博舍

2023年度人工智能企业百强 最强人工智能机器人排名第一名

2023年度人工智能企业百强

2020年度人工智能企业百强

2021-04-12eNet&Ciweek/望舒

2020年度人工智能企业百强排名企业影响力智能化突破性综合1百度94.9896.0192.8994.632字节跳动90.6393.8694.4792.993阿里巴巴89.5093.0193.5492.024华为92.5190.1692.5691.745腾讯91.7891.8591.2391.626科大讯飞91.6391.5791.3991.537医渡科技91.1590.9492.2691.458海康威视90.4591.6291.9591.349华大基因87.9491.3788.6489.3210大疆创新87.4589.3690.7089.1711旷视科技87.6590.7288.6789.0112汉王科技88.9590.4587.5188.9713商汤科技88.3788.4286.9187.9014佳都科技85.8785.2289.2586.7815广电运通85.3288.0586.2186.5316平安科技85.4787.5086.2986.4217明略科技85.1586.2387.5086.2918大华股份88.2583.3186.8586.1419神州泰岳86.7383.0287.8485.8620地平线机器人87.6583.4486.0985.7321瑞为技术84.5185.1886.5185.4022云天励飞83.5486.7285.6385.3023影谱科技85.8184.4685.4985.2524全志科技85.2085.2084.8385.0825Geek+84.6684.1383.8184.2026亚信科技83.2685.1483.1383.8427寒武纪84.2784.6782.2983.7428创略科技83.2785.1382.5483.6529文远知行84.3684.6881.7883.6130同盾科技83.2784.3482.4383.3531依图科技84.1385.3680.0583.1832亿嘉和83.2382.6180.5782.1433图森未来82.7879.9583.2481.9934合合信息83.5980.4181.5481.8535奥比中光82.0782.6780.1881.6436思必驰81.1183.4479.5181.3537森亿智能82.3981.0579.9981.1438燧原科技81.0582.0679.9181.0139智加科技80.0784.6778.1880.9740国双81.3981.3479.8580.8641云知声82.4879.8279.3280.5442亿航智能81.8178.3079.8679.9943Momenta79.6078.0981.9279.8744松鼠Ai81.9478.5278.3279.5945碳云智能80.0176.6580.7979.1546出门问问78.3578.1580.2178.9047Testin云测78.2678.8278.8778.6548搜狗78.4476.1678.6977.7649爱笔智能77.1877.5376.1176.9450每日互动76.4376.9676.8676.7551能力风暴77.4676.2776.4276.7252图灵机器人76.5476.1276.4576.3753云从科技76.5876.0576.3676.3354中译语通75.2177.1076.1476.1555DataVisor75.5876.9075.0875.8556东方网力75.8575.1676.4275.8157微模式76.6573.4677.2375.7858汇医慧影77.5876.4172.9175.6359特斯联76.7574.4275.4875.5560禾多科技74.5674.1877.7975.5161上海龙创74.5476.2175.2175.3262云洲智能74.8973.9976.9675.2863极飞科技73.7376.0175.9775.2464Rokid72.8277.1475.6675.2165普强信息76.2075.4773.9175.1966集奥聚合74.6875.5174.7874.9967追一科技73.9175.5173.6674.3668黑芝麻智能科技75.7572.4074.7574.3069达闼科技72.9673.9075.8374.2370力维智联74.1372.0575.4773.8871大数医达72.0473.1475.7573.6472眼神科技71.6674.9773.5173.3873捷通华声73.5373.3273.0973.3174创新奇智73.6171.2074.7473.1875华坤道威74.1172.9972.1973.1076Video++72.2274.0172.7773.0077深之蓝75.0771.6871.4072.7278哈奇智能73.6371.6872.6272.6479云迹科技74.6872.3270.6872.5680深兰科技72.3773.6570.5172.1881米雅科技72.0972.8070.8971.9382高仙机器人72.7171.0771.9471.9183天云大数据71.0970.4073.2871.5984猎户星空71.7870.3172.6371.5785来也71.1371.3371.7971.4286达观数据69.8071.8272.5471.3987摩尔线程70.7870.5472.1471.1588易航智能72.5770.3969.6870.8889镁伽机器人72.3669.7970.4170.8790百可录69.5270.4670.6070.1991Udesk70.8370.2169.1570.0692码隆科技68.3470.9070.2569.8393亮风台68.6868.2169.8668.9294roobo70.9268.6967.0668.8995晓多科技70.8066.9568.5368.7696声智科技68.0768.3469.7968.7397肇观电子68.1769.1266.4667.9298希迪智驾68.2266.3467.9867.5199钛米机器人64.7769.3266.6666.92100元化智能65.7366.7165.6866.042021.04德本咨询/eNet研究院/互联网周刊选择排行

2020年,突如其来疫情不但没有影响人工智能行业的发展,反而加速了其成长。2021年,作为“十四五”规划的开局之年,人工智能已经成为推动国家发展的中坚力量,深入到社会的各行各业。 

汽车行业    

谈起智能汽车,当下最火热的莫过于钢铁侠马斯克和他的特斯拉。而在大洋彼岸,一股以中国为代表的东方力量正在崛起。 

抢跑、冲刺、上市,经过了多年的发展,中国的新能源汽车市场涌现了一批新的玩家:汽车之家创始人李想建立的理想汽车、UC浏览器创始人何小鹏建立的小鹏汽车、易车创始人李斌建立的蔚来汽车、还有备受争议的由贾老板建立的法拉第汽车。这些新玩家大部分都来自于互联网行业,因此也得到了一个“互联网造车”的称号。而这些由互联网起家的汽车企业与传统车企最大的不同就在于“智能”二字。 

今年1月份,小鹏汽车自研的自动驾驶辅助系统XPILOT3.0已通过OTA推给客户,且成为用户购车的核心卖点。在小鹏汽车财报发布后的电话会议上,小鹏汽车公布了包括第二代智能座舱系统和XPILOT3.0在内的智能化功能的多项核心数据:智能语音助手今年以来日均使用率超过90%。这一数字说明了语音系统对传统车内交互方式形成了颠覆,语音作为全新交互方式为用户带来了“不可逆”的体验升级。 

随着电动化的不断普及,汽车的核心卖点将从操控、动力、内饰等向车机系统、自动驾驶等方向转移。作为这场革命的核心,谁能抓住人工智能,谁就抓住了汽车行业的未来。 

教育 

“因材施教”追求育人极致。 

通过图像识别技术,将教师从批改作业、阅卷工作中解放出来;通过语音识别和语义分析技术,辅助教师进行口试测评、纠正学生的英语发音;通过人机交互技术,协助教师为学生答疑解惑……如今,全国20多个省市的考试已引入人工智能技术,25000多所学校用上了人工智能的教育产品。传统教育正在被人工智能技术悄然渗透,它改变着教育的生态、方式还有师生关系。 

松鼠Ai的智适应系统,使用人工智能化的系统去模拟近百位特级教师的大脑,应用他们过去的经验智慧和反应判断,再通过机器学习去不断优化解决方案,变身超级教师,来模拟精准的摸底和教学过程,因材施教,迅速提升学生学习技能。 

作业帮拥有AI+大数据+直播的全套数字教育全套解决方案。借助信息化全套解决方案,作业帮根据海量的“教与学”学习数据,探索绘制区域中小学生学习特点“画像”,建立中小学生学习能力预测模型,对中小学生校外学习数据进行动态监测和深度挖掘,助力科学教育决策。 

2500年前,孔子在回答学生“闻斯行诸”时提出的“因材施教”仍成为世代教育工作所追求的育人极致。 

医疗 

新冠肺炎深刻改变着世界医疗健康行业,而人工智能和医疗行业的融合则为医疗技术的创新和进步提供新的动力。在全国各地AI+医疗行业政策的大力扶持下,AI+医疗相关市场也迎来了一波爆发增长期。 

碳云智能是国内少有的、以大数据为技术背景的独角兽公司,其核心技术是大数据,包括基因数据、微生物数据(肠道、口腔、皮肤等)、蛋白及代谢数据(尿液、汗液、血液等)等。碳云智能打造的智能化场景服务App“觅我”,帮助用户构建专属的数字生命账户,通过对健康状态的全面检测和持续监测,预知身体的变化趋势。 

近日,华大基因与瀚维智能医疗发挥各自在基因科技与人工智能的优势,发布了一台以“互联网+自取样”、HPV检测+可移动式智能乳腺超声相结合的“两癌”智能筛查车。这台“两癌”智能筛查车由中巴改造而成。筛查车里面配有用于宫颈癌筛查的华大基因SeqHPV自取样HPV检测,以及用于乳腺癌筛查的瀚维AIBUS乳腺超声系统。该检测还适用自取样,可于短时间内完成大样本的采集。同时,华大基因采用互联网平台对宫颈癌筛诊数据进行管理,便于实时了解筛诊情况、数据统计及可视化展示。 

当AI遇见生物健康大数据,我们可以期待一个精准医疗的时代。 

金融 

在监管的指引下,我国在金融关键底层技术布局进一步加快,专注金融领域的科技企业上市热情高涨,人工智能和金融创新监管试点等工作稳步推进、成效显现。 

当普惠金融进入下半场,科技对于金融机构的助力愈发凸显。而风控数字化俨然成为数字化改革的排头兵。为更好地帮助金融机构将欺诈风险拒之门外,百融云创从贷前环节发力,将传统反欺诈的被动防治转变为提前预防和主动拦截。百融云创利用自身整体贷前反欺诈产品体系帮助相关机构搭建属于自己的智能反欺诈风控体系,实现对申请人的高效全面欺诈风险防范。 

同盾科技联合创始人马骏驱认为:“人工智能等科技力量已从过去的支撑、保障的从属地位,发展成为引领、重塑金融等行业的驱动力量,成为行业重要的核心竞争力,特别是在智能营销获客、智能风险防控、智能数字金融、普惠金融等领域发挥重要作用。”特别自去年疫情以来,科技赋能普惠金融,为实体经济提供了“精准滴灌”式金融服务,为统筹推进疫情防控和经济社会发展注入金融创新活水。 

