博舍

变电站机器人智能巡检系统设计方案和关键技术 巡检机器人技术路线设计方案怎么写的啊视频教学

变电站机器人智能巡检系统设计方案和关键技术

变电站机器人智能巡检系统设计方案和关键技术

时间:2018-09-0615:14:29来源:网络转载

导语:​研发了一套变电站机器人智能巡检系统,从机器人本体、充电系统、无线传输系统、本地监控后台和环境适应性等方面介绍了巡检系统设计方案和各组成部分的关键技术。从现场勘查、设备安装、巡检规划和巡检应用等方面介绍了工程实施步骤和在电网220kV、500kV变电站的实际应用情况。

研发了一套变电站机器人智能巡检系统,从机器人本体、充电系统、无线传输系统、本地监控后台和环境适应性等方面介绍了巡检系统设计方案和各组成部分的关键技术。从现场勘查、设备安装、巡检规划和巡检应用等方面介绍了工程实施步骤和在电网220kV、500kV变电站的实际应用情况。分析了机器人巡检调试过程中存在的行进时出轨、无线通信不稳定、表计读取不准确、行走转弯卡涩等问题,并提出了解决措施。该巡检系统具有部署快速、适应性强、采集数据准确、定位精度高、超声防撞等显著优点,各项性能指标均满足变电站智能巡检需求,具有良好的推广应用前景。

引言

随着电网规模的增大、电压等级的提高,对供电安全可靠性要求也更加严格,变电站正常运行成为保障电力系统供电安全的重要环节[1-2]。目前中国电网主要采用人工巡检作业方式,即采用人工巡视、手工记录的模式对运行中的变电设备进行检查。人工巡检存在劳动强度大、工作效率低、巡检质量不稳定等缺点,恶劣气象条件对巡检人员身体也存在危害[3-5]。近年来,采用机器人巡检代替人工巡检模式已成为变电站巡检发展的热点方向[6-8]。

国外较早开展变电站机器人研究工作。日本在20世纪80年代开始研制的变电站巡检机器人使用可见光和红外传感器对变电站设备进行巡检,实现对巡检数据进行自动处理[9-10]。加拿大魁北克研制的变电站巡检机器人,实现了远程监控,可在后台对机器人进行实时控制和远程操作[11]。巴西研制了在变电站高空行走轨道移动的热点监测机器人,实现了变电设备异常发热的红外检测[12]。

国内山东省电力公司于1999年最早开始变电站巡检机器人研究,并于2004年研制成功第1台功能样机,后在国家863项目支持下研制出变电站巡检机器人[13]。2012年重庆电力公司在500kV巴南变电站成功应用机器人进行自主巡检作业。2014年浙江国自机器人公司研制的机器人在瑞安变电站投运。目前,中国在变电站机器人巡检领域取得了长足进展,但在多传感器综合探测、四轮驱动移动平台、综合导航和精确对准、故障精确诊断等技术方面还存在瓶颈[14-15]。

基于上述关键技术难点,研发了一套变电站机器人智能巡检系统。本文介绍巡检系统总体设计方案和组成部分,论述巡检系统各部分关键技术,说明变电站机器人巡检工程实施细节和在220kV清远站和500kV五邑站巡检应用情况,分析巡检应用存在的问题并提出解决措施。研发的变电站机器人智能巡检系统在后续巡检应用中能较好地完成巡检任务,取得良好的巡检效果,具有良好的推广应用前景。

1机器人巡检系统总体设计

1.1巡检系统组成

机器人巡检系统由机器人本体、充电系统、无线传输系统、本体监控后台及辅助设施组成。系统组成框图如图1所示。系统具有以下特点:(1)使用无轨导航方式,实现快速部署,可方便站间调配;(2)采用四轮独立驱动,适应于各种复杂环境,提供高清晰度红外及可见光视频图像,测温精度达0.5℃;(3)采用基于激光雷达和惯导组合的精确地形匹配的导航方案,定位精度达到1cm;(4)超声防撞,提供高可靠性安全保障,可原地全方位运动,为巡检提供更强的易用性。

1.2机器人本体

机器人本体由外形结构部件、运动控制系统、供电系统、传感器系统和导航系统组成。

1.2.1外形结构部件

机器人外形结构设计以简洁实用、硬朗可靠为基本原则,配合良好的平面切割技术,兼顾重量、稳定性和防护等级要求;表面采用喷塑和阳极氧化工艺处理,具有较强的防腐性能;机器人结构大量采用铝合金材料,重量小于100kg。

1.2.2运动控制系统

机器人运动控制系统主要由运动控制器、电机驱动器、电机、减速器、车轮、超声波避障模块、手动遥控模块、状态指示灯等组成,如图2所示。

运动控制系统主要实现与监控后台的通信以及对车体及云台的控制功能,实时接收车体、云台状态信息并上传,其工作流程如图3所示。

为适应变电站户外运行需求,机器人车体选用轮式四轮驱动,在运动控制中应用PID控制及PMSM矢量控制算法进行车体控制,实现转速精确控制和转矩快速响应,保证了控制算法的成熟性和稳定性。4轮独立驱动及柔性匹配控制实现了零转弯半径,原地360°旋转,现场路径规划灵活,环境适应能力强。驱动电机使用低磁阻大扭矩驱动电机,系统调速范围宽、效率高、可靠性好,机器人最大运行速度可达1.1m/s,可越过10cm障碍物、爬坡能力达到25°。

