兴产业、新型服务行业更广阔的发展空间,从而使得创新型人才、复合型人才、高技术人才等在劳动力结构中需求激增。人工智能技术无法取代的创造性、灵活性、人文性等能力将成为智能化时代人才竞争的关键。教育肩负培养创新人才、为未来人才提前布局的使命。回溯历史,我们可以得到的经验是,只有教育领先于技术的发展步伐,为技术推进的社会提前做好人力资源的布局,社会的发展才有后劲。因此,在人工智能推进社会更飞速发展的今天,必须回答好什么样的教育才能承载提前布局人力资源的使命,以应对未知社会的人才挑战这一问题。
人工智能催生新的知识生产方式
在人工智能的影响下,人类知识生产加剧变化,知识增量呈现指数级态势。教育的传承性发展将不再局限于知识的传授与继承,而强调知识创造与创新,人工智能的介入更是催生了新的知识生产方式。其一,人工智能强大的知识发现能力缩短了知识生产周期。随着深度学习、强化学习等新的机器学习算法的发展,人工智能除了可以加快知识的生产、访问和利用,还可以从数据中提取隐含的、未知的、潜在的、有用的信息(知识),从而扩展知识创造的能力。其二,人机协同的智能模式扩大了知识创造的机会与可能性。人工智能技术不仅促进人的群智协同创新,而且可以实现人类与人工智能代理协同,后者所具有的超强计算能力,可以极大加速知识生产,催生知识的众创,以及人机协同知识创新。人工智能催生的新的知识生产方式对教育的挑战是,教育不再局限于知识传承,而更是知识的创新。未来学校教育必须教会学生如何与人工智能技术协同合作,呵护学习者“能学”,以及高度重视学生辨析知识能力的培养,召唤学习者“会学”,促进学习者在人机交互中实现知识更新与创造。
人工智能变革学习方式带来创造力与活力释放可能
人工智能已经引发了诸多领域与行业的深刻变革,对教育的系统性变革更是呼之欲出,为学习方式的变革带来了可能。首先,人工智能技术带来规模化教育的个性化可能。人工智能构建的智慧学习环境不仅创造灵活的学习空间,还能感知学习情境、识别学生特征,为学生提供个性学习支持。其次,人工智能技术带来标准化教育下的适应性可能。人工智能通过动态学习诊断、反馈与资源推荐的自适应学习机制,可以适应学生动态变化的学习需求,从而打破标准化的教育限制,释放出学生的创造力与活力。最后,人工智能改善结构化的授导方式,释放教师的创造力与教学活力而专注于人性化的学习设计。教师烦琐重复性的工作能够被智能机器所替代,智能分析技术能为教师精准定位学生的学习问题与需求,教师的角色将转向更加优秀的学习设计师,专注于“如何让学生学好”,注重培养学生的能力和思维,将更多时间用于学习活动设计以及与学生的个性化互动交流,为学生提供个性化学习支持服务。人工智能的发展以及与教育教学的深度融合,给教育的改革创新带来了更多选择,教育需要发挥技术的赋能、增能、使能优势满足教育的功用性追求,也要坚守教育的育人初心和使命传递人文性价值,以学生的成长发展为前提探索可以实践的学习方式、学习设计,通过人工智能释放出教育的更大活力。
人工智能引发领域与行业变革催生教育生态升级
人工智能对其他领域与行业的变革影响也会延伸到教育领域,因为教育是关乎社会发展全局的事业。一方面,人工智能所发挥的增强、替代、改善、变革等作用,突出体现在对社会生产和生活各个领域所产生的行业重塑作用,以及对人力的释放。另一方面,这些重塑作用和人力的释放,引发了社会领域与行业的变革,促使了社会人才需求的转向;而教育是社会人才资源输出的重要领地,需要为此作出有力回应,从而催生教育生态升级。人工智能加速了教育深化改革的进程,推动了系统内部的更新再造。数字技术已经对教师学生、课程、教学方式、学习体验、评价、管理等教育要素产生了深刻影响,并通过逐步的再造教育流程,变革着教育生态。而人工智能则在进一步加速这一过程,以一种颠覆性创新的态势,拓展系统内各要素的内涵,改善和延展系统内部关系,重塑教育系统功能与形态。人工智能拓展了教育边界,助推未来学校建设。未来学校将借助技术的力量,把校外学习场所(如科技馆、博物馆)和线上学习场所都纳入“学校”的范畴,整合社会各领域的教育资源,形成一种全新的育人环境。同时,数字孪生等新技术促进现实空间与虚拟空间的交互融合,通过创建人、物、环境数字孪生体,实现物理空间与数字空间的双向映射、动态交互和实时连接。对教育系统内部的升级改造以及空间资源的拓展,能够使其更好地与社会领域衔接,更好地提供适应未来生活和工作的创新人才成长场所。
人工智能关乎强国战略目标实现
教育应服务于国家战略布局,为抢占人工智能发展先机,构筑先发优势;为国际竞争、社会发展输出创新人才,支持科学技术的自主研发。当前,世界各国纷纷把发展人工智能上升到国家战略的高度,以抢占新一轮科技革命的机遇高点以及全球竞争中的主动权。《新一代人工智能发展规划》提出我国要“成为世界主要人工智能创新中心”的战略目标,全局部署了经济、教育、科技、社会发展和国家安全等重要方面。教育强国战略是科教兴国战略、人才强国战略和创新驱动发展战略等重要战略的逻辑起点,人工智能对教育的人才培养能力提出更高要求。近年来,世界各国在发展人工智能的同时也面临巨大挑战,如创新人才问题、高新技术自主可控问题等。人工智能的国际竞争本质是人才的较量,这需要教育从战略层面予以回应。因此,教育在战略上起引领作用,就要既充分发挥智能技术优势推动教育生态系统升级,又谋篇布局为国家发展提供人才支撑。立足技术与教育在角逐中互为塑造的视角,对人工智能促进未来教育发展的探索,更需要在战略上把握先机,通过教育为社会各领域输出创新人才,支撑社会各领域转型升级以及人工智能等高新科技的创新发展,为强国战略注入持续活力与能量。
教育在与技术的角逐中共同推动社会的发展。教育具有超前性、人文性、传承性、战略性及生态性等特点。在人工智能技术的指数式发展面前,教育的超前性变得难以维系;需要慢工出细活的人文性与满足社会用人需求的工具性之间呈现时空拉锯和矛盾;对人类知识的传承则变身为历史传承、人际共创以及人机共创的多重特征。随着人工智能技术推动的发展加速,教育的发展战略、前瞻性谋划,是一个时不我待、任重道远的重要课题。
