博舍

人工智能发展应用中的安全风险及应对策略 人工智能的安全及个人防护论文怎么写

人工智能发展应用中的安全风险及应对策略

人工智能(ArtificialIntelligence,AI)被称为21世纪三大尖端技术之一(基因工程、纳米科学、人工智能),扩展延伸了人的智能,逐渐转变成渗透到人类生活和社会各个方面的通用技术,为人类认识世界、改造世界增添了新工具新手段新方法。

1、推动因素与发展现状

随着网络、超级计算、大数据、云服务及传感器等技术的发展进步,人工智能进入了重新崛起并迅猛发展的新阶段。

现状

从发展史来看,人工智能并不是最近才出现的新技术。1956年夏天,在美国新罕布什尔州汉诺威市举行的“达特茅斯会议”上,“人工智能”术语的提出,标志着它已成为一门新兴学科。此后,它逐渐为世人熟悉接受,其相关理论和技术也在起伏中得到逐步发展。进入21世纪,人工智能再度进入爆发式发展应用的新阶段,主要有四大推动因素:

(1)相关基础理论、技术和应用的积累进入新阶段。计算机、大数据、云计算以及物联网等技术的突破,特别是神经网络(模仿人脑思考结构)、机器学习(记忆与认知)、数据库和算法等研究取得的新成果,为人工智能产业化快速发展提供了重要技术基础。

(2)国家战略布局和相关政策的有力支持。美、欧、日等发达国家和地区将人工智能上升为国家战略,纷纷出台政策支持人工智能技术研发和产业发展,抢占发展先机。日本在2015年1月发布《机器人新战略》,未来十年将投入1000亿日元用于人工智能的研发;2017年3月,又出台《人工智能技术战略》,进一步规划部署人工智能的技术研发。2016年,美国白宫连续发布《为未来人工智能做好准备》《美国国家人工智能研究和发展战略计划》《人工智能、自动化和经济》等政策和研究报告,明确提出人工智能研发战略,构建人工智能研发实施框架,并于2018年5月设立相关组织机构,协调推进人工智能研发与政企协作。2018年9月,美国国防部决定未来五年投资20亿美元用于开发机器常识(MCS)项目。2018年6月,欧洲委员会提出一项数字欧洲计划,计划2021-2027年投入10.4亿美元推进人工智能技术研发与应用。2016年12月,英国发布《人工智能:未来决策制定的机遇与影响》,阐释了人工智能对现代社会的影响,不断提高政府对人工智能的认知,2017年4月英国皇家学会发布《机器学习:计算机通过案例学习的能力与潜力》研究报告,呼吁英国加大对机器学习技术的研发投入,2018年英国启动了《人工智能行业新政》,推动英国成为人工智能领域的领导者。2018年以来,德国、法国、韩国和印度等国也纷纷推出本国的人工智能战略进行规划布局。

(3)各大企业加大金融资本的支持。高科技企业将人工智能视为下一代产业革命的技术引爆点进行投资。2016年9月,谷歌、微软、亚马逊、脸谱和IBM五家企业宣布成立人工智能联盟,交流共享人工智能发展经验。由于人工智能产业化和商业前景看好,各种金融资本迅速介入。数据显示,2016年,全球科技巨头在人工智能领域投资就达300亿美元。资本市场的火热催生了一大批人工智能领域初创公司的诞生和快速发展。如以云知声、思必驰等为代表的语音识别和自然语言处理公司,以商汤科技、旷视科技、依图科技等为代表的计算机视觉公司,它们中有很多如今已发展成为新兴的独角兽企业。2018年4月9日,中国恒大与中国科学院签署合作协议,未来10年恒大将投资1000亿元人民币,布局量子科技、机器人等新科技领域。

(4)应用场景的影响。谷歌公司机器人阿尔法狗战胜韩国围棋九段棋手李世石和围棋世界冠军柯洁,唤醒了世人对人工智能的高度关注。百度指数数据显示,从2015年底开始,“人工智能”热度逐渐升温,且持续到现在。2015-2016年,其媒体关注度已经暴涨6倍。

发展现状

目前,人工智能蓬勃发展,技术进步迅速,其应用已经渗透到我们的日常生活中,如人脸识别、刷脸支付、语音助手、无人机、服务机器人、自动驾驶和智能系统等。与互联网、大数据、物联网、云服务融合的人工智能应用给我们带来了更多的便利。专家认为,人工智能的应用将使劳动生产率提高90%;至2035年,人工智能将使年度经济增长率提高一倍。

但是,业界普遍认为真正的人工智能尚处于发展的初级阶段(认知智能发展阶段),即弱人工智能阶段,有“技能”,但远远谈不上有“智能”,还没能出现像人一样思考和行动的真正的人工智能产品,离通过“图灵测试”这一衡量人工智能技术水平的标准为时尚远。有专家认为,人工智能目前处于婴儿期,其智商大抵相当于3岁的孩子,说不好、笑不真、想不清、行不稳,这四“不”客观地描写了人工智能目前的现状。