1.2.3供电系统

(1)电池选型。采用磷酸铁锂电池供电,电池额定电压36V,电池容量50Ah,为满足电池充放电及储运状态下的安全要求,电池安装在防爆、阻燃材料制作的专用电池箱内。

(2)电源管理系统设计。锂电池组电源管理系统(BMS)采用集中式管理。BMS由主控单元(CMU)和若干个监控单元(BMU)组成。BMU检测和均衡管理电池模块的电压和温度,并将数据传给CMU。CMU检测锂电池组的总电压、总电流及绝缘度,负责与机器人控制系统及充电机通信,对电池组充放电进行保护。

(3)BMS性能改进。锂电池间各个参数不可避免地存在一些微小差异,由于内阻、自放电影响及充放电次数增多,电池间参数差异会放大,将减少锂电池寿命甚至产生电源安全隐患。通过BMS实施均衡管理,电池组将保持较好的一致性,可延长电池寿命和降低成本,确保电池一次充电后续航能力不小于5h,提高系统可靠性和稳定性。

1.2.4传感器系统

(1)可见光探测。可见光摄像机用于观察设备外观和读取仪表数值,具备自动或手动对焦功能,视频分辨率达1080p,光学变焦倍数达30倍。采用自动光圈设计,通过检测视频信号平均值,自动控制镜头光圈的扩大或缩小,即可在不同照度下获得标准视频信号电平。机器人云台上安装了强光LED照明灯和雨刷器,实现可见光夜间和雨天探测。照明灯和雨刷器由本地监控后台或远程集控后台进行控制。

(2)红外热像探测。红外热像仪的红外探测器接收物体辐射热量,把它转换成电信号,经后续放大、滤波、模数转换,CPU处理后在图像显示器上显示。在实际测温中,首先采用高精度黑体进行标定,找出黑体温度与图像灰度值的对应关系。红外热成像仪具备自动对焦功能,可在实时影像中叠加显示温度最高点位置及温度值,红外热像仪热灵敏度优于50mK,测温精度优于2K。

(3)声音探测。机器人安装有扩音器和麦克,可实现与监控后台双向语音对讲和现场声音采集。同时,通过采集运行设备的正常和异常声音,提取出声音的特征参数,建立正常和异常声音模型库。将机器人采集的噪声数据传送到控制后台,基于音频诊断软件和模型库进行运行状态识别,判断设备异常声音,并发出警报。诊断流程如图4所示。

声音分析软件主要由信号处理、信号特征提取和信号显示等部分组成。信号处理部分包括端点检测、分帧和加窗。端点检测用来检测输入声音信号中的有效语音成分,采用倒谱特征法;分帧是将原始语音信号分为小段,并做帧移处理;加窗是在分帧之后使频谱平滑、防止高频泄漏。信号特征提取过程包括FFT求取功率谱、带通滤波器组、求取对数能量、离散余弦变换和提取一阶差分MFCC系数。显示部分能够显示被测声音中各个频率的数字化信号图形。

(4)全方位智能云台。云台安装在机器人平台上方,用于承载可见光、红外以及声音传感器。云台以直流伺服电机驱动,使云台具有水平和垂直2个相互独立的旋转自由度。云台俯仰框装有红外和可见光光窗。云台运动控制核心部分采用数字信号处理器(DSP)芯片,该芯片负责水平和俯仰2个自由度的电机运动控制以及与接口转换模块通信。云台主要性能指标满足如下要求:云台预置位数量≥10000个,垂直运动范围–30°~+90°,水平运动范围0°~+360°连续,定位精度±0.1°,水平旋转速度0.01~60°/s,垂直旋转速度0.01~30°/s。

1.2.5导航系统

机器人依靠激光雷达、惯导、里程计综合导航,利用多传感器融合技术,得到车体定位信息,实现按照预设路线和停靠位置自主行走和停靠功能。激光雷达选用SICK公司LMS511高性能室外型激光扫描雷达,测量距离达80m,扫描范围190°,分辨率0.1667°,扫描频率高达25Hz。可在–30℃~+55℃恶劣环境中工作。惯导可提供车体三轴姿态角(或角速率)以及加速度信息,分辨率0.05°,误差1.5°。里程计信息包括车体当前坐标,由车体运动学模型和4轮转速位移等信息计算得到,误差在3%以内。

1.3充电系统

充电房由充电柜、充电座、无线通信设备和自动卷帘门组成。充电柜和充电座用于机器人自动对接充电,无线通信设备选用与本地监控后台相同的无线网桥和天线,天线安装在充电房的顶部。