(作者:顾小清,系国家社科基金重大项目“人工智能促进未来教育发展研究”首席专家、华东师范大学教育信息技术学系教授)
(责编:郝孟佳、孙竞)分享让更多人看到
人工智能心得体会(精选7篇)
人工智能观后感推荐度:宿舍心得体会推荐度:轮岗心得体会推荐度:奋斗心得体会推荐度:烘焙的心得体会推荐度:相关推荐人工智能心得体会(精选7篇)
我们从一些事情上得到感悟后,通常就可以写一篇心得体会将其记下来,如此就可以提升我们写作能力了。那么心得体会怎么写才能感染读者呢?以下是小编帮大家整理的人工智能心得体会,仅供参考,欢迎大家阅读。
人工智能心得体会120xx年11月17日
今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:
一、激趣导入,引入新知
学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。
二、积极探索,形象直观
学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。
三、小组合作,积极探究
本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。
希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。
人工智能心得体会2李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个概念是在奇葩大会这个节目中,他的观点及幽默风趣的话语引起了我的兴趣,所以在这个寒假中我读了他的《人工智能》一书。
近几年,移动互联网、网上购物、物流快递、高铁、地铁、城市建设等让我们生活发生了天翻地覆的变化。让我对未来产生了无限的畅想,我的科目二一直没过,为什么人要买车?为什么不能有一辆无所不在的滴滴,当我们要出门的时候它就来了,它是共享经济,它会降低空气污染,甚至有一天车与车之间能对话:“我要爆胎了,快散开”等等。
下一个十年,社会还会发生怎样的变化呢?李开复认为,人工智能、机器人作为大热的方向,也会引领时代变革风,很多逻辑简单、重复式、机械式的劳作被机器人取代;制造、金融、家政等等行业,很多传统的管理经营模式也会随之发生改变。未来人类50%的工作都会被人工智能取代。但是人与机器最大区别是有感情,在未来创新思维、审美能力、艺术哲学这些更显的珍贵。
人是最复杂情感动物,怎样才能教育好学生,使教育发挥最大限度的作用呢,那就是老师的爱,是人工智能永远无法做到的,我认为幼师这个职业是不会被取代的,人工智能的发展能够给我们许多帮助,现在也有许多幼儿园在教育教学中运用了VR、AR等技术,以后科技越来越发达我们的教学工作也会越来越便利。但是现在微博上有一件事也引起了大家的热议,一位小学教师在教古诗“飞流直下三千尺,疑似银河落九天”时,播放了现实瀑布视频来展现瀑布的气势磅礴,可是瀑布落下真的有三千尺吗?这样会不会局限的孩子的想象力呢,莎士比亚说:“一千个读者眼中就有一千个哈姆雷特”因而每个人对古诗的理解也就不同。在科技高速发展之时要保持与时俱进、不惧改变、不断学习成长就不会被时代淘汰。人工智能会让自己从事的工作带来什么样的改变?如何运用?这些问题更值得我们大家深思。
人工智能心得体会3人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。
1、人工智能学科的诞生
12世纪末13世纪初,西班牙罗门・卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯・诺依曼提出存储程序的思想和建立通用电子数字计算机的冯・诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。
以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。
现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。
2、逻辑学的发展
2.1逻辑学的大体分类
逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(G.LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。
2.2泛逻辑的基本原理
当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。
泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。
3、逻辑学在人工智能学科的研究方面的应用
逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。
3.1经典逻辑的应用
人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。
3.2非经典逻辑的应用
(1)不确定性的推理研究
人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。
归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。
(2)不完全信息的推理研究
常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。
此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。
4、人工智能――当代逻辑发展的动力
现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。
5、结语
人工智能的产生与发展和逻辑学的发展密不可分。