人工智能正在挑战金融行业的传统价值。 

总方向:由“制造大国”向“制造强国”转变 

“当前智能制造已成为做大做强做优中国制造、中国创造的突破口,但我国智能制造仍然存在大而不强、多而不优的问题。‘十四五’时期,我国制造业必须继续坚持走提质增效、转型升级之路,聚焦基础研发能力,增强网络信息化建设,推动先进制造业和现代服务业深度融合发展,加速推进由‘制造大国’向‘制造强国’的转变。”作为人大代表的雷军,在两会上提出了“关于进一步推动我国智能制造发展”的建议。 

改革开放前四十年,中国完成了农业化到工业化的转变,后四十年,中国的将从工业社会全面进入到智能社会。这并不意味着像欧美国家一样放弃工业制造,而是以更加智能的形式推进制造业的下一次变革。 

一年前,比亚迪调集3000名工程师、10万名产业工人,从零起步制造口罩机,3天出图纸、7天出设备、10天量产、20天做到全球第一,最高日产量达1亿只,是疫情前全球产量的5倍。这些成绩的取得,除了依靠强大的制造实力,还有一个重要保障,就是比亚迪搭建了大量的数字化、自动化生产线。依托强大的信息化建设能力,比亚迪仅用7天时间,在8个基地,快速建成了5000多个信息网络终端,有效保障了口罩机的设备安装和投产,实现了口罩生产的信息化、智能化。据介绍,口罩从原料、成型、包装、直到用户手中,实行全生命周期管理,让每一片口罩均可溯源。比亚迪快速援产口罩的案例,成为制造业数字化转型的一个样本。 

机会:谁能成为集大成的先行者 

如果说哪个行业对人工智能的依赖最深,恐怕非电子商务莫属。美团副总裁、首席科学家夏华夏在去年年末世界互联网大会·互联网发展论坛上表示,美团总共有200个业务,几乎每个业务都在做人工智能,帮助商家做智能决策,一方面给用户提供一些智能交互的手段,比如说语音交互、视觉交互,用很多智能交互的用户提供体验。比如我们现在做无人配送的工作,用智能无人机、无人车帮助外卖小哥做更高效的配送。 

目前,电商巨头都在积极应用人工智能技术,优化自身电商平台,以此来增加行业竞争力。阿里巴巴、京东相继推出了智能客服机器人。在推荐引擎方面,阿里巴巴有可视化人工智能平台“DTPAI”,京东则推出图像信息平台“钟馗系统”和文字识别系统。在物流领域,电商巨头也纷纷发力。 

近年来,电子商务取得了卓越的成就。人们在享受电子商务便利的同时,同时也提出了更高的要求,而人工智能的出现为电子商务的进一步发展开辟了新思路与格局。我们相信,当前的电子商务正由于人工智能的影响而处于变革的边缘。 

趋势:从“AI产业化”到“产业AI化” 

AI产业化即AI产品的产业化,如智能音箱、智能机器人等。而产业AI化则是赋能传统产业,深入每个行业应用实践中。如果以一个量级来讲,AI产业化是千亿级别的产业,产业AI化将是万亿级别的市场。 

无论是深耕人工智能的新兴企业,还是拥抱人工智能的传统企业,都是产业AI化中的一员。未来,会有更多的企业参与其中。而我们,将与各位共同见证这一伟大的时刻。

相关频道:eNews排行

您对本文或本站有任何意见,请在下方提交,谢谢!

投稿信箱:tougao@enet16.com

深度研报:人工智能机器人开启第四次科技革命

图片来源@视觉中国

文|光锥智能&势乘资本,作者|谢晨星、王嘉攀、赵江宇

在互联网红利基本散尽的时代,未来到底属于web3、元宇宙,还是碳中和?到底什么样的革命性技术可以引领人类社会走出经济衰退、疫情和战争的影响,并将全球经济体量再向上推动数十倍?

我们的答案是,我们早已处于人工智能时代之中。

我们正处于传统信息技术时代的黄昏,和人工智能时代的黎明。

在过去的260年间,人类社会经历了三次巨大的科技创新浪潮,蒸汽机、电力和信息技术,将全球GDP提升了近千倍。每一次科技浪潮都通过某一项先进生产力要素的突破,进而引起大多数行业的变革:比如蒸汽机的出现推动了汽车、火车、轮船、钢铁等行业的巨大发展,140年前美国铁路行业的恶性竞争史,就如同现今互联网行业BAT之间的竞争。而铁路行业发展、兼并所需的巨额金融资本,又驱动了华尔街的发展,逐渐成为全球的金融中心。

二战之后以信息技术为核心的第三次科技革命迄今已逾70年,将全球GDP提升约60倍。其中可分为两段:1950年-1990年,是半导体产业迅猛发展的时代,推动了大型计算机向个人PC的小型化;1990年至今是近30年的互联网全球化时代,而互联网时代又细分为桌面互联网和移动互联网两段。

但随着摩尔定律的失效和信息技术红利彻底用尽,加上疫情黑天鹅影响,全球GDP衰退,引发并加剧了全球地缘政治和军事冲突,开始向逆全球化发展。

所以未来到底属于web3、元宇宙,还是碳中和?到底什么样的革命性技术可以引领人类社会走出经济衰退、疫情和战争的影响,并将全球经济体量再向上推动增长下一个50倍?

我们的答案是,我们早已处于人工智能时代之中。就像直到2010年iphone4发布,绝大多数人也并未意识到移动互联网革命早已开始一样,如今人工智能其实也已广泛应用,比如到处遍布的摄像头和手机人脸识别,微信语音和文本转换,抖音动态美颜特效、推荐算法,家庭扫地机器人和餐厅送餐机器人,背后都是人工智能核心技术在过去十年不断取得的巨大突破。

互联网已经是传统行业。

互联网技术作为过去30年最先进的生产力要素,改变了全球的所有人、所有产业、社会经济,甚至是政治、军事、宗教。

虽然互联网的技术红利已基本用尽,但我们仍可通过研究其历史规律,来预测未来新技术发展的可能路径。

30年的互联网发展历程总体可分为桌面互联网和移动互联网两个时代,按产业渗透规律,又可分为信息互联网、消费互联网和产业互联网三大阶段。

系统硬件都是最先起步,包括底层芯片、操作系统、联网通信、整机等,进而初步向媒体工具、文娱游戏行业渗透,因为这些领域最易受新技术的影响。当2002年中国网民达到6000万人,2012年中国智能手机出货量达到2亿部之后,互联网和移动互联网开始全面开花,渗透变革了直接toC的众多行业,如零售消费、交通出行、教育、金融、汽车、居住、医疗等。而当用户量进一步上涨、新技术的渗透进一步加深,企业服务、物流、制造、农业、能源等toB产业被影响。

而这个过程中可以发现,移动互联网时代对产业的渗透深度比桌面互联网更深,桌面互联网介入行业基本停留在信息连接层面,而到移动互联网时代,众多掌握先进技术要素的公司开始自己下场开超市、组车队、重构教育内容和金融机构,甚至是卖房、造车。也有些公司虽然诞生在桌面时代,但成功抓住移动爆发红利杀出重围,比如美团、去哪儿、支付宝。

抖音的崛起是中国移动互联网时代的最大变数,也是数据通信传输技术不断提升的必然,引发了用户流量结构的重组,进而催生了一大批抓住抖音流量红利崛起的消费品牌,如完美日记、花西子等等。但最终都逃不过被平台收割的命运,就像当年淘品牌的结局一样。微信支付、支付宝的普及极大推动了线下连锁零售的数字化程度和管理半径,减少了上下游现金收款产生的风险,促使其在资本市场被重新认可,连锁化率进一步提升,比如喜茶、瑞幸、Manner等等。这两条逻辑共同构成了过去几年的消费投资热潮主线。

如何评判一个新技术是否能引领未来的发展方向?

我们要看它能否从本质上解放生产力、发展生产力。

蒸汽机之所以推动了第一次科技革命,是因为其极大的提升了劳动生产力,并将大量劳动人口从第一产业农业的低级劳动中解放出来,进入第二产业工业。电力加速了这一过程,并推动了第三产业服务业的出现和发展。信息技术将更多的人口从第一、二产业中释放,进入第三产业(如大量年轻人不再进厂而去送外卖、跑滴滴),于是形成了如今全球第三产业GDP占比55%,中国第三产业劳动人口占比50%的格局。

机器人即是人工智能技术的硬件形态,在可见的未来,将第一二三产业的劳动人口从低级劳动中大比例释放和替代,并在这个过程中推动全球GDP继续百倍增长。

同时可大胆预言,以创新为职业的第四产业将会出现,而这个职业在人类的历史长河中其实一直存在于第一二三产业的边缘,不断用突破性创新推动着人类技术的进步,且社会生产力的提升促使该职业人群不断扩大。这大约能证明刘慈欣的技术爆炸假说来源。

人工智能从模块上可分为感知、计算和控制三大部分,由表及里可分为应用层、数据层、算法层、算力层,而随着2012年芯片进入28nm制程后的量子隧穿效应导致摩尔定律失效,“每提升一倍算力,就需要一倍能源”的后摩尔定律或将成为人工智能时代的核心驱动逻辑,算力的发展将极大受制于能源,当前全球用于制造算力芯片的能源占全球用电量的约1%,可以预测在人工智能大规模普及的未来数十年后,该比例将会大幅提升至50%甚至90%以上。而全球如何在减少化石能源、提升清洁能源占比,从而确保减少碳排放遏制全球升温的同时,持续提升能源使用量级,将推动一系列能源技术革命。关于该方向的研究可参考我们的另一篇报告《碳中和:能源技术新革命》。

早在第一次科技革命之前260年,哥伦布地理大发现就使西班牙成为了第一个全球化霸主。蒸汽机驱动英国打败西班牙无敌舰队,电力和两次世界大战使美国超过英国,信息技术又让美国赢得和苏联的冷战对抗,全球过了30年相对和平的单极霸权格局。