机器人工作状态分为巡检、充电、空闲等3种。收到巡检命令后,机器人检查电池电量是否充足,充足即进入巡检状态,开始执行巡检任务,否则拒绝执行并报警。巡检完成后,机器人返回充电房。机器人在巡检中实时检测电池电量,如果电量不足则返回充电房充电,充电过程完全自动化。

1.4无线传输系统

机器人通过无线网桥与本地监控后台实现双向、实时信息交互。信息交互内容包括机器人本体状态和被检测设备图像、语音和指示性数据。机器人采用5.8GHz频段高质量等级的室外专用数字无线网桥,实现长距离多路视频、音频以及数据的实时传输,最长传输距离达10km,数传误码率≤10-6,数传时延≤20ms,图传时延≤300ms,由于此频段的无线网桥无需申请无线执照,比其他有线网络设备更方便部署。机器人通过无线网桥接收监控后台的控制指令,进行云台转动、设备检测、车体运动和自动充电,并检测机器人状态和各类预警、告警信息并进行上报。在通信中断、接收的报文内容异常等情况下,图像、语音、数据不丢失,同时系统将发出告警信息,并在通信恢复后自动续传。

1.5本地监控后台

本地监控后台由计算机、无线通信设备、监控分析软件和数据库等组成。机器人与监控后台通过无线局域网连接,采用TCP/IP协议进行数据交互,传输内容如图5所示。

监控后台软件采用C++语言开发,基于.NET架构,可以在Windows的各个版本操作系统跨平台运行,软件组成如图6所示。

(1)实时监控模块负责查看机器人运行过程中的图像信息、车体状态信息、车体行进信息、电池状态信息、巡检现场气象信息、巡检任务信息等。

(2)任务规划模块分为例行、特巡任务规划和遥控巡检3种模式,可随时进行任务模式的切换。根据变电站巡检需求,例行任务规划可提前生成若干巡检任务,每天定期巡检;特巡任务规划可实时生成临时巡检任务,执行特殊巡检任务。

(3)远程遥控模块可以实时遥控机器人到规定地点做规定动作。该模块可通过手柄控制云台方位和俯仰,控制车体速度和方向。

(4)配置中心模块包括设备配置、地图配置和基本配置3个子界面。设备配置界面包括红外配置、可见光配置、车体配置和云台配置。

(5)历史查询和数据分析模块可实现可见光图像、红外图像、声音及表计读数、设备位置状态、注油设备油位等信息的存储、诊断和查询。

1.6环境适应性

机器人按照全国各地区变电站极端环境气候设计,针对暴风大雨、湿热、高海拔、寒冷等恶劣气候条件,变电站强电场、强磁场环境,通过“三防”设计、防风设计、电磁兼容性、抗震设计以及温度适应性等设计,确保机器人在不同气候条件下长期可靠、安全稳定运行。

1.6.1“三防”设计

机器人外壳采用静电喷涂工艺,具有防腐蚀、防水、防氧化三防功能,机器人内部传感、控制均采用模块化设计,标准化生产。机器人采用一体化结构设计,具有防水、防尘功能。整机满足GB4208中IP54的设计要求,最大涉水深度大于10cm。

1.6.2防风设计

机器人采用四轮驱动底盘结构,设备重心低,有利于机器人在地面上稳定运行。机器人本体结构紧凑设计和密封性高,具备抵抗10级风能力。

1.6.3电磁兼容设计

机器人电子元器件,电源、通信等模块采用屏蔽、隔离处理,关键信号通过阻抗匹配设计、各设备模块采用等电势共地设计,输入输出接口的滤波和保护设计等技术确保各模块的信号完整性、安全和可靠性。

1.6.4防振动设计

机器人在变电站巡检过程中,由于受路面环境的影响,不可避免地会有一定程度的振动,针对可能出现的固定螺丝松动、部件断裂等问题,采取以下防振措施:(1)对所有紧固件增加弹垫、齿形垫圈、涂加螺纹胶及采用防松螺母等设计提高螺栓螺钉紧固效果及紧固强度;(2)对部件断裂部分优化设计提高部件强度;(3)增加防护套、减振弹簧等措施,减缓外力对管路连接部位的作用。

1.6.5温度适应性设计

为保证在炎热或寒冷环境下正常工作和长期储藏,机器人所有部件和元器件均选用宽温度范围的工业级产品;在云台护罩内安装排热风扇和加温板,可自动对护罩内环境进行排热或加温,有利于护罩内可见光相机和红外探测器在不同温度环境下正常工作。机器人工作环境温度为–25℃~+55℃,存储环境温度为–30℃~+65℃,工作和存储环境相对湿度为5%~95%(无冷凝水)。

2变电站机器人巡检工程实施

2.1变电站现场勘查

变电站机器人巡检工程实施的现场勘查阶段分为以下几个步骤:(1)根据站内设备分布、特征物和巡检便利性等信息选取充电房最优安装位置;(2)根据变电站建筑物实际情况选择无线通信设施安装位置;(3)视道路连通性、台阶高度等决定道路是否需要改造;(4)根据站内设备布置情况,初步确定巡检路线。