一方面我们试图找到一个包容一切逻辑的.泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。
人工智能心得体会4人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。
人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。
在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。
这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。
人工智能心得体会5通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。
人工智能的发展历史大致可以分为这几个阶段:
第一阶段:50年代人工智能的兴起和冷落
人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay―ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展。
1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮
由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
对人工智能对世界的影响的感受及未来畅想
最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生
在当前社会中的呢?
在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?
人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。
智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。
虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。
个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。
人工智能心得体会6一、研究领域
在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。
在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。
二、各领域国内外研究现状
近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。
1、分布式人工智能与艾真体
分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。
分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。
mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。
2、计算智能与进化计算
计算智能(computingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。
进化计算(evolutionarycomputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。
达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。
直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。
3、数据挖掘与知识发现
知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。
从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。
机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。
比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。
4、人工生命
人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。
人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。
人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。
人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。
三、学了人工智能课程的收获
(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。
(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。
(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。
(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。
(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。
(6)基本了解人工智能程序设计的语言和工具。
四、对人工智能研究的展望
对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。
人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。
当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。
五、对课程的建议
(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成果中人工智能那些知识被应用。
(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。
(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的作品,增强同学对人工智能的兴趣,加强同学之间的学习。
(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。
人工智能心得体会7一、在中小学开展的机器人教育具有重要的意义。主要体现在以下几个方面:
1、促进教育方式的变革,培养学生的综合能力
在机器人教育中,课堂以学生为中心,教师作为指导者提供学习材料和建议,学生必须自己去学习知识,构建知识体系,提出自己的解决方案,从而有效培养了动手能力、学生创新思维能力。
2、有效激发学习兴趣、动机“寓教于乐”是我们教育追求的目标。这也是当前教育游戏成为当前研究热点一个原因。学习兴趣是学生的学习成功重要因素。机器人教育可以通过比赛形式,得到周围环境的认可和赞赏,能够激发学生学习的兴趣,激发学生的斗志和拼博精神。
3、培养学生的团队协作能力
机器人教育中大多以小组形式开始,机器人的学习、竞赛实际上是一个团体学习的过程。它需要学习者团结协作,包容小组其他成员的缺点和不足,能够与他人进行有效沟通与交流。在实践锻炼中提高自己的团队协作能力,其效果比普通的教育方式、方法更加有效。
4、扩大知识面,转换思维方式
在机器人的学习过程中,通过制作机器人过程中的实际问题解决,可以学到模拟电路、力学等方面知识,不但对物理学科、计算机学科的教学起到促进作用,同时也扩大、加深了学生科学知识;通过完成任务和模拟项目使学生在为机器人扩充接口的过程中学习有关数字电路方面的知识;通过为机器人编写程序,不但学到计算机编程语言、算法等显性知识,更有意义的是通过为机器人编写程序学到科学而高效的思维方式,逻辑判断思维、系统思维等隐性知识
二、中小学机器人教学活动的几点做法:
考虑到中小学生和机器人课程的特点,为培养学生的综合设计能力和创新能力,本人认为机器人教学应该在教学内容、教学方法、教学组织方面一改其它课程的教学模式,走出一条新的路子来。
1、教学内容:机器人教学应注意学生知识广度的学习。虽然仅通过一门课程来扩充学生的知识面效果有限,但是由于机器人的设计涉及到光机电一体化、自动控制、人工智能等多方面问题,既有硬件设计也有软件设计,所以是让学生了解和掌握大量知识的绝好机会。知识不追求深度,只要求广度。例如在确定教学内容时,注意力不要仅放在竞赛用轮式成品机器人上,还应该关注单片机、嵌入式CPU、各种传感器、电机、机械部件等软硬件技术在机器人和自动化技术上的应用。
2、教学方法:应根据学段和学科情况选择不同的综合设计教学方法。如:小学阶段可让学生完成轮式竞赛用机器人的功能模块组装的设计;初中阶段可进行生活与学习中实用机器人的创意设计;高中信息技术课中可重点对机器人智能软件算法进行设计;而高中通用技术课中可重点对机器人的电气部分、传感器部分、动力部分和机械部分进行相关设计。总之,教学方法应该侧重综合设计,而不是放在问题的分析上。
3、教学组织机器人教学应事先营造好供学生动手动脑进行设计活动的环境。提供必要的设备和工具(包括工具软件),组织学生进行探究式学习,特别应注意探究式学习三个要素(任务驱动、协作学习、教师引导)的构成,让学生能够充分化动手。同时,还应提倡设计过程的规范化,用于提高学生的综合设计能力。教学活动不仅在课堂上进行,还应组织学生在课余时间做适当的工作,以保证教学的完整性和有效性。
教育机器人活动受到越来越多的师生欢迎,教育机器人必将为我国的素质教育做出应有的贡献,教育机器人的前途是光明的。
【人工智能心得体会】相关文章:
《人工智能》心得体会08-19
人工智能心得体会11-03
人工智能心得体会06-10
【推荐】人工智能心得体会11-21
【热】人工智能心得体会11-20
人工智能心得体会6篇11-04
人工智能心得体会(6篇)11-04
人工智能心得体会(精选6篇)11-05
人工智能心得体会7篇11-06
人工智能心得体会(7篇)11-06
【人工智能学习心得 3300字】范文118
人工智能心得体会400字对人工智能学习的感想3800字《人工智能》学习报告3500字智能控制技术的发展现状及心得体会5000字计算智能学习心得体会3700字机器人学习心得体会5700字人工智能学习心得
对人工智能的理解
通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称AI。
人工智能的发展历史大致可以分为这几个阶段:
第一阶段:50年代人工智能的兴起和冷落
人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,19xx年成立了国际人工智能联合会议
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本19xx年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展。
19xx年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮
由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
对人工智能对世界的影响的感受及未来畅想
最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生
在当前社会中的呢?