因此中国如果仅在现有技术框架中与欧美竞争,只会不断被卡脖子,事倍功半。只有引领下一代人工智能和碳中和能源技术科技革命浪潮,才能从全球竞争中胜出。

尽管中国已经跻身人工智能领域的大国,但是我们必须认识到中美之间在AI领域仍然有着明显的差距。从投资金额和布局上看,从2013年到2021年,美国对人工智能公司的私人投资是中国的2倍多。当前美国AI企业数量领先中国,布局在整个产业链上,尤其在算法、芯片等产业核心领域积累了强大的技术创新优势。更关键的是,尽管近年来中国在人工智能领域的论文和专利数量保持高速增长,但中国AI研究的质量与美国仍然有较大差距(集中体现在AI顶会论文的引用量的差距上)。

请输入图说2013-2021年中美在AI领域私有部门(如风险投资、个人投资等)投资金额上差距逐渐拉大

请输入图说中国在AI顶会上发表的文章数量已经反超美国,但影响力上仍然与美国有较大差距

图片来源:The2022AIIndexReport,StandfordUniversity

因此,中国需要持续加大在AI领域的研发费用规模,特别是加大基础学科的人才培养,吸引全世界优秀的AI人才。只有这样,中国才能有朝一日赶超美国,在基础学科建设、专利及论文发表、高端研发人才、创业投资和领军企业等关键环节上的拥有自己的优势,形成持久领军世界的格局。

一、AI发展简史

人工智能的概念第一次被提出是在1956年达特茅斯夏季人工智能研究会议上。当时的科学家主要讨论了计算机科学领域尚未解决的问题,期待通过模拟人类大脑的运行,解决一些特定领域的具体问题(例如开发几何定理证明器)。

那么到底什么是人工智能?目前看来,StuartRussell与PeterNorvig在《人工智能:一种现代的方法》一书中的定义最为准确:人工智能是有关“智能主体(Intelligentagent)的研究与设计”的学问,而“智能主体”是指一个可以观察周遭环境并做出行动以达致目标的系统。这个定义既强调了人工智能可以根据环境感知做出主动反应,又强调人工智能所做出的反应必须达成目标,同时没有给人造成“人工智能是对人类思维方式或人类总结的思维法则的模仿”这种错觉。

到目前为止,人工智能一共经历了三波浪潮。

第一次AI浪潮与图灵和他提出的“图灵测试”紧密相关。图灵测试刚提出没几年,人们似乎就看到了计算机通过图灵测试的曙光:1966年MIT教授JosephWeizenbaum发明了一个可以和人对话的小程序——Eliza(取名字萧伯纳的戏剧《茶花女》),轰动世界。但是Eliza的程序原理和源代码显示,Eliza本质是一个在话题库里通过关键字映射的方式,根据人的问话回复设定好的答语的程序。不过现在人们认为,Eliza是微软小冰、Siri、Allo和Alexa的真正鼻祖。图灵测试以及为了通过图灵测试而开展的技术研发,都在过去的几十年时间里推动了人工智能,特别是自然语言处理技术(NLP)的飞速发展。

第二次AI浪潮出现在1980-1990年代,语音识别(ASR)是最具代表性的几项突破性进展之一。在当时,语音识别主要分成两大流派:专家系统和概率系统。专家系统严重依赖人类的语言学知识,可拓展性和可适应性都很差,难以解决“不特定语者、大词汇、连续性语音识别”这三大难题。而概率系统则基于大型的语音数据语料库,使用统计模型进行语音识别工作。中国学者李开复在这个领域取得了很大成果,基本上宣告了以专家系统为代表的符号主义学派(SymbolicAI)在语音识别领域的失败。通过引入统计模型,语音识别的准确率提升了一个层次。

第三次AI浪潮起始于2006年,很大程度上归功于深度学习的实用化进程。深度学习兴起建立在以GeoffreyHinton为代表的科学家数十年的积累基础之上。简单地说,深度学习就是把计算机要学习的东西看成一大堆数据,把这些数据丢进一个复杂的、包含多个层级的数据处理网络(深度神经网络),然后检查经过这个网络处理得到的结果数据是不是符合要求——如果符合,就保留这个网络作为目标模型;如果不符合,就一次次地、锲而不舍地调整网络的参数设置,直到输出满足要求为止。本质上,指导深度学习的是一种“实用主义”的思想。实用主义思想让深度学习的感知能力(建模能力)远强于传统的机器学习方法,但也意味着人们难以说出模型中变量的选择、参数的取值与最终的感知能力之间的因果关系。

需要特别说明的是,人们往往容易将深度学习与“机器学习”这一概念混淆。事实上,在1956年人工智能的概念第一次被提出后,ArthurSamuel就提出:机器学习研究和构建的是一种特殊的算法而非某一个特定的算法,是一个宽泛的概念,指的是利用算法使得计算机能够像人一样从数据中挖掘出信息;而深度学习只是机器学习的一个子集,是比其他学习方法使用了更多的参数、模型也更加复杂的一系列算法。简单地说,深度学习就是把计算机要学习的东西看成一大堆数据,把这些数据丢进一个复杂的、包含多个层级的数据处理网络(深度神经网络),然后检查经过这个网络处理得到的结果数据是不是符合要求——如果符合,就保留这个网络作为目标模型,如果不符合,就一次次地、锲而不舍地调整网络的参数设置,直到输出满足要求为止。本质上,指导深度学习的是一种“实用主义”的思想。实用主义思想让深度学习的感知能力(建模能力)远强于传统的机器学习方法,但也意味着人们难以说出模型中变量的选择、参数的取值与最终的感知能力之间的因果关系。

二、AI的三大基石解析

如前所述,人工智能由表及里可分为应用层、数据层、算法层和算力层。

1.算力

算力层包括具备计算能力硬件和大数据基础设施。回顾历史我们就会发现,历次算力层的发展都会显著推动算法层的进步,并促使技术的普及应用。21世纪互联网大规模服务集群的出现、搜索和电商业务带来的大数据积累、GPU和异构/低功耗芯片兴起带来的运算力提升,促成了深度学习的诞生,促成了人工智能的这一波爆发。而AI芯片的出现进一步显著提高了数据处理速度:在CPU的基础上,出现了擅长并行计算的GPU,以及拥有良好运行能效比、更适合深度学习模型的现场可编程门阵列(FPGA)和应用专用集成电路(ASIC)。

当前,人工智能的算力层面临巨大的挑战。随着2012年芯片28nm的工艺出现,原先通过在平面上增加晶体管的数量来提升芯片性能的思路因为量子隧穿效应而不再可取,摩尔定律开始失效。晶体管MOSFET这个芯片里最基础的单元,由平面结构变成立体结构(由下图中的Planar结构转向FinFET结构,2018年之后进一步从FinFET结构转向GAAFET结构)。

三代MOSFET的栅极结构演化。其中灰色代表电流流经区域,绿色代表充当闸门的栅极

芯片结构的改变直接导致了芯片制造步骤的增加,最终体现为成本的上升。在2012年28nm工艺的时候,处理器的生产大概需要450步。到了2021年的5nm工艺时,生产环节已经增加到了1200步。对应到每1亿个栅极的制造成本上,我们从图中可以清楚地看到,从90nm工艺到7nm工艺,生产成本先下降后上升。这就使得摩尔定律的另一种表述形式——“同样性能的新品价格每18-24个月减半”不再成立。未来我们很可能见到的情况是,搭载了顶级技术和工艺生产出来的芯片的电子产品或设备价格高昂,超过了一般消费者的承受力度。

每1亿个栅极的制造成本、图片来源:MarvellTechnology,2020InvestorDay

不过算力层的这个变化让半导体制造企业受益最大,因为只要需求存在,台积电、三星、英特尔等几家掌握先进工艺的厂商就会持续投入资金和人力,不断设计和制造新一代芯片,然后根据自身成本给产品定价。

想要彻底解决摩尔定律失效的问题,需要跳出当前芯片设计的冯·诺依曼结构。类脑芯片、存算一体、寻找基于硅以外的新材料制造芯片,甚至量子计算等等都是潜力巨大的解决方案,但是这些方案距离成熟落地还非常遥远(最乐观地估计也需要几十年的时间),无法解决当下芯片行业的困局。在这段时期内,行业内为了提升芯片性能,开始广泛应用Chiplet技术,或者使用碳基芯片、光芯片等等。

Chiplet技术

Chiplet技术的原理有点类似搭积木,简单来说就是把一堆小芯片组合成一块大芯片。这种技术能够以较低的成本制造过于复杂的芯片,并且保证足够优秀的良率,从2012年开始就逐步被使用。当前Chiplet技术已经能够在二维平面上实现用不同的材料和工艺加工拼接的小核心,Intel等公司正在把Chiplet技术引入新的阶段发展:在垂直方向上堆叠多层小核心,进一步提升芯片的性能(例如Intel于2018年开发的Foveros3DChiplet)。不过Chiplet技术路线面临的最大问题来源于芯片热管理方面:如果在三维结构上堆叠多层小核心,传统的通过CPU顶部铜盖一个面散热的方案将无法解决发热问题,因此可能需要在芯片的内部嵌入冷却装置来解决发热功率过高的问题。

碳纳米管技术

使用碳纳米管可能是另一个短期解决方案。这项技术属于碳基芯片领域,具体来说就是用碳纳米管承担芯片里基础元件开关的功能,而不是像传统芯片一样使用掺杂的半导体硅来传输电子。这种技术的优势在于导电性好、散热快、寿命长,而且由于其本质上仍然保留了冯·诺依曼架构,当前的生产工艺、产业链等匹配设施都不需要做出太大的调整。但是目前碳纳米管的大规模生产和应用还有一些困难,距离把碳纳米管按照芯片设计的要求制造出来可能还需要几十年。

短期内,围绕Chiplet技术在热管理方面的探索,和碳纳米管技术的灵活生产制造突破是算力层面上我们重点关注的机会。当然,我们也要了解目前类脑芯片、存算一体和量子计算等终局解决方案的相关情况。这里为大家简单介绍如下:

类脑芯片

类脑芯片的灵感源于人脑。类脑芯片和传统结构的差异体现在两方面:第一,类脑芯片中数据的读取、存储和计算是在同一个单元中同时完成的,也即“存算一体”;第二,单元之间的连接像人类神经元之间的连接一样,依靠“事件驱动。

目前,类脑芯片的相关研究分为两派。一派认为需要了解清楚人脑的工作原理,才能模仿人类大脑设计出新的结构。但是目前人类对人脑的基本原理理解得仍然很粗浅,因此这一派取得的进展相当有限。另外一派则认为,可以先基于当前已有的生物学知识,比照人脑的基础单元设计出一些结构,然后不断试验、优化、取得成果,实现突破。目前这一派的研究人员依照神经元的基础结构,给类脑芯片做了一些数学描述,也搭建了模型,并且做出了不少可以运行的芯片。

存算一体

存算一体可以简单被概括为“用存储电荷的方式实现计算”,彻底解决了冯诺依曼结构中“存储”和“计算”两个步骤速度不匹配的问题(事实上,在以硅为基础的半导体芯片出现之后,存算速度不匹配的情况就一直存在)。存算一体机构在计算深度学习相关的任务时表现突出,能耗大约是当前传统计算设备的百分之一,能够大大提升人工智能的性能。除此之外,这种芯片在VR和AR眼镜等可穿戴设备上有广阔的应用前景,也能推动更高分辨率的显示设备价格进一步降低。

目前,存算一体仍然有两个问题没有突破:第一是基础单元(忆阻器)的精度不高,其次是缺少算法,在应对除了矩阵乘法以外的计算问题时表现远不如冯·诺依曼结构的芯片。

量子计算

量子计算是用特殊的方法控制若干个处于量子叠加态的原子,也叫作“量子”,通过指定的量子态来实现计算。量子计算机最适合的是面对一大堆可能性的时候,可以同时对所有可能性做运算。为了从所有的结果中找一个统计规律,我们需要使用量子计算机进行多次计算。不过由于退相干的问题,量子计算很容易出错。目前量子计算的纠错方法有待突破,只有解决了这个问题量子计算才可能被普遍使用。

当前量子计算机体积过大、运行环境严苛、造价昂贵。目前来看量子计算与经典计算不是取代与被取代的关系,而是在对算力要求极高的特定场景中发挥其高速并行计算的独特优势。中科大的量子物理学家陆朝阳曾总结道,“到目前为止,真正可以从量子计算中受益的实际问题仍然非常有限,享受指数级加速的就更少了——其他的仅有更有限的加速”。

总体而言,量子计算机的相关成果都只停留在科学研究的阶段,距离实际应用还很遥远。

2.算法

算法层指各类机器学习算法。如果根据训练方法来分类,机器学习算法也可以分成“无监督学习”、“监督学习”和“强化学习”等。按照解决问题的类型来分,机器学习算法包括计算机视觉算法(CV)、自然语言处理算法(NLP)、语音处理和识别算法(ASR)、智慧决策算法(DMS)等。每个算法大类下又有多个具体子技术,这里我们为大家简单介绍:

2.1计算机视觉

计算机视觉的历史可以追溯到1966年,当时人工智能学家Minsky要求学生编写一个程序,让计算机向人类呈现它通过摄像头看到了什么。到了1970-1980年代,科学家试图从人类看东西的方法中获得借鉴。这一阶段计算机视觉主要应用于光学字符识别、工件识别、显微/航空图片的识别等领域。

到了90年代,计算机视觉技术取得了更大的发展,也开始广泛应用于工业领域。一方面是由于GPU、DSP等图像处理硬件技术有了飞速进步;另一方面是人们也开始尝试不同的算法,包括统计方法和局部特征描述符的引入。进入21世纪,以往许多基于规则的处理方式,都被机器学习所替代,算法自行从海量数据中总结归纳物体的特征,然后进行识别和判断。这一阶段涌现出了非常多的应用,包括相机人脸检测、安防人脸识别、车牌识别等等。

2010年以后,深度学习的应用将各类视觉相关任务的识别精度大幅提升,拓展了计算机视觉技术的应用场景:除了在安防领域应用外,计算机视觉也被应用于商品拍照搜索、智能影像诊断、照片自动分类等场景。

再细分地来看,计算机视觉领域主要包括图像处理、图像识别和检测,以及图像理解等分支:

图像处理:指不涉及高层语义,仅针对底层像素的处理。典型任务包括图片去模糊、超分辨率处理、滤镜处理等。运用到视频上,主要是对视频进行滤镜处理。这些技术目前已经相对成熟,在各类P图软件、视频处理软件中随处可见;

图像识别和检测:图像识别检测的过程包括图像预处理、图像分割、特征提取和判断匹配,可以用来处理分类问题(如识别图片的内容是不是猫)、定位问题(如识别图片中的猫在哪里)、检测问题(如识别图片中有哪些动物、分别在哪里)、分割问题(如图片中的哪些像素区域是猫)等。这些技术也已比较成熟,图像上的应用包括人脸检测识别、OCR(光学字符识别)等,视频上可用来识别影片中的明星;

图像理解:图像理解本质上是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答(给定图像和问题,输出答案)等。图像理解任务目前还没有取得非常成熟的结果,商业化场景也正在探索之;

总体而言,计算机视觉已经达到了娱乐用、工具用的初级阶段。未来,计算机视觉有望进入自主理解、甚至分析决策的高级阶段,真正赋予机器“看”的能力,从而在智能家居、无人车等应用场景发挥更大的价值。

2.2语音识别

第一个真正基于电子计算机的语音识别系统出现在1952年。1980年代,随着全球性的电传业务积累了大量文本可作为机读语料用于模型的训练和统计,语音识别技术取得突破:这一时期研究的重点是大词汇量、非特定人的连续语音识别。1990年代,语音识别技术基本成熟,但识别效果与真正实用还有一定距离,语音识别研究的进展也逐渐趋缓。

随着深度神经网络被应用到语音的声学建模中,人们陆续在音素识别任务和大词汇量连续语音识别任务上取得突破。而随着循环神经网络(RNN)的引入,语音识别效果进一步得到提升,在许多(尤其是近场)语音识别任务上达到了可以进入人们日常生活的标准。以AppleSiri为代表的智能语音助手、以Echo为首的智能硬件等应用的普及又进一步扩充了语料资源的收集渠道,为语言和声学模型的训练储备了丰富的燃料,使得构建大规模通用语言模型和声学模型成为可能。

与语音识别紧密关联的是语音处理。语音处理为我们提供了语音转文字、多语言翻译、虚拟助手等一系列软件。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理(更多涉及自然语言处理),以及后期的语音合成。

前端信号处理:语音的前端处理涵盖说话人声检测、回声消除、唤醒词识别、麦克风阵列处理、语音增强。

语音识别:语音识别的过程需要经历特征提取、模型自适应、声学模型、语言模型、动态解码等多个过程。

语音合成:语音合成的几个步骤包括文本分析、语言学分析、音长估算、发音参数估计等。基于现有技术合成的语音在清晰度和可懂度上已经达到了较好的水平,但机器口音还是比较明显。目前的几个研究方向包括如何使合成语音听起来更自然、如何使合成语音的表现力更丰富,以及如何实现自然流畅的多语言混合合成。

2.3自然语言处理

早在1950年代,人们就有了自然语言处理的任务需求,其中最典型的就是机器翻译。到了1990年代,随着计算机的计算速度和存储量大幅增加、大规模真实文本的积累产生,以及被互联网发展激发出的、以网页搜索为代表的基于自然语言的信息检索和抽取需求出现,自然语言处理进入了发展繁荣期。在传统的基于规则的处理技术中,人们引入了更多数据驱动的统计方法,将自然语言处理的研究推向了一个新高度。

进入2010年以后,基于大数据和浅层、深层学习技术,自然语言处理的效果得到了进一步优化,出现了专门的智能翻译产品、客服机器人、智能助手等产品。这一时期的一个重要里程碑事件是IBM研发的Watson系统参加综艺问答节目Jeopardy。机器翻译方面,谷歌推出的神经网络机器翻译(GNMT)相比传统的基于词组的机器翻译(PBMT),在翻译的准确率上取得了非常强劲的提升。

自然语言处理从流程上看,分成自然语言理解(NLU)和自然语言生成(NLG)两部分,这里我们简单为大家介绍知识图谱、语义理解、对话管理等研究方向。

知识图谱:知识图谱基于语义层面,对知识进行组织后得到的结构化结果,可以用来回答简单事实类的问题,包括语言知识图谱(词义上下位、同义词等)、常识知识图谱(“鸟会飞但兔子不会飞”)、实体关系图谱(“刘德华的妻子是朱丽倩”)。知识图谱的构建过程其实就是获取知识、表示知识、应用知识的过程。

语义理解:核心问题是如何从形式与意义的多对多映射中,根据当前语境找到一种最合适的映射。以中文为例,需要解决歧义消除、上下文关联性、意图识别、情感识别等困难。

对话管理:为了让机器在与人沟通的过程中不显得那么智障,还需要在对话管理上有所突破。目前对话管理主要包含三种情形:闲聊、问答、任务驱动型对话。

2.4规划决策系统

真正基于人工智能的规划决策系统出现在电子计算机诞生之后。1990年代,硬件性能、算法能力等都得到了大幅提升,在1997年IBM研发的深蓝(DeepBlue)战胜国际象棋大师卡斯帕罗夫。到了2016年,硬件层面出现了基于GPU、TPU的并行计算,算法层面出现了蒙特卡洛决策树与深度神经网络的结合。人类在完美信息博弈的游戏中已彻底输给机器,只能在不完美信息的德州扑克和麻将中苟延残喘。人们从棋类游戏中积累的知识和经验,也被应用在更广泛的需要决策规划的领域,包括机器人控制、无人车等等。

2.5算法的发展趋势和面临的瓶颈

近年来。处在机器学习也产生了几个重要的研究方向,例如从解决凸优化问题到解决非凸优化问题,以及从监督学习向非监督学习、强化学习的演进:

从解决凸优化问题到解决非凸优化问题

目前机器学习中的大部分问题,都可以通过加上一定的约束条件,转化或近似为一个凸优化问题。凸优化问题是指将所有的考虑因素表示为一组函数,然后从中选出一个最优解。而凸优化问题的一个很好的特性是局部最优就是全局最优。这个特性使得人们能通过梯度下降法寻找到下降的方向,找到的局部最优解就会是全局最优解。

然而在现实生活中,真正符合凸优化性质的问题其实并不多,目前对凸优化问题的关注仅仅是因为这类问题更容易解决。人们现在还缺乏针对非凸优化问题的行之有效的算法。

从监督学习向非监督学习、强化学习的演进

目前来看,大部分的AI应用都是通过监督学习,利用一组已标注的训练数据,对分类器的参数进行调整,使其达到所要求的性能。但在现实生活中,监督学习不足以被称为“智能”。对照人类的学习过程,许多都是建立在与事物的交互中,通过人类自身的体会、领悟,得到对事物的理解,并将之应用于未来的生活中。而机器的局限就在于缺乏这些“常识”。

无监督学习领域近期的研究重点在于“生成对抗网络”(GANs),而强化学习的一个重要研究方向在于建立一个有效的、与真实世界存在交互的仿真模拟环境,不断训练,模拟采取各种动作、接受各种反馈,以此对模型进行训练。

从“堆数据”到研发低训练成本的算法

MITDigitalLab的研究者联合韩国的相关机构在2020年发表了一项基于1058篇深度学习的论文和数据的研究。在分析了现有的深度学习论文成果后,研究人员提出了一个悲观的预言:深度学习会随着计算量的限制,在到达某个性能水平后停滞不前,因为在深度学习领域有这样一条规律:想提升X倍的性能,最少需要用X^2倍的数据去训练模型,且这个过程要消耗X^4倍的计算量。即便是10倍性能提升和1万倍计算量的提升,这样失衡的比例关系也仅仅是理论上最优的。在现实中,提升10倍性能往往要搭上10亿倍的运算量。以今天地球资源的状况看,想把一些常用的模型错误率降低到人们满意的程度,代价高到人类不能承受。因此,在深度学习领域非常值得关注的是可大幅降低训练成本的新算法创新。

图像分类、物体识别、语义问答等多个领域AI算法准确率及对应所需算力(Gflops)、碳排放量和经济成本

(Today水平截止于2020年已经发表的成果)

3.数据

数据层指的是人工智能为不同的行业提供解决方案时所采集和利用的数据。事实上,使用人工智能解决问题的步骤绝不仅仅包括搜集和整理数据。这里我们简单介绍一下完整的流程和思路:

收集数据:数据的数量和质量直接决定了模型的质量。

数据准备:在使用数据前需要对数据进行清洗和一系列处理工作。

模型选择:不同的模型往往有各自擅长处理的问题。只有把问题抽象成数学模型后,我们才能选择出比较适合的模型,而这一步往往也是非常困难的。

训练:这个过程不需要人来参与,机器使用数学方法对模型进行求解,完成相关的数学运算。

评估:评估模型是否较好地解决了我们的问题。

参数调整:可以以任何方式进一步改进训练(比如调整先前假定的参数)。

预测:开始使用模型解决问题。

如果我们想利用人工智能解决的问题被限定在足够小的领域内,那么我们就更容易活动具体场景下的训练数据,从而更高效、更有针对性地训练模型。在金融、律政、医疗等行业的细分场景下,人工智能已经逐步被应用,且已经实现了一定的商业化。

一、为什么是机器人

1.机器人的外延及框架

虽然机器人产业已有超过60年发展史,在传统【工业机器人】及【服务机器人】分析框架下,全球机器人产业仅有300-400亿美元行业规模,但我们认为,在智能化加持下,机器人的外延及边界已被数倍扩大,新物种的诞生及传统设备的智能化将共同驱动“机器人”产业十倍及百倍增长。

概括来讲,机器人普遍存在的意义是“为人类服务”的可运动智能设备,包括机器人对于人类劳动的替代、完成人类所无法完成任务的能力延伸以及情感陪伴等价值。

面对人类对于物质及精神永不停止的需求增长,相对于元宇宙,机器人将会是“现实宇宙”中的最佳供给方案。

2.AI将会带给机器人怎样的质变

(1)智能化大幅提升

可软件升级:传统机器人无法实现软件算法在线升级,智能化机器人能够通过软件算法的迭代持续提升性能;这让机器人的能力理论上是没有上限的

规模效应:机器人应用规模越大,收集数据越多,算法迭代越完善,机器人越好用

可适用性大幅增加:机器人智慧程度线性增加,可适用的场景及价值将会指数增加

(2)智能化带来的场景适用性提升

AI技术将会是机器人全面爆发的最大变量,机器人产业的爆发极有可能是新物种引领;例如近三年全面爆发的机器人项目,在10年前几乎不存在(例如九号公司、石头科技、普渡、擎朗、云迹、高仙、梅卡曼德、极智嘉等)。

二、为什么是现在?

1.劳动力替代及升级趋势不可逆

在人口老龄化趋势下,2015-2020年,我国劳动力人口减少约1700万人,我国人均收入从4.97万元增至7.15万元,在用工难及用工贵的不可逆趋势下,智能化机器人的补充成为最重要的生产力增长点。

2021年我国人均GDP已超1.2万美元,在我国将成为全球人口最多的高收入国家(门槛为人均1.25万美元)的进程中,作为全球最大的制造业大国转型升级,将会带来全世界体量最大的机器人用工需求。

2.成熟的技术与产业基础

我们认为,智能手机及智能汽车产业的发展,实质上为现阶段智能机器人产业爆发奠定了大量技术基础:

感知层面:视觉模组、激光雷达、毫米波雷达的逐渐发展,成本降低到可用的程度;数据采集、算法训练及软件在线迭代为智能机器人未来持续升级提供了借鉴范式;

决策层面:智能SoC芯片提供了足够的算力基础,汽车自动驾驶与移动机器人在底层技术上亦有相通之处;

控制层面:近十年锂电技术提升了电池续航能力,同时有线及无线充电技术快速进步,5G及WIFI技术发展为机器人提供了通讯控制基础;

环境基础:我国拥有全世界最适合机器人产业发展的土壤,例如低成本敏捷供应链、低成本清洁能源供给、工程师红利、最广大数据收集场景;现阶段创造一款机器人新品的零配件采购难度要远低于十年前;

三、如何判断未来十年新机遇

1.从职业场景出发——寻找未被满足的大赛道

我们认为投资机构在机器人领域投的并不单纯是智能硬件或国产替代,而是押注未来数个万亿级、数十个千亿级、上百个百亿级工作场景的无人化;未来机器人公司主流定价方式很可能取决于可替代的必要劳动价值,机器人公司直接提供高粘性持续的收费服务(RobotasaService),而非按照传统的“BOM成本+一定的毛利空间”去定价。

我们收集了不同职业场景的从业人数及人均收入数据,得出不同职业劳动力成本总和,制作了机器人领域潜在替代场景图谱。

未来机器人对于人工的替代将从大场景、低复杂度入手,逐步向中小型场景、高复杂度渗透;未来10年最有潜力的投资方向将会是现阶段供给基本空白的大场景。

数据来源:国家统计局等机构

上图部分职业又可细分出上百个环节(根据“十四五”机器人发展规划)

(1)制造业:焊接、自动搬运、防爆物品生产、分拣、包装、协作生产、打磨、装配等工作

(2)建筑业:建筑部件智能化生产、测量、材料配送、钢筋加工、混凝土浇筑、楼面墙面装饰装修、构部件安装、焊接等工作

(3)农业:可进一步拆分为果园除草、精准植保、果蔬剪枝、采摘收获、分选,以及用于畜禽养殖业的喂料、巡检、清淤泥、清网衣附着物、消毒处理等工作

(4)矿业:采掘、支护、钻孔、巡检、重载辅助运输等工作

(5)医疗康复:手术、护理、检查、康复、咨询、配送等工作

(6)养老助残:助行、助浴、物品递送、情感陪护、智能假肢等应用

(7)家用场景:家务劳动、教育、娱乐、安防监控等工作

(8)公共场所:讲解导引、餐饮、配送、代步等工作

(9)水下场景:水下探测、监测、作业、深海矿产资源开发等工作

(10)安防场景:安保巡逻、缉私安检、反恐防暴、勘查取证、交通管理、边防管理、治安管控等工作

(11)危险环境作业:消防、应急救援、安全巡检、核工业操作、海洋捕捞等工作

(12)卫生防疫:检验采样、消毒清洁、室内配送、辅助移位、辅助巡诊查房、重症护理辅助操作等工作

2.从技术可行性出发——细分场景的实现难度

(1)从【场景是否单一】及【工作复杂度】两个维度进行分析

分析一项职业被机器人替代的难度,我们认为可以落入以下四个象限进行分析;其中场景维度指该项工作是否需要适应多变的环境,是否需要转移;复杂度指完成该项工作需要的知识储备多少及解决问题的难度

A.单一场景、低复杂度:例如简单的加工制造工序、搬运、安保、清洁、农业养殖等劳动更容易率先实现机器替代

B.单一场景、高复杂度:例如绘画、音乐演奏、作家、医生、教育、财务、销售、厨师等场景

C.多场景、低复杂度:例如应对不同场景下的无人驾驶,不同种类的家务劳动

D.多场景、高复杂度:例如警察、外交官、企业管理人员、研发创新等工作

(2)从机器与人类的思维长处分析

机器智能在大规模数据与信息处理、细节分析等方面具备天然优势

在需要情感、综合推理、想象力、创造力等方面的职业,人类被机器人替代的难度较大

3.从经济性出发——替代人效比

如何判断某个细分场景下,是否已经到达了机器人应用拐点?我们认为核心指标是替代人效比,即机器人的购买及维护成本相对于同岗位人力成本的回本周期

ROI<48个月时,该细分赛道会有产品出现,客户开始考虑尝试

ROI<24个月时,该细分赛道客户开始批量购买测试

ROI<12个月时,市场开始全产爆发

经济性逐渐提升背后的因素:人员成本上涨、人力紧缺、上游零配件成本下降、规模量产降低了成本、AI技术发展使得功能实现的成本降低等

四、机器人智能化三要素解析

什么样的机器人能够称得上是智能机器人?目前世界范围内还没有一个统一定义

我们认为如果对智能机器人进行抽象化解析,往往需要具备三大要素——即感知、决策和控制。

感知要素:用来认识周围环境状态,包括能感知视觉、接近、距离等的非接触型传感器和能感知力、压觉、触觉等的接触型传感器。这些要素实质上就是相当于人的眼、鼻、耳等五官,功能可以利用诸如摄像机、像传感器、超声波传成器、激光器、导电橡胶、压电元件、气动元件、行程开关等机电元器件来实现。