2.2巡检设备安装

2.2.1充电房安装

机器人充电房内设有自动充电装置,配有能够自动开启和关闭的门禁系统。充电房外形尺寸2.0m(宽)×2.5m(长)×2.8m(高),采用一体化箱式结构,安装在变电站高压设备区的空地上,所在位置比站内主干道高,修筑的地基自然放坡与站内道路相连。充电房选址原则:(1)靠近主控室,基建和调试方便;(2)选择平整地面,避免坑洼明显地带;(3)不宜过于远离巡检区域。

2.2.2无线网桥和气象传感器安装

无线网桥和微气象传感器是机器人巡检辅助设备,分别承担着无线通信和气象监测功能,二者均采用户外使用的环境设计,防护等级达到IP55,为便于与后台监控设备进行有线连接,将无线网桥和气象传感器安装在站内主控楼顶层,电源及数据线沿墙壁套管走线,连接至监控后台。

2.2.3监控后台安装

监控后台由计算机、路由器、鼠标、键盘、扩音器和麦克风等组成。计算机和无线网桥连接至路由器上,路由器可连接至运行单位局域网。

2.3巡检规划

2.3.1巡检线路规划

技术人员根据待巡检设备分布位置、巡检道路情况,以充电房为起点进行站内巡检路线的规划,实现巡检路径最优的方案规划。

2.3.2巡检地图构建

巡检地图通过机器人本体行走,借助后台控制软件自动生成,不需要改动变电站内部环境,不需改动变电站路面,不影响变电站设备设施正常运行。变电站巡检地图构建步骤如下。

(1)选择地图原点:原点选取一般靠近充电房。

(2)初始化激光雷达设备:开启机器人激光雷达传感器传输功能,完成激光雷达初始化。

(3)采集地图构建数据:遥控机器人按照规划的巡检线路,绕整个变电站中行走一圈,机器人自动记录所有设备以及建筑物地理信息,进而完成整个地图构建数据的采集。

(4)自动生成地图:完成地图构建数据采集后,开启地图生成程序,自动生成变电站巡检地图。

(5)设定巡检点与巡检路线:地图构建完成后,根据变电站巡检设备类型及数量,设定巡检点,并优化巡检路线。

(6)巡检测试:按照标定完成的最优路线,对变电站设备的巡检点进行测试,查找遗漏,调整巡检路线,保证设备巡检点的全覆盖。

机器人巡检流程如图7所示。

2.4巡检应用

2.4.1220kV清远站应用

2015年12月完成机器人充电房、无线网桥和监控后台在220kV清远站的布置,2016年1月机器人开始进行激光导航地图扫描、巡检地图制作及巡检任务点采集,4月完成巡检应用。经过4个月的现场调试应用,完成了机器人部署和任务点采集,随后执行全站巡检调试。巡检任务包含主变区域、220kV区域、110kV区域的2490个巡检任务点,覆盖率达94.1%。巡检任务点分布如图8所示。

2.4.2500kV五邑站应用

2016年9月完成机器人充电房、无线网桥和监控后台的布置,10月完成站内主变和500kV区域的巡检部署并开展巡检。经过2周的现场调试,解决了机器人在500kV区域强电磁场环境下的通信干扰问题,机器人在全部500kV区域均可与后台系统可靠通信。同时完成了主变和500kV第一串区域部署和任务点采集,随后执行部署区域巡检。巡检任务包含64个可见光巡检任务点、273个红外巡检任务点和10个高清辅助观测点。高清辅助观测点包含开关控制箱、主变等设备外观图像。

3巡检应用问题分析与解决措施

在变电站进行机器人巡检调试过程中,发现尚有待解决的技术问题,例如机器人运行中受外物干扰出轨、无线信号连接不稳定、表计读取准确率不够、机器人行走转弯卡涩等。

3.1机器人巡检中出轨

机器人巡检过程中,受到外部干扰,例如人员围观时,发生机器人脱离巡检路线问题,经分析导航计算机记录的传感器、通信等数据,发现机器人里程计的输出数据在出现异常时刻偶发一次跳变,由于跳变数值大于40m,恰好达到下个转弯点设定坐标,造成程序误判使得机器人误认为已到达转弯点并执行转弯动作。此后随着机器人移动,里程数据仍按照跳变后的数值继续累加,导致转弯后机器人继续前行的问题。

解决措施如下:(1)在车体控制板和导航计算机增加里程数据跳变判别和异常情况下处理数据程序,当里程数据变化量大于设定应用变化量时,车体控制板滤除异常数据,导航计算机按照前一帧正常数据累加预测值替代异常数据;(2)将迭代最近点算法用于巡检机器人的前期地图拼接和导航过程中的机器人定位,该算法具有逻辑简单、精度较高、易实现、自身具有稳定性和鲁棒性的特点。采用以上措施后,机器人运行中的抗干扰能力大大增强,实现了任意角度折线路径的行走。

3.2无线通信不稳定

机器人运行调试初期,存在部分巡检路段后台显示画面卡涩、数据回传速度降低等现象。经现场观察和分析,发现原因是该路段处于定向接收天线覆盖的死角,接收通信信号太弱,造成后台画面停顿,数据回传速度降低。