在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?
人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。
智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。
虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。
个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。
人工智能研究的近期目标;是使现有的计算机不仅能做一般的数值计算及非数值信息的数据处理,而且能运用知识处理问题,能模拟人类的部分智能行为。按照这一目标,根据现行的计算机的特点研究实现智能的有关理论、技术和方法,建立相应的智能系统。例如目前研究开发的专家系统,机器翻译系统、模式识别系统、机器学习系统、机器人等。随着社会的发展,技术的进步,人工智能的发展是任何人都无法想象的。通过对人工智能的学习,以及与所听所见所闻的结合,我大胆的对未来人工智能的发展做出了以下拙劣的猜想:
一,融合阶段(2010―20xx年):
1、在某些城市,立法机关将主要采用人工智能专家系统来制定新的法律。
2、人们可以用语言来操纵和控制智能化计算机、互联网、收音机、电视机和移动电话,远程医疗和远程保健等远程服务变得更为完善。
3、智能化计算机和互联网在教育中扮演了重要角色,远程教育十分普及。
4、随着信息技术、生物技术和纳米技术的发展,人工智能科学逐渐完善。
5、许多植入了芯片的人体组成了人体通信网络(以后甚至可以不用植入任何芯片)。比如,将微型超级计算机植入人脑,人们就可通过植入的芯片直接进行通信。
6、抗病毒程序可以防止各种非自然因素引发灾难。
7、随着人工智能的加速发展,新制定的法律不仅可以用来更好地保护人类健康,而且能大幅度提高全社会的文明水准。比如,法律可以保护人们免受电磁烟雾的侵害,可以规范家用机器人的使用,可以更加有效地保护数据,可以禁止计算机合成技术在一些文化和艺术方面的应用(比如禁止合成电视名人),可以禁止编写具有自我保护意识的计算机程序。
三、自我发展阶段(2020―20xx年):
1、智能化计算机和互联网既能自我修复,也能自行进行科学研究,还能自己生产产品。
2、一些新型材料的出现,促使智能化向更高层次发展。
3、用可植入芯片实现人类、计算机和鲸目动物之间的直接通信,在以后的发展中甚至不用植入芯片也可实现此项功能。
4、制定“机器人法”等新的法律来约束机器人的行为,使人们不受机器人的侵害。
5、高水准的智能化技术可以使火星表面环境适合人类居住和发展。
四、升华阶段(2030―20xx年):
1、信息化的世界进一步发展成全息模式的世界。
2、人工智能系统可从环境中采集全息信息,身处某地的人们可以更容易地了解和知晓其他地方的情况。
3、人们对一些目前无法解释的自然现象会有更清楚的认识和更完善的解释,并将这些全新的知识应用在医疗、保健和安全等领域。
4、人工智能可以模仿人类的智能,因此会出现有关法律来规范这些行为。人工智能一但拥有长足的进步,必将带动其他计算机技术的发展。网络化将虚拟的世界变得无限大,届时,足不出户将成为一种习惯。人工智能必将带动人类的发展,起到决定性作用。
虽然不知道其中有多少在未来会得到实现,但也算是我通过对人工智能的学习所收获的总结。人工智能的繁荣景象和光明前景已展示出其诱人的魅力,让我们一起期待未来的世界吧,一个全新的人工智能世界。
1234第二篇:20xx学习心得4700字
20xx年专业技术人员知识更新培训
机械制造专业学习心得