决策要素:也称为思考要素,根据传感器收集的数据,思考出采用什么样的动作。智能机器人的思考要素是三个要素中的关键。思考要素包括有判断、逻辑分析、理解等方面的智力活动。这些智力活动实质上是一个信息处理过程,而计算机则是完成这个处理过程的主要手段。

控制要素:也称为运动要素,对外界做出反应性动作;对运动要素来说,智能机器人需要有一个无轨道型的移动机构,以适应诸如平地、台阶、墙壁、楼梯、坡道等不同的地理环境。它们的功能可以借助轮子、履带、支脚、吸盘、气垫等移动机构来完成。在运动过程中要对移动机构进行实时控制,这种控制不仅要包括有位置控制,而且还要有力度控制、位置与力度混合控制、伸缩率控制等。

从商业机会的角度来讲,三大要素并不是独立割裂的,例如做视觉传感器的玩家往往要配套相应的软件算法,服务于各细分场景的厂商需要极强的多传感器融合、多机型控制及面向行业的智能决策能力。

三大要素中既有专精于某一环节的零部件或软件供应商机会(如核心零部件、操作系统、关键控制算法等),也有整合了其中2-3个环节的关键技术要素,为细分场景提供全套服务的应用机会(例如在清洁、配送、交通等场景的机器人服务商)。

1.感知——机器人感觉器官

(1)传感器分类

内部传感器:内部传感器是用于测量机器人自身状态的功能元件,其功能是测量运动学量和力学量,用于机器人感知自身的运动状态,使得机器人可以按照规定的位置、轨迹和速度等参数运动;包括位置传感器、速度传感器、加速度传感器、力传感器、压力传感器、力矩传感器、姿态传感器等。

外部传感器:外部传感器主要是感知机器人自身所处环境以及自身和环境之家的相互信息,包括视觉、力觉等。包括激光雷达、嗅觉传感器、视觉传感器、语音合成、语音识别、可见光和红外线传感器等。

(2)传感器在智能机器人的应用

视觉和接近传感器:类似于自动驾驶车辆所需的传感器,包括摄像头、红外线、声纳、超声波、雷达和激光雷达。某些情况下可以使用多个摄像头,尤其是立体视觉。将这些传感器组合起来使用,机器人便可以确定尺寸,识别物体,并确定其距离。

触觉传感器:微型开关是接触传感器最常用型式,另有隔离式双态接触传感器(即双稳态开关半导体电路)、单模拟量传感器、矩阵传感器(压电元件的矩阵传感器、人工皮肤——变电导聚合物、光反射触觉传感器等)。

射频识别(RFID)传感器:可以提供识别码并允许得到许可的机器人获取其他信息。

声学传感器(麦克风):帮助机器人接收语音命令并识别熟悉环境中的异常声音。如果加上压电传感器,还可以识别并消除振动引起的噪声,避免机器人错误理解语音命令。先进的算法甚至可以让机器人了解说话者的情绪。

湿温度传感器:是机器人自我诊断的一部分,可用于确定其周遭的环境,避免潜在的有害热源。利用化学、光学和颜色传感器,机器人能够评估、调整和检测其环境中存在的问题。

运动稳定性感知:对于可以走路、跑步甚至跳舞的人形机器人,稳定性是一个主要问题。它们需要与智能手机相同类型的传感器,以便提供机器人的准确位置数据。在这些应用采用了具有3轴加速度计、3轴陀螺仪和3轴磁力计的9自由度(9DOF)传感器或惯性测量单元(IMU)。

传感器微型化趋势:过去传感器的性能与体积往往成正比,限制了其在机器人领域应用。芯片制程技术提升使微型传感器的制造成为可能,从而广泛应用于机器人领域。

(3)多传感器融合是未来趋势

多传感器信息融合技术是近年来十分热门的研究课题,指综合来自多个传感器的感知数据,经过融合的多传感器系统能够更加完善、精确地反映检测对象的特性,消除信息的不确定性,提高信息的可靠性。融合后的多传感器信息具有以下特性:冗余性、互补性、实时性和低成本性。

多传感器信息融合方法主要有贝叶斯估计、Dempster-Shafer理论、卡尔曼滤波、神经网络、小波变换等。

2.决策——机器人大脑

机器人决策我们认为是最具场景差异化的部分,因为不同职业场景下的工作方式、思维逻辑是大相径庭的;在机器人算法与决策方面的创业团队需要非常熟悉场景需求,提炼出标准化的操作流程,然后应用于机器人软硬件控制中。

想要让机器人解决问题我们需要完成三个步骤:第一,明确问题的方向和边界;第二,建立数学模型;最后,找到合适的算法解决问题。这里我们重点讨论将复杂的现实问题转化为数学语言的“建模”过程和选择算法的过程。

建模的第一步需要确定假设。我们需要先明确想让机器人做出什么样精度的决策,以及能否实现,从而确定需要考虑和舍弃哪些要素。在确定了重要变量和核心关系后,我们就把复杂的现实问题转化成计算机可以理解、算法可以处理的数学问题。确定假设后,常识能帮助我们验证模型,但是多数情况下需要我们不断地将模型和现实问题作比较,从而把现实问题尽可能无损地映射进计算机里面。

在建立了模型后,我们需要选择合适的算法来解决不同模型对应的具体现实问题。在进行算法选择的时候需要具体问题具体分析,兼顾“质量”与“效率”。比如同样是让计算机处理图像数据,家庭场景下的扫地机器人和专门用来处理天文观测数据的计算机对算法要求就不一样:前者要求在较快的时间内完成对图像精准度适中的处理,而后者对时间则无感,对精准度有极高的要求。也正是因为绝大多数问题不存在唯一解或者绝对正确的解,算法工程师需要根据机器人工作的场景和目标做出最合适的取舍。

在机器人决策环节中,让机器人自身的硬件处理多少计算任务是一个关键的问题。通常情况下,如果任务的执行依赖于多个机器人采集的多点数据,那么计算任务就更可能在多点数据汇集起来后,被放在远端的云服务器上进行处理。比如,如果有大量的机器人在特定的街区内追捕嫌犯,那么我们就需要所有机器人把采集到的图像等信息上传到云端处理,在一个“大脑中枢”规划了每一个机器人的路径后,每个机器人执行自己所接收到的指令。当然,多数情况下应用云计算的场景是,每个机器人自身的芯片算力不足或者单位能耗过大。云计算提供了一种更加经济的算力解决方案,帮助机器人解决所面临的问题。在此基础上,为了避免网络带宽不足、处理时间过长等问题,人们还会使用边缘计算、雾计算等方案。

以上是机器人决策部分所需要考虑的共性问题。当然,不同场景下机器人所面临的的决策问题非常不同,我们认为这也是机器人应用中最具场景差异化的部分。不过站在更高的维度上进行抽象后,我们依然能够发现大多数机器人都需要面对三大类决策问题:按照什么规则移动位置——移动决策、按照什么规则调整自身——机械臂运动决策,以及如何保障贯彻人类指令——人机交互决策。

(1)平面移动能力

定位导航技术需要机器人的感知能力,需要借助视觉传感器(如激光雷达)来帮助机器人完成周围环境的扫描,并配合相应的算法,构建有效的地图数据,以完成运算,最终实现机器人的自主定位导航。

同步定位:主要涉及激光SLAM以及视觉SLAM。前者主要采用2D或3D激光雷达进行数据搜集,后者主要有两种技术路径——基于RGBD的深度摄像机和基于单目、双目或鱼眼摄像头。

地图构建:机器人学中的地图构建主要有4种:栅格地图、特征点地图、直接表征法以及拓扑地图。

路径规划:路径规划是导航研究中的一个重要环节,主要方法有3种:基于事例的学习方法、基于环境模型的规划方法、基于行为的路径规划方法。

(2)三维空间运动能力

空间机械臂操控过程中涉及的5项关键技术,包括:交会对接与捕获技术、自主规划与智能控制技术、传感与感知技术、智能协同与操控技术及系统安全保障技术。

视觉系统的是智能机械臂三维运动最重要的组成部分,主要由计算机、摄影设备及图像采集设备构成。机器人视觉系统工作过程主要有图像采集、图像分析、图像输出等,其中,图像特征分析、图像辨别、图像分割均为关键任务,视觉信息的压缩和滤波处理、特定环境标志识别、环境和故障物检测等是视觉信息处理中难度最大、最核心的过程。

(3)人机交互能力

语音交互:结合语音人机交互过程,人机交互中的关键技术中包含了自然语音处理、语义分析和理解、知识构建和学习体系、语音技术、整合通信技术以及云计算处理技术。

视觉交互:机器人如果需要理解人类的感情,就会涉及人脸识别技术,包括特征提取及分类。

手势交互:目前,常用的手势识别方法主要包括基于神经网络的识别方法、基于隐马尔可夫模型的识别方法和基于几何特征的识别方法。

3.控制——机器人运动能力

(1)常见的运动控制部件

机器人三大核心零部件为减速器、伺服电机、控制器,三大部件成本占机器人成本70%左右,其中减速器占成本构成35%左右,伺服电机占23%左右,控制器占12%左右。

我国工业机器人零部件目前仍处于追赶者,核心零部件主要依赖进口,但国产厂商(如埃斯顿、汇川技术、绿的谐波等)目前正在由守转攻的转折点,市占率即将超过50%,正在开始获得国外头部客户订单;我们认为机器人核心零部件进口只是短期问题,未来3-5年我国在制造水平及成本上有望全面赶超国外水平。