通过更换大功率、大发射角天线,并且调整信号增益、信号频率、通信模式等参数,大大改善了通信质量,确保了机器人正常运行。

3.3表计读取不准确

巡检任务中有较多的SF6压力表需要识别读取,但机器人对此类仪表的识别准确率较低,经分析发现是由于该变电站内安装的SF6压力表的指针细小,指针下半部为白色,上半部为黑色,而表盘刻度也为黑色,造成了仪表识别软件难以区分指针和刻度,从而使得判读不准确。

经过对站内全部SF6压力表样本的大量采集,重新优化仪表识别软件的指针读取算法,在后续的巡检任务中,机器人SF6压力表计识别准确率大大提升。

3.4行走转弯卡涩

机器人在原地转向过程中,出现个别车轮悬空,转弯动作卡涩现象。经过现场观察和分析,原因是巡检现场路面不平整,机器人安装的是实心轮胎,轮胎弹性小,造成原地转弯中个别车轮悬空。由于机器人原地转弯是依靠4个轮子同时驱动完成的,车轮悬空造成转弯动力不足,产生转弯卡涩。

通过将实心轮胎更换为弹性较好的充气轮胎,大大减小了路面不平造成的个别车轮悬空几率,在后续巡检过程中未曾出现此类问题。

4结语

变电站机器人智能巡检是电力巡检模式发展的重要方向,实际应用中仍存在不少技术瓶颈。本文研发了一套变电站机器人智能巡检系统,从机器人本体、充电系统、无线传输系统、本地监控后台和环境适应性等方面介绍了巡检系统设计方案和各组成部分的关键技术。该巡检系统具有部署快速、适应性强、采集数据准确、定位精度高、超声防撞等显著优点,各项关键性能指标均满足变电站智能巡检任务需求。

从现场勘查、设备安装、巡检规划和巡检应用等方面介绍了变电站机器人巡检工程实施步骤,通过在电网220kV、500kV变电站实际巡检,指出了机器人巡检调试过程中发现的问题,并进行分析解决,在后续巡检应用中较好地完成了各类巡检任务,取得了显著效果,研发的巡检系统具有良好的推广应用前景。

标签:

分享到:

上一篇:OPCUATSN-面向未来的工业通信

下一篇:工业继电器智能化包装设计方案

中国传动网版权与免责声明:凡本网注明[来源:中国传动网]的所有文字、图片、音视和视频文件,版权均为中国传动网(www.chuandong.com)独家所有。如需转载请与0755-82949061联系。任何媒体、网站或个人转载使用时须注明来源“中国传动网”,违反者本网将追究其法律责任。

本网转载并注明其他来源的稿件,均来自互联网或业内投稿人士,版权属于原版权人。转载请保留稿件来源及作者,禁止擅自篡改,违者自负版权法律责任。

相关资讯

变电站智能巡检机器人系统应用技术方案

1、设备自动识别管理:对与系统采集的热图(无论自动采集还是人工采集)进行自动识别,通过图像配准的方法识别出该热图能有效的设备目标,保证温度检测的有效性。

2、防误报识别系统:所有的温度测量都基于有效的目标识别,根据巡查策略可以只测量标记过的设备,对于外界的干扰热源自动剔除,有效的防治了误报警的产生。

3、详细设备工作状态管理:建立所有设备以及设备部件的管理体系,在自动巡检的同时对本红外热像仪巡视范围内的所有设备部件进行温度分析记录。在报警的时候可以详细到具体设备故障部位。

4、自动巡航:系统可对云台设置预置位,并最大利用机器智能方式运作,无需看管而自动定时启动巡测,并保存巡检时所采集的热图和记录巡检时的温度信息。

5、自动预警:在系统巡航过程中,如发现目标设备温度异常自动报警,报警信息有文字信息和声音信息,提示运行人员具体的报警位置状况信息,以便跟踪故障点,确认告警情况并排除故障。

6、自动生成报表:系统软件可自动生成单幅红外图像的设备接点温度分析报表;或综合报表,即系统可自动记录每次测温时的温度值,并生成温度报表,以反应该接点在某一时间段内的温度变化情况。

7、人工巡检辅助识别:对特定位置,如室内开关柜等未安装在线式监测系统的监测点可以使用手持热像仪检测,检测采集的图片自动导入系统,自动设备识别,自动生成报告。

8、红外图像拼接技术:采用图像拼接技术,在人工辅助修正的情况下可以自动形成变电站设备工作状态全景热图,便于工作人员对需要进行温度实时监测的变电站设备进行标注。

9、变电站设备工作状态全景热图:采用红外图像智能识别技术,获得所有设备在全景热图中的精确位置及工作温度,位置精度最大误差仅为2个像素点。可消除因为机械转动误差导致的测量失误。

10、检测精度高:采用的红外热像仪本身的采样精度比便携式仪器的精度和分辨率高,且红外热像仪与高倍变焦可见光摄像机安装在同一个云台上,既可以保证两个摄像头监视的是同一个设备位置,也解决了红外热像难以识别设备安装位置的问题,便于及时判断设备的具体过热点,为准确判断并采取相应措施争取了宝贵的时间。