为了提高专业技术人员的创新能力、专业水平和科学素质,我学习了《机器人创新设计-轮式移动机器人创新设计基础》专业课程。通过学习专业课程,让我懂得专业技术人员继续教育知识更新培训的目的是使专业技术人员的综合素质有较大提高,成为具有创新理念,掌握先进技术,懂得市场经济、管理知识,并熟悉有关国际通则的新一代专业技术人员。
现将我这阶段的主要学习内容、学习体会、学习感受、学习思考总结如下:学习内容:
(一)轮式移动机器人的特点:同腿式不行机器人相比,加速快,以一定速
度跑起来的话一般只需较小的驱动力,省能。
(二)轮的配置与方向操纵:
1、汽车一般不能横向移动,但是,与汽车不同,有可以朝着任一行进方
向移动的移动机器人,它是通过全方位移动机构来实现的。
2、方向操纵机构与轮配置的关系,车轮分为主动轮和被动轮―驱动轮、
从动轮、操纵轮。
(三)车轮安装与动力传动
1、制作小型移动机器人常用原动机为直流电机较多。通常电机轴直接与
驱动轮相连不现实。因此,通常在电机与驱动轮之间加减速器传动装置。
2、直接够入电机轴上装有齿轮头的电机的情况下,可再加一对齿轮传动。
3、电机轴上加同步带轮、经同步齿形带将运动和动力传递给大同步齿形
带轮,可在通过第二级同步齿形带传动传递给驱动轮。
(四)机器人如何知道自己所在的位置
1、移动机器人一边移动一边知道自己所处的位置是非常重要的而且也是
必须的。
2、移动机器人是用计算机控制来工作的,计算机对所有的信息进行数字
处理,移动机器人的位置和姿态是用数字表示的。即在地面上建立2维坐标系,将移动的机器人坐标位置与方向数值表示即可以了。
3、机器人的移动环境地图可以描述在同一坐标系中,从当前的位置姿态
来看立即就能明白移动机器人在地图上位于何处。
(五)如何选择、使用电机
1、电机有各种类型的,如何选择合适的电机用于驱动移动机器人。
2、首先估算移动机器人行走时所需要的力有多大。不估算好则无法选用电机。相应于移动机器人行走所需要的力,电机能够产生的驱动力不足则得不到期望的移动速度,如果电机产生的驱动力过大,则对于移动机器人而言,电机驱动能力浪费了!
3、由估算过程可知,移动机器人走行时速度是由该速度下移动机器人所受摩擦力与电机产生的力之间的平衡关系确定的。
(六)行走(轮式移动)如何控制
1、前一节讨论了由电机出力产生的车轮蹭路面的力,自然而然地考虑控制电机输出转矩的方法。
2.同时考虑为使按速走行,期望进行移动机器人走行速度控制。
3.为了使之沿直线走行,期望进行沿着直线走行的移动机器人控制。
4.相应地进行在世界范围内被移动机器人制造商们称为‘力控制’.‘速度控制’.‘轨迹追踪控制’等。想要真正地讲述有关证明及深入论述控制理论的知
识教科书中都有所写。本节将尽可能通俗易懂地讲述关于移动机器人的控制。
5.本节将就移动机器人沿直线走行的模型化问题进行论述。
(七)操作臂型机器人、步行机器人
机器人中最具代表性的尚有操作臂型机器人和步行机器人。实际上这三种机器人都有各自的特点和适用场合,可以互相拟补各自的不足,互相取长补短,可以进行联合创新设计以满足多种工况环境下的实际需要,扩大机器人作业范围、作业类型。
(八)机器人创新设计的工学基础
1、基础知识概述:1)机械制图与电路图设计、2)机构与自由度、3)反馈控制的概念与方法、4)解析几何和矢量分析与矩阵和行例式等数学基础、5)力矩与转动惯量和惯性矩等物理概念、6)减速器等。
2、驱动器与传感器:1)气动元件一气缸、阀、2)光电编码器、3)电位计、4)应变片与电信号测量、5)力传感器原理、6)加速度传感器原理、7)倾斜计、
8)电机使用方法、9)DD(直接驱动又称力矩形)电机、10)步进电机、11)光传感器、12)光电管、13)超声波传感器、14)激光测距传感器、15)陀螺仪等。