在服务机器人领域(如餐饮、清洁、递送等机器人),我国零部件及本体制造已达到全球领先水平;在供应链优势下,技术及成本上有望进一步突破。

数据来源:公司公告、浙商证券研究所,部分国产份额为预估值

(2)机器人运动如何进一步发展

与其他形态的机器人(如履带式、轮式等)相比,腿足式机器人在移动范围和灵活性上有巨大优势。但是实现行走乃至跑跳对腿足式机器人来说并不容易,除了BostonDynamics研发的腿足式机器人(如Atlas)之外,我们很少看到其他公司研发出灵活的、具有优秀平衡感腿足式机器人

要想让机器人像人一样灵巧、平稳地移动,并在此基础上完成复杂的任务,机器人的每一步都需要动态平衡,需要对瞬间的不稳定性有极强的适应能力。这包括需要快速调整脚的着地点,计算出突然转向需要施加多大的力,更重要的是还要在极短的时间内向足部实施非常大而又精准的力。这对控制理论、系统集成和工程实现等多个

全球ai公司排名,人工智能最厉害的公司top20

无论你担心或者是不接受,AI革命即将到来,它将对我们的生活和世界经济都产生重大影响。有专业研究公司估计,到2030年人工智能可能为全球GDP增加15.7万亿美元,这是一个巨大的机会。

根据美国创投研究机构CBInsights数据显示,在2017年全球就有超过30家人工智能公司被收购,它们通过收购来壮大母公司,并积极参与到人工智能当中。在排行榜123网下面列出的世界10大顶级人工智能公司名单中,它们是已经有相当成熟技术的人工智能最厉害的公司,一起来看看吧。

该榜单排名不分前后,以拼音字母开头进行排序。

全球ai公司排名

1.AIBrain

AIBrain是一家位于美国加利福尼亚州的人工智能公司,专门为智能手机和机器人应用提供AI解决方案,拥有自己的人工智能平台IRSP,并专注人工智能的开发。

2.亚马逊

这家全球商品品种最多的在线零售巨头如今已经通过服务和产品进入了人工智能领域,它们的亚马逊机器人已经开始学习使用数据预测和查找模式的能力。目前亚马逊的人工智能服务机器人Alexa已经面世。

3.Anki

Anki是一家获得了银行业巨头摩根投资的玩具机器人公司,总部位于旧金山。Anki的旗舰机器人是Cozmo,该机器人由于出色的情感反应被称为是迄今为止最先进的消费机器人之一,它有表情、有情绪,没电了还能自己充电。

4.苹果

苹果公司在过去的3年里收购了四家人工智能创业公司,预示着它们迈入人工智能领域的决心。多年来,苹果公司的虚拟助理Siri从一个简单的语音助手变成了成熟的语音机器人。

5.Banjo

Banjo是一家社交网络公司,在2015年获得了日本软银集团1亿美元的融资,它们利用人工智能对社交媒体进行数据整合,将地理定位和社交软件结合,用户可以查看自己周围的活动,也可以查看某个地址周边发生的事情。

6.达闼科技

达闼科技正在开发它称为基于云智能的机器人系统。CI与AI不同,它将机器与人类相结合,而不是将它们作为单独的实体来对待,但允许机器人由人控制。

7.Facebook

这家为全球30亿用户服务的公司,在对人工智能的战略投资商是舍得的,迄今为止,脸书已经开设了三家人工智能实验室,并且还收购了两家AI公司,即Masquerade和ZurichEye。

8.Google

在所有互联网企业当中,谷歌是高居最具品牌价值企业榜首的人工智能领域领导者,它们早就已经开始大规模布局人工智能,并且投入很大。在四年内,谷歌收购了12家AI创业公司,它们研究的重点是推荐语言翻译、视觉处理以及排名和预测能力。

9.H2O

H2O是由Oxdata公司推出的一个人工智能项目,主要服务于数据科学家和开发者,被全球超过10,000个组织的100,000多名数据科学家所使用,为他们提供快速机器学习引擎,另外它还声称自己是“世界领先的开源机器学习平台”。

10.IBM

从20世纪50年代开始,IBM就一直是人工智能领域的先驱者,它一直专注于人工智能领域,其中Watson超级计算机是最知名的AI项目之一,这台计算机可以学习语言和人类知识。

11.碳云智能

iCarbonX是一家中国生物技术公司,它使用人工智能来提供个性化的健康分析和健康指数预测。它已与来自世界各地的七家专注于收集不同类型医疗保健数据的科技公司结成联盟,并将使用算法分析基因组,生理和行为数据,并提供定制的健康和医疗建议。

12.英特尔

英特尔已经认识到人工智能的重要性,并希望通过支持和投资人工智能技术保持领先地位。除了众多收购之外,英特尔还单独向微软投资了几家AI初创公司。该公司通过优化的机器学习框架和库宣传其对开源的承诺,以及他们对Nervana系统的收购,使他们能够利用他们的机器学习专家。

13.IrisAI

IrisAI人工智能是美国的一家私有非盈利机构,它可帮助研究人员对科学工作和研究进行分类,通过IrisAI可以分析你的研究方案并找到相关信息,它还可以帮你分析这个研究的可能性和关键概念,同时还会给出研究的相关论文链接。自推出以来,已有12万人尝试了该服务,其中一些成为常规用户。研究表明,IrisAI人工智能可以将科学研究所花费的时间减少30%至50%,测试显示使用IrisAI的人远远超过使用GoogleScholar的人。

14.NextIT

NextIT是最早推出聊天机器人的公司之一,在苹果siri、微软小娜等面世时它都已经接近成熟。

如今这家公司为阿拉斯加航空、美国铁路公司、美国军方都开发了不同的聊天机器人,他们的人工智能涵盖了医疗和保险以及各种行业。

15.Salesforce

Salesforce是一家创建于1999年的客户关系管理软件公司,在过去的几年里,它连续收购了三家人工智能公司,并且召集了175位数据科研人员组成人工智能项目团队,它们使用人工智能来帮助员工更加高效的执行任务,并且简化和加速它们的工作效率。

16.SoundHound

一家以音乐识别而闻名的软件公司,它是目前自然语言处理最先进和最准确的平台之一,在安卓和苹果应用里均可以找到。

17.Twitter

作为世界上最大的社交平台之一,推特同样也将大量资金投入到人工智能。至今为止,他们已经受够了4家AI公司,其中AI科技创业公司魔法小马(MagicPony)就花费了1.5亿美元。

一段时间后,Twitter推出了一个所谓的算法时间表,它根据相关性对推文进行排名,而不是按照通常的反向时间顺序排列。该公司还增加了人工智能来推荐用户时间轴上的某些推文。

18.ViSenze

ViSenze中文名为拍搜科技,是一家新加坡图像和图片搜索技术服务公司,他们的特点是利用视觉算法来以图搜图,通过一张图片来查找图片中相似的产品提供给用户。

19.X.ai

面向繁忙的用户,x.ai的智能虚拟助理艾米帮助用户安排会议。这个概念很简单-如果您收到会议请求但没有时间处理后勤问题,请将Amy复制到电子邮件中,然后由她处理。通过机器学习和自然语言处理,艾米根据您的喜好和时间表安排会议的最佳时间和地点。

面对忙碌的工作忙碌的人,还有繁多的会以,X.ai是一个虚拟机器人助手,它可以通过人工智能来合理的帮你安排最佳时间和最佳地点的会议或者会面。

20.ZebraMedicalVision

ZebraMedicalSystems是一家以色列公司,它将人工智能和医学影像结合,为病人检测和预测多种疾病,精确度相当高。2015年开始就已经发布了肝脏、肺、骨骼以及心脑血管疾病等临床应用,如今已经在欧美多个国家进行部署。

结语:看到这20大全球ai公司排名,你是不是和小编一样觉得这些AI科技将对我们未来生活,如医疗、出行、教育做出巨大的改变呢?

标签:人工智能

声明:《全球ai公司排名,人工智能最厉害的公司top20》一文由排行榜123网(www.phb123.com)注册用户本末倒置自主发布上传,不代表本站观点,版权归原作者本人所有,转载请注明出处,如有侵权、虚假信息、错误信息或任何问题,可在反馈入口提交,或发邮件到63224@qq.com处理!

人工智能可能有自主意识了吗

➤大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术

➤不同于当前依赖数据学习的技术路线,新一代人工智能强调在没有经过数据学习的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互

➤当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。在发展科技的同时,必须同步发展我们的规制体系

➤“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”

今年6月,美国谷歌公司软件工程师布莱克·勒莫因称语言模型LaMDA出现自我意识。他认为,LaMDA拥有七八岁孩童的智力,并相信LaMDA正在争取自己作为一个人的权利。

LaMDA是谷歌去年发布的一款专门用于对话的语言模型,主要功能是可以与人类交谈。

为佐证观点,勒莫因把自己和LaMDA的聊天记录上传至互联网。随后,谷歌以违反保密协议为由对其停职。谷歌表示,没有任何证据支持勒莫因的观点。

事实上,“AI(人工智能)是否拥有自主意识”一直争议不休。此次谷歌工程师和LaMDA的故事,再次引发讨论。人们想知道:人工智能技术究竟发展到了怎样的阶段?是否真的具备自主意识?其判定依据是什么?未来我们又该以怎样的能力和心态与人工智能和谐共处?