11、监测重点位置、兼顾全面设备:系统采用预置位云台,可以根据需要设置128个需要定时检测的位置,在每个位置上DM60红外热像仪还同时可以检测4个设备的工作状态,所以只要将系统安装在合适的位置,可以方便的检测所有设备。

12、数据具有可对比性:系统能自动根据预先设计的巡检策略,定时控制DM60红外热像仪转动的各个预置位,检测该预置位上各个设备的工作状态,采集当前设备的工作状态热图,记录这时设备的工作温度,同时比较当前设备的工作温度是否高于预先设置的报警温度。通过这样的工作序列以后,系统可以给出所有处于巡检策略的设备在一段时间内每天同一时间上的温度变化趋势,该温度变化趋势结合其他在线检测系统的数据(如该设备的电流变化趋势),可以极大的方便对本设备的工作状态给出准确的判断。

13、自动位置校准功能:采用图象识别技术,自动对云台预置位运行误差进行校正,保证能正确的采集到正确的设备部件温度状态。

14、系统具备可靠性、实时性较高的优点。采用本系统,自然环境不会有任何影响,无论是刮风下雨,还是低温寒冷都可以实现不间断自动监测,更不用担心装置的电源剩余量问题。

15、节省人力:采用本系统,由于系统自动化程度较高,可实现设备自动巡检、自动预警、自动输出报表等功能。减少了人员到现场巡视次数,提高运行人员工作效率,适应变电站向少人或无人值班发展趋势的需要。

16、兼容现有人工巡检数据:现有的手持红外热像仪生成的数据可直接进入本系统,数据统一管理维护。

由此可见,采用智能巡检机器人系统,在保证设备健康运行的同时,同时也为设备检修重点提供了科学的依据,提高了工作效率,减少了停电的时间,也就相应增加了设备的可用率,为电网安全乃至社会的稳定提供了技术保障。

本方案采用智能巡检机器人来替代变电站原有的人工巡检,利用智能巡检机器人的自主/手动巡检、红外测温、图像识别、视频监控、环境参数监测等功能,对变电站进行全天候的巡检和数据测量,以保障机器人在变电站内能够及时发现模块等设备的安全隐患,提醒工作人员注意处理。在发生异常紧急情况时,巡检机器人还可以作为移动式的监控平台,由人工手动控制到指定位置,查看设备情况,及时查明设备故障,减低人身安全风险。

系统主要设计特点

1、自主知识产权红外探测器

机器人系统的核心检测器件已具有自主知识产权,本系统采用640×480分辨率热像仪,有效提供对测量目标的温度识别效果。

2、军用惯性制导技术,激光制导、无轨运行、定位精确

不需要任何轨道,直接使用阀厅现有路面就可以快速实施巡检监控,无需繁琐的工程施工。系统定位精度高达5毫米。

三维角度实时输出

XYZ三轴陀螺三轴加表数据实时输出

自动温度补偿、集成稳定算法

无轨化导航的优势主要表现为:无需预埋磁条,缩短施工周期,节约系统成本,提高便捷性;环境适应性强,运行可靠性高。

3、系统定制超大容量电池,具备超长工作时间,充满电后连续工作时间长达9小时

4、采用领先的红外热像全景图专利技术,有效提高测温精确性

本系统使用红外热成像仪采集一系列红外热像,然后对这些红外热像进行半自动空间匹配对准,合成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的红外全景图像,在该红外全景图上进行设备位置标识后形成变电站工作设备列表,在上述数据基础上,系统自动巡检过程中任意采集的红外热图通过红外图像智能识别技术,获得该图中所有涉及到的设备的精确位置及工作温度。

变电站设备智能识别系统通过对即时红外热图在被监测区域的红外全景图中进行位置配准的方法,摆脱了被监控目标位置的确定对云台装置的预置位参数及转角参数的依赖,有效的提高在即时红外热图中确定被监控目标位置的精度,识别误差精度小于2个像素点,实现了在线式红外监控系统对设备温度的高精度监测。

5、设备自动识别管理功能

对于系统采集的热图进行自动识别,通过图像配准的方法识别出该热图包含的有效设备目标,保证温度监测的有效性。

6、详细设备工作状态管理功能

建立所有设备以及设备部件的管理体系,在自动巡检的同时对本红外热像仪巡视范围内的所有设备部件进行温度分析记录。在报警的时候可以详细到具体设备故障部位。

7、防误报识别功能

所有的温度测量都基于有效的设备识别,根据巡查策略可以只测量标记过的设备,对于外界的干扰热源自动剔除,有效的防止了误报警的产生。

8、高维图像识别技术

100%表计识别率,采用的矩阵模式的数学模型,解决由于光线、所处的位置等诸多原因导致的读表失败,有效的提供了表计识别率。

9、卓越的创新能力

结合智能巡检机器人工作特点,开展的诸多科技项目的研究,例如:

《三光谱智能巡检机器人系统》科技项目申请书及可行性研究

《蜗杆式垂直导轨智能巡检机器人系统》科技项目申请书及可行性研究

基于高温度分辨率智能巡检机器人对GIS设备内部发热实时监测的研究

智能巡检机器人对主变漏油状态监测研究

SF6气体检漏仪型智能巡检机器人系统研究

智能巡检机器人系统设备状态监测数据云存储技术应用研究

巡检结果浏览

『系统导航』—『巡检结果确认』—『巡检结果浏览』提供执行的巡检结果浏览功能。

巡检日志显示各巡检任务巡检的开始和结束时间、巡检类型、结束动作、任务状态等信息。

步骤:

1)界面左侧树形列表中勾选需要查询的一次设备;

2)用户通过输入查询时段范围;

3)点击『查询』按钮实现查询将显示所有的巡检结果记录,在下方页面将显示所有要搜索的巡检信息(如巡检时间、所在区域、间隔、一次设备、点位名称、方位、相别、识别结果、告警等级、告警状态);

4)双击选择需要查看的某条巡检结果记录;

5)显示该巡检设备的抓图;

6)在巡检结果记录中勾选记录目条前□选择需要导出的记录;

7)点击界面右上方的导出按钮,保存为.xls文件。

其他各类仪表巡检结果报告示图如下:

图油位计巡检结果报告

图SF6仪表巡检结果报告

图刀闸巡检结果报告返回搜狐,查看更多

室内轨道型智能巡检机器人系统设计方案

智能巡检监测机器人自身具有高清视频、红外热图像和声音采集等功能,工作人员通过对信息进行综合分析得出稳定可靠的巡视结论,判断出设备是否安全。当发现配电房、开关室内的设备有异常情况,工作人员可在第一时间查清问题原因,并采取相应措施。

2.1总体技术要求

室内轨道型智能巡检机器人监测系统主要由巡检机器人、运载轨道系统、通讯及电源系统、监控平台等组成。

序号功能简述1移动高清视频监控实现配电房、开关室内实时移动可见光/高清视频监控2表计识别,自动抄表实现电力表记的自动识别与数据统计;状态灯、开关柄位置、箱门开闭状态的识别。3设备锈蚀、变形检测系统通过图像识别及图像对比方法,可对室内设备、紧固件进行精确定位、拍照,结合人工确认,实现锈蚀、变形分析4室内照明等设备工作、土建环境状态识别室内渗水识别发现;室内照明设备工作状态识别;路面积水识别发现5设备工作温度状态监测采用红外热成像监测通过整个室内进行扫描式测温,全面掌握设备温度情况。6关键点精确测温实现对母线接头、穿墙套管等关键点定点测温7缺陷定点跟踪测温实现对点或对区域热缺陷进行定时定点巡检,采集数据8环境检测实现对室内中O3、CO、CO2、SF6、温度、湿度、烟雾、环境噪音、设备工作噪音等环境信息的监测9设备自动识别对与系统采集的热图(无论自动采集还是人工采集)进行自动识别,通过图像配准的方法识别出该热图能有效的设备目标,保证温度检测的有效性。10语音对讲及现场指挥功能定期检修或施工的伴护功能11火灾检测及应急处理实现火情异常发现及灭火应急处理功能12安防联动及应急联动处理在系统告警发生后快速对室内进行巡视、排查隐患的过程;和室内其他在线监测的系统联动,其他在线监测发现的异常联动现场确认处理。消防联动发现火情,后台视频确认,联动灭火机器人进行处置。

2.2系统的特点和优势

视觉导航技术,自动识别所有表计

传统的机器人巡检是通过大量的预置位设置工作来定位所有的监测目标,需要大量的运维工作才能保证整个系统的有效运行。本系统采用的视觉导航技术,只要系统采用模糊识别算法对现场典型设备进行学习,在实施过程中内自动识别所有的设备,自动定位需要检测的目标,极大的提高系统运行效率。

滑触式供电化技术

巡检机器人重复定位精度±2mm,运行平顺无卡滞。

24小时连续不间断运行,无需充电等待。

有线通讯技术,符合电网信息安全要求

采用有线通讯方式,数据可直接接入电网公司运维管理系统,不存在因采用无线网络通讯导致的信息安全问题。

柜内局部放电监测技术

系统使用机械臂式局放检测仪检测所有开关柜、配电柜内部放电现象,结合机器人在垂直方向2米的行程以及局放机械臂在水平方向0.25米的行程,可实现开关柜、配电柜全方位的局部放电监测。

局放检测方式:TEV+超声组合。

3D扫描技术、室内设备全方位监测

系统采用三维扫描仪用来侦测并分析配电房、开关室中物体或环境的形状(几何构造)与外观数据(如颜色、表面反照率等性质)。采用搜集到的数据进行三维重建计算,在智能巡检机器人系统中创建实际物体的数字模型。

系统采用这些模型数据进行导航、识别、设备定位。系统采用这些数据同时完成室内设备的设备锈蚀、形变检测、土建环境状态识别。

AR实景监测技术应用

运维人员模拟现场实际场景实时观测室内所有设备的运行状态。可随着运维人员的身体动作,查看分析任意设备的工作状态,表计读数。系统同时可在所有检测对象上进行注释及标记,辅助运维人员巡视。