3、机械传动系统基础知识概述:1)同步齿形带传动、2)齿形链传动3)钢丝绳与绳轮、4)滚珠丝杠、5)直线轴承、6)直线导轨、7)齿轮、8)齿轮回差的消除、9)蜗轮蜗杆传动、10)齿轮齿条、11)行星齿轮头、12)谐波齿轮传动、13)消除传动系统回差的双电机驱动、14)差动减速器等。
4、滚动轴承
5、零件与材料:1)连接固定类零件及工具、2)弹簧、3)RCC(远心柔顺)机构、4)常用材料、5)形状记忆合金等。
6、电子部件:电阻、电容、二极管、三极管、A/D、D/A转换器、计数器、运算放大器、单片机(CPU)、电机驱动H桥路等。
学习体会、感受:
我通过《机器人创新设计-轮式移动机器人创新设计基础》的学习,让我对机器人设计有了新的基础和看法,通过这么长时间的学习,我将课程所讲和实际学习归为几个词语“定义、构成、分类、控制、机构、应用”。
定义:随着社会发展和科技进步,机器人在生产生活中得到越来越多的应用,其中,工业机器人大多都是机械臂使固定机器人。而还有很多机器人可以根据人们的需要按照预订路径进行移动,这类机器人即为移动机器人其移动机构又分为轮式、履带式、腿式、跳跃式和复合式。每种机器人都有其特定的制造方式和功能。其中,轮式机器人,既以驱动轮子来带动机器人进行移动和工作的机器人。虽然其运动稳定性与路面的路况有很大关系,但是由于其具有自重轻、承载大、机构简单、驱动和控制相对方便、行走速度快、工作效率高等特点,从而被广泛应用。
轮式机器人的分类:由于轮子的多少,直接关系到机器人设计的技术和难度,以及其功用。所以轮式机器人的分类一般都是根据其轮子多少进行分类。按照已经出现的机器人,可以分为如下几类:单轮滚动机器人(如球形机器人)、两轮移动机器人在(如自行车机器人)、三、四轮机器人(如智能车)、六轮机器人和复合机器人。一般而言,三轮机器人简单实用,四轮机器人稳定性好,承载能力大,而相比之下,六轮机器人比四轮机器人更为优越。
轮式机器人研究的几个重要方面:机器人是一种高自动化的高科技产品,它的诞生,是各个学科交叉应用的结果。如今,研制一种机器人就需要从各个科学领域对其进行研究和创新。一般而言,机器人的主要技术如下:机器人机构、
导航和定位、路径规划、传感器技术、控制技术、移动机器人传感器技术、屏蔽技术等。
1.机器人机构
轮式机器人的机构设计属于机械领域,在设计过程中不仅要考虑自身重量的影响,还要考虑到工作环境的影响,而且不能对数据的采集和分析产生干扰。在轮式机器人的机构设计中,最为重要的是转向机构的设计,如今,转向机构主要分为如下几种:艾克曼转向(前轮转向前轮驱动或者前轮转向后轮驱动);滑动转向(两侧车轮独立驱动);全向转动(基于全方位移动轮构建,如麦克纳姆轮);轴-关节转向;(车轮转动幅度较大);车体-关节转向(转弯半径小,转向灵活,但是轨迹难以控制)。再轮式机器人的设计中应根据具体需要来选择转向机构的设计。
2.导航和定位
导航和定位是确定机器人在多维工作环境中相对于全局坐标的位置,是移动机器人最基本的环节。导航方式有惯性导航,磁导航,视觉导航,卫星导航等,定位方式有惯性定位,陆标定位,声音定位等,在机器人设计中,需要对轮式机器人的模型进行分析,才能得出合理有效地导航方式和定位方式。
3.路径规划
路径规划,既让轮式机器人按照某一性能指标搜索一条起始状态到目标状态的最优路径。在设计过程中路径规划要考虑全局路径和局部路径两个方面。其中全局路径是机器人运行的总路径,而局部路径可以使机器人在运动过程中避免碰撞。在分析运动过程中,可以考虑D-H参数法对其进行分析。
4.传感器