人工智能自主意识之辨

勒莫因认为LaMDA具有意识的原因有三:一是LaMDA以前所未有的方式高效、创造性地使用语言;二是它以与人类相似的方式分享感觉;三是它会表达内省和想象,既会担忧未来,也会追忆过去。

受访专家告诉《瞭望》新闻周刊记者,上述现象仅仅是因为LaMDA所基于的Transformer架构能够联系上下文,进行高精度的人类对话模拟,故能应对人类开放、发散的交谈。

至于人工智能是否已经具备自主意识,判定标准如何,受访专家表示,对人类意识的探索目前仍属于科技前沿,尚未形成统一定义。

清华大学北京信息科学与技术国家研究中心助理研究员郭雨晨说:“我们说人有自主意识,是因为人知道自己在干什么。机器则不一样,你对它输入内容,它只是依照程序设定进行反馈。”

中国社会科学院科学技术哲学研究室主任段伟文认为,一般意义上,人的自我意识是指对自我具备觉知,但如何认识和理解人类意识更多还是一个哲学问题而不是科学问题,这也是很难明确定义人工智能是否具备意识的原因。

被誉为“计算机科学与人工智能之父”的艾伦·图灵,早在1950年就曾提出图灵测试——如果一台机器能够与人类展开对话而不能被辨别出其机器身份,那么可以称这台机器具有智能。

这一设想随后被具化为,如果有超过30%参与测试的人以为自己在和人说话而非计算机,就可以认为“机器会思考”。

当前随着技术的发展,已经有越来越多的机器能够通过图灵测试。

但清华大学人工智能国际治理研究院副院长梁正告诉《瞭望》新闻周刊记者,图灵测试只能证明机器在表象上可以做到让人无法分辨它与人类的不同,却不能证明机器能够思考,更不能证明机器具备自主意识。

段伟文表示,目前大体有两种方式判定人工智能是否具有自主意识,一种以人类意识为参照,另一种则试图对机器意识进行全新定义。

若以人类意识为参照,要观察机器能否像人一样整合信息。“比如你在阳光下,坐在河边的椅子上看书,有树影落在脸上,有风吹来,它们会带给你一种整体的愉悦感。而对机器来说,阳光、河流、椅子等,是分散的单一元素。”段伟文说。

不仅如此,段伟文说,还要观察机器能否像人一样将单一事件放在全局中思考,作出符合全局利益的决策。

若跳出人类构建自主意识的范式,对机器意识进行重新定义,则需要明白意识的本质是什么。

段伟文告诉记者,有理论认为如果机器与机器之间形成了灵活、独立的交互,则可以称机器具备意识。也有理论认为,可以不追究机器的内心,仅仅把机器当作行为体,从机器的行为表现判断它是否理解所做事情的意义。“比如机器人看到人类喝咖啡后很精神,下次当它观察到人类的疲惫,能不能想到要为人类煮一杯咖啡?”段伟文说。

但在段伟文看来,这些对机器意识进行重新定义的理论,其问题出在,即便能够证明机器可以交互对话、深度理解,但是否等同于具备自主意识尚未有定论。“以LaMDA为例,虽然能够生成在人类看来更具意义的对话,甚至人可以与机器在对话中产生共情,但其本质仍然是在数据采集、配对、筛选机制下形成的反馈,并不代表模型能够理解对话的意义。”

换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术。

郭雨晨直言,尽管在情感计算方面,通过深度学习的推动已经发展得比较好,但如果就此说人工智能具备意识还有些一厢情愿。“把‘意识’这个词换成‘功能’,我会觉得更加准确。”

技术换道

有专家提出,若要机器能思考,先要解决人工智能发展的换道问题。

据了解,目前基于深度学习、由数据驱动的人工智能在技术上已经触及天花板。一个突出例证是,阿尔法围棋(AlphaGo)在击败人类围棋世界冠军后,虽然财力和算力不断投入,但深度学习的回报率却没有相应增长。

一般认为,人工智能可被分为弱人工智能、通用人工智能和超级人工智能。弱人工智能也被称为狭义人工智能,专攻某一领域;通用人工智能也叫强人工智能,主要目标是制造出一台像人类一样拥有全面智能的计算机;超级人工智能类似于科幻作品中拥有超能力的智能机器人。

从产业发展角度看,人工智能在弱人工智能阶段停留了相当长时间,正在向通用人工智能阶段迈进。受访专家表示,目前尚未有成功创建通用人工智能的成熟案例,而具备自主意识,至少需要发展到通用人工智能阶段。

梁正说,大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。“如果你给这类语言模型喂养大量关于内省、想象等与意识有关的数据,它便更容易反馈与意识有关的回应。”

不仅如此,现阶段的人工智能在一个复杂、专门的领域可以做到极致,却很难完成一件在人类看来非常简单的事情。“比如人工智能可以成为围棋高手,却不具备三岁小孩对陌生环境的感知能力。”段伟文说。

谈及背后原因,受访专家表示,第一是当前人工智能主要与符号世界进行交互,在对物理世界的感知与反应上发展缓慢。第二是数据学习让机器只能对见过的内容有合理反馈,无法处理陌生内容。第三是在数据驱动技术路线下,人们通过不断调整、优化参数来强化机器反馈的精准度,但这种调适终究有限。

郭雨晨说,人类在特定任务的学习过程中接触的数据量并不大,却可以很快学习新技能、完成新任务,这是目前基于数据驱动的人工智能所不具备的能力。

梁正强调,不同于当前主要依赖大规模数据训练的技术路线,新一代人工智能强调在没有经过数据训练的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互。

相比人类意识的自由开放,以往人工智能更多处在封闭空间。尽管这个空间可能足够大,但若超出设定范畴便无法处理。而人类如果按照规则不能解决问题,就会修改规则,甚至发明新规则。

这意味着,如果人工智能能够超越现有学习模式,拥有对自身意识系统进行反思的能力,就会理解自身系统的基本性质,就有可能改造自身的意识系统,创造新规则,从而成为自己的主人。

“人工智能觉醒”背后

有关“人工智能觉醒”的讨论已不鲜见,但谷歌迅速否认的态度耐人寻味。

梁正表示:“如果不迅速驳斥指认,会给谷歌带来合规性方面的麻烦。”

据了解,关于人工智能是否有自主意识的争论并非单纯技术领域的学术探讨,而关乎企业合规性的基本坚守。一旦认定公司研发的人工智能系统出现自主意识,很可能会被认为违反第2版《人工智能设计的伦理准则》白皮书的相关规范。

这一由美国电气和电子工程师协会2017年发布的规范明确:“根据某些理论,当系统接近并超过通用人工智能时,无法预料的或无意的系统行为将变得越来越危险且难以纠正。并不是所有通用人工智能级别的系统都能够与人类利益保持一致,因此,当这些系统的能力越来越强大时,应当谨慎并确定不同系统的运行机制。”

梁正认为,为避免社会舆论可能的过度负面解读,担心大家认为它培育出了英国作家玛丽·雪莱笔下的弗兰肯斯坦式的科技怪物,以“不作恶”为企业口号的谷歌自然会予以否认。“不仅如此,尽管这一原则对企业没有强制约束力,但若被认为突破了底线,并对个体和社会造成实质性伤害,很有可能面临高额的惩罚性赔偿,因此企业在合规性方面会更为谨慎。”

我国也有类似管理规范。2019年,国家新一代人工智能治理专业委员会发布《新一代人工智能治理原则——发展负责任的人工智能》,提出人工智能治理的框架和行动指南。其中,“敏捷治理”原则主要针对技术可能带来的新社会风险展开治理,强调治理的适应性与灵活性。

中国信息化百人会成员、清华大学教授薛澜在接受媒体采访时表示,当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。特别是在第四次工业革命背景下,我国的人工智能技术和其他国家一样都处于发展期,没有现成的规制体系,这样就使得我们在发展科技的同时,必须同步发展我们的规制体系。“这可能是人工智能发展面临最大的挑战。”

在梁正看来,目前很难断言新兴人工智能技术具有绝对风险,但必须构造合理的熔断、叫停机制。在治理中既要具有一定的预见性,又不能扼杀创新的土壤,要在企业诉求和公共安全之间找到合适的平衡点。

毕竟,对人类来说,发展人工智能的目的不是把机器变成人,更不是把人变成机器,而是解决人类社会发展面临的问题。

从这个角度来说,我们需要的或许只是帮助人类而不是代替人类的人工智能。

为了人机友好的未来

确保通用人工智能技术有益于人类福祉,一直是人工智能伦理构建的前沿。

薛澜认为,在科技领域,很多技术都像硬币的两面,在带来正面效应的同时也会存在风险,人工智能就是其中一个比较突出的领域。如何在促进技术创新和规制潜在风险之间寻求平衡,是科技伦理必须关注的问题。

梁正提出,有时技术的发展会超越人们预想的框架,在不自觉的情况下出现与人类利益不一致甚至相悖的情况。著名的“曲别针制造机”假说,即描述了通用人工智能在目标和技术都无害的情况下,对人类造成威胁的情景。

“曲别针制造机”假说给定一种技术模型,假设某个人工智能机器的终极目标是制造曲别针,尽管看上去这一目的对人类无害,但最终它却使用人类无法比拟的能力,把世界上所有资源都做成了曲别针,进而对人类社会产生不可逆的伤害。

因此有观点认为,创造出法力高超又杀不死的孙悟空本身就是一种不顾后果的冒险行为。

与其对立的观点则认为,目前这一担忧为时尚早。

“我们对到底什么样的技术路线能够发展出具备自主意识的人工智能尚无共识,现在谈论‘禁止发展’,有种空中楼阁的意味。”梁正说。

商汤科技智能产业研究院院长田丰告诉《瞭望》新闻周刊,现实中人工智能技术伦理风险治理的关键,是产业能够在“预判防范-应用场景-用户反馈-产品改进”中形成市场反馈机制,促成伦理风险识别与敏捷治理。同时,企业内部也需建立完整的科技伦理自律机制,通过伦理委员会、伦理风控流程平台将伦理风险把控落实到产品全生命周期中。

郭雨晨说,人工智能技术发展到目前,仍始终处于人类可控状态,而科技发展的过程本来就伴随对衍生问题的预判、发现和解决。“在想象中的人工智能自主意识出现以前,人工智能技术脚踏实地的发展,已经造福人类社会很多年了。”

在梁正看来,人与人工智能在未来会是一种合作关系,各自具备对方无法达成的能力。“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”

编辑:李华山

2022年08月16日07:42:05

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