系统同时完成柜内设备温度工作状实景实时监测。

智慧巡检技术

系统保证每天一次的全面巡检任务,同时会自动根据巡检结果调整其他巡检任务,自动调整设备的巡检频率。例如:某块表计读数数值变化较大,系统自动增加该表计的监测次数,而对于长期不变的表计自动减少监测次数。对于工作状态异常设备,系统自动增加巡检频率,有效的提高的系统的巡检效率。

室内工作环境自动监测

智能机器人自身携带的环境监测模块、高灵敏度拾音器,具备监测配电房、开关室中O3、CO、CO2、SF6、温度、湿度、烟雾、环境噪音、设备工作噪音等环境信息。

语音对讲现场指挥功能

智能巡检机器人系统搭载双向语音系统,安装有应急广播扬声器和监听麦克。用于监控中心和巡视人员进行双向对讲,实现对现场的远程监控指挥。

异常预警及联动告警处置

根据配电房、开关室的运行情况,按不同等级可发生报警:机器人本地声光预警、监控中心声光预警。

当出现环境气体达到报警参数、火情、积水异常,巡检点设备发生异常,地质变化、通讯系统故障、机器人掉线30分钟等异常情况时,系统都应进行报警。当工作人员确认报警信息后,系统可以解除相关报警。

火灾检测及应急处理

通过巡检机器人人体搭载的高清视频设备检测配电房、开关室内部异常光源、烟雾情况;红外设备识别火源,对配电房、开关室设备明火及设备内部异常温度进行检测,及时识别疑似火灾位置,由平台专家系统分析是否有着火点,是否需要联动消防系统;确认着火点后,发送火灾告警至本地监控平台,同时巡检机器人应驶离到安全距离(机器人承受最高温度)以外观察。

配合气体检测设备,对配电房、开关室内部有害气体进行检测,为人员进入管廊内部进行消防或其他作业提供参考。

360°高清视频巡检

巡检机器人安装的360°连续转动球型云台,实现全方位巡检监控。

(1)移动高清视频监控:1080P高清可见光相机,可实现配电房、开关室内实时移动视频监控。机器人同时搭载的高亮红外探照灯补光,以实现有效照明。

(2)系统完成如下表计的识别:

电压表、电流表等表计指示;

SF6气体压力等表计指示;

开关、接地刀闸、贮能状态等机械位置及电气指示检测;

状态指示灯自动识别;

空开状态识别;

旋钮开关位置识别;

保护压板位置判断;

运行人员远程操作机器人监督现场人员操作及施工

(3)地质沉降:巡检机器人采用预置点标定与视频识别相结合的方法,对配电房、开关室的基建变形、地质变化、结构缝错位等进行检测,有效预警可能发生的严重地质危害。

(4)设备锈蚀、变形检测:配电房、开关室设备生锈腐蚀、变形,久而久之会导致设备故障。巡检机器人系统通过图像识别及图像对比方法,可对套管设备、紧固件进行精确定位、拍照,结合人工确认,实现锈蚀、变形分析,提前预警,一定程度上防止故障的发生。

(5)漏水与积水识别:机器人系统可针对配电房、开关室中的土建渗水、地面积水情况进行识别。在正常巡检情况下,机器人对特定的渗水泄漏点进行检测;常规行进过程中,可采用扫描的方式进行渗水漏水检测。

设备自动识别管理功能

对于系统采集的热图进行自动识别,通过图像配准的方法识别出该热图包含的有效设备目标,保证温度监测的有效性。

设备自动识别管理功能

对于系统采集的热图进行自动识别,通过图像配准的方法识别出该热图包含的有效设备目标,保证温度监测的有效性。

详细设备工作状态管理功能

建立所有设备以及设备部件的管理体系,在自动巡检的同时对本红外热像仪巡视范围内的所有设备部件进行温度分析记录。在报警的时候可以详细到具体设备故障部位。

防误报识别功能

所有的温度测量都基于有效的设备识别,根据巡查策略可以只测量标记过的设备,对于外界的干扰热源自动剔除,有效的防止了误报警的产生。

自动生成报表功能

系统软件可自动生成单幅红外图像的设备工作温度分析报表或综合报表,系统可自动记录每次测温时的温度值,并生成温度报表,以反应该设备在某一时间段内的温度变化情况。

自动巡航功能

系统提供多种方式的自动巡检计划和方案,实现完全自动化运行,实现每天多次的对设备工作状态的巡检、自动预警、自动输出报表等功能。减少了人员到现场巡视次数,提高运行人员工作效率,有效降低了运行人员的工作强度。

自动预警功能、短信报警

在系统巡航过程中,如发现目标设备温度异常自动报警,报警信息有文字信息和声音信息,提示运行人员具体的报警位置状况信息,以便跟踪故障点,确认告警情况并排除故障。

系统可设置将配电室、开关室内设备工作状态以短信方式发送到运维人员手机中,提高系统报警的有效性和实时性。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