在轮式机器人中,传感器就相当于人的感官。它收集外界和自己发生的信息,从而为后续处理积累了前提的数据。轮式机器人中一般会用到的传感器一般有如下几种:内部有测量机器人行进速度的,如线加速度计;测量转角的,如陀螺仪,外部的传感器主要是用来检测外部环境,防止碰撞,如超声波传感器,视觉传感器等等。传感器将采集来的数据传送给控制器,再加以处理,才能使得轮式机器人按照预订路径进行移动。
5.控制
常见的控制有PID控制,但是这些年一般对机器人所用的都是模糊控制,因为模糊控制不需要建立数学模型,可以语言化的表达复杂的非线性系统。另外,由于工作环境的要求,很多轮式机器人都用上了遥控技术,这样,可以扩大机器人的工作空间和工作能力,但是遥控通常会产生更大的误差,因此,如何更好地控制误差,使其达到预定的工作效果,是遥控技术不可不考虑的一个问题。
6.屏蔽
由于在机器人工作工程中,会产生这样那样的干扰,如何去除这些干扰,让机器人更为可靠,就需要更好的屏蔽技术来为其服务。屏蔽设计时要考虑到可靠性,适应性以及经济性,尽量为其找到适合的屏蔽技术。一般的屏蔽技术有:隔离技术,滤波技术,接地抑制反电势干扰技术等。
通过学习让我感受到机器人的创新迫在眉睫,机器人现在已被广泛地用于生产和生活的许多领域,按其拥有智能的水平可以分为三个层次.
一是工业机器人,它只能死板地按照人给它规定的程序工作,不管外界条件有何变化,自己都不能对程序也就是对所做的工作作相应的调整.如果要改变机器人所做的工作,必须由人对程序作相应的改变,因此它是毫无智能的.
二是初级智能机器人.它和工业机器人不一样,具有象人那样的感受,识别,推理和判断能力.可以根据外界条件的变化,在一定范围内自行修改程序,也就是它能适应外界条件变化对自己怎样作相应调整.不过,修改程序的原则由人预先给以规定.这种初级智能机器人已拥有一定的智能,虽然还没有自动规划能力,但这种初级智能机器人也开始走向成熟,达到实用水平.
三是高级智能机器人.它和初级智能机器人一样,具有感觉,识别,推理和判断能力,同样可以根据外界条件的变化,在一定范围内自行修改程序.所不同的是,修改程序的原则不是由人规定的,面是机器人自己通过学习,总结经验来获得修改程序的原则.所以它的智能高出初能智能机器人.
智能机器人可以说是最先进智能的了,已拥有一定的自动规划能力,能够自己安排自己的工作.这种机器人可以不要人的照料,完全独立的工作,故称为高级自律机器人.这种机器人也开始走向实用.
对于这三种机器人尽管机器人人工智能取得了显著的成绩,控制论专家们认为它可以具备的智能水平的极限并未达到。问题不光在于计算机的运算速度不够和感觉传感器种类少,而且在于其他方面,如缺乏编制机器人理智行为程序的设计思想。你想,现在甚至连人在解决最普通的问题时的思维过程都没有破译,人类的智能会如何呢――这种认识过程进展十分缓慢,又怎能掌握规律让计算机“思维”速度快点呢?因此,没有认识人类自己这个问题成了机器人发展道路上的绊脚石。
学习总结:
机器人是一种仿生的高科技产物。轮式机器人的出现,为人们的生活和科学发展做出了十分接触的贡献。在工业、农业、反恐、防爆、空间探测等各个领域,轮式机器人都可以代替人类完成一些危险或者不可完成的任务。如何控
制轮式机器人按照我们需要的方式进行移动和精准的动作是十分重要的一个环节。另外,如今,机器人已经向着更为宏观和微观的方向发展,相信,在不久的将来,在更为精准的设计和控制下,轮式机器人将会为我们带来更为美好的生活!
姓名:赵利敏
报名编号:
工作单位:西林钢铁集团阿城钢铁有限公司
101142012441
+更多类似范文┣ 人工智能总结(精华版)4500字┣ 人工智能期末总结4300字┣ 人工智能知识点总结12700字┣ 人工智能总结4700字┣ 更多人工智能学习心得