2、安全风险

国家安全

国家安全包括国土安全、政权安全、制度安全和意识形态安全等。2017年7月,美国智库发表题为《人工智能与国家安全》的研究报告,认为人工智能将会是国家安全领域的颠覆性力量,其影响可与核、航空航天、信息和生物技术比肩,将深刻改变军事、信息和经济领域安全态势。该报告强调人工智能通过变革军事优势、信息优势和经济优势影响国家安全。其中,军事领域引入人工智能几乎是不可阻挡的,而人工智能技术与生俱来的军民两用特性则要求决策者必须调和商业与国家安全之间的利益。而且,利用“换脸”、“换声”等人工智能技术可以制作具有欺骗性的假时事新闻。已有案例说明,利用人工智能技术在社交平台大量制作散发虚假新闻可以在政府首脑选举中影响选民的抉择。

社会安全

传统犯罪借助人工智能,将会衍生出新型犯罪形态、犯罪行为、手段和方法,出现无法辨识是机器人犯罪还是真实人犯罪的尴尬场景。2018年3月,美国发生了两起涉及自动驾驶的车祸。3月19日,优步(Uber)一辆自主驾驶汽车在美国亚利桑那州坦佩市发生致命车祸,一名49岁的女子晚上推着自行车穿过马路时被汽车撞死。3月23日,一名工程师驾驶特斯拉ModelX型号汽车在加州101公路和85公路交接处发生致命车祸,车祸发生时汽车启用了自动驾驶(或自动辅助驾驶)功能。这些案例说明,人工智能产品如果没有彻底解决安全可靠性问题,将会危及社会公共安全和人身安全。

网络安全

网络和大数据的发展推动了人工智能的进步,网络攻击智能化趋势也给网络安全保护提出更高要求。有关人工智能与网络安全关系的研究表明,一旦人工智能运用到网络攻击活动,将使得网络攻击活动更加难以预警和防范,关键信息基础设施也将会面临新的安全风险威胁。如人工智能技术运用到木马病毒制作传播,将会出现难以防御的超级病毒木马,传统应对方法将不足以制止这些恶意程序传播扩散的速度。此外,人工智能的技术研发与应用也存在一些不确定性的安全风险。

3、应对人工智能安全风险的对策建议

人工智能的安全风险取决于技术发展及其安全可控的程度,短期风险可以预见,长期风险受制于现有认知能力难以预测和判断。因此,一方面,人类社会要积极推动人工智能技术研发和应用;另一方面,要为人工智能的发展应用规划一条安全边界,防止其被恶意运用、滥用,给人类社会造成不可逆转的伤害。

加强人工智能安全风险的研究

树立正确的安全观,科学对待人工智能安全风险。研究掌握在人工智能技术研发和应用过程中会出现哪些风险,并从法律、政策、技术和监管等方面进行有效防控管控。

加强人工智能立法研究和法律规范

人工智能理论、方法、技术及其应用引发社会关系、社会结构和行为方式的变化,产生不可预知的安全风险和新的法律问题。建议运用法律手段,重点防控人工智能行为主体及其行为的异化。从现有情况看,人工智能法律研究应主要聚焦在人工智能产品主体,如智能机器人的法律地位、行为的法律属性以及法律责任如何确定等方面。在立法方面应加强对人工智能技术应用可能出现的法律问题的前瞻性研究探索。

加强人工智能安全防控体系建设

按照趋利避害原则,处理好人工智能发展应用与安全防控的关系,既要促进人工智能发展应用,又要推动其在安全、可靠和可控的轨道上前行。要加强对人工智能安全防控体系建设的战略规划部署,围绕人工智能安全风险点,借鉴已有经验,有步骤地推进人工智能安全综合防控体系建设。

加强人工智能产品服务的安全监管

要及时制定人工智能安全产品和服务技术标准规范,规范和引导产品研发推广。加强对人工智能安全产品和服务的市场监管执法和相关产品上市前的安全测试。对有安全缺陷的产品和服务要依法处理,对造成危害后果的要依法追究法律责任。要积极运用人工智能技术提高安全监管能力,善于运用人工智能技术改进和加强安全监管执法,提高安全监管执法的能力和效率。

加强人工智能技术研发的管控

人工智能的快速发展引起了国际社会对于道德伦理问题的关注和担心,应当为人工智能技术研发划出“红线”,设置禁区,禁止研究开发危害人类生存安全的人工智能技术和产品,防止人工智能技术的滥用。美国科幻小说家阿西莫夫在1950年出版的小说《我,机器人》中提出了著名的“机器人三大法则”,第一定律:机器人不得伤害人类个体,或者目睹人类个体将遭受危险时袖手不管;第二定律:机器人必须服从人类发出的命令,当该命令与第一定律冲突时例外;第三定律:机器人在不违反第一、第二定律的情况下要尽可能保护自己的生存。2017年1月,美国著名人工智能研究机构未来生命研究院(FLI)在加利福尼亚州召开主题为“有益的人工智能(BeneficialAI)”的阿西洛马会议,法律、伦理、哲学、经济、机器人和人工智能等众多学科和领域的专家,共同达成了23条人工智能原则(“阿西洛马人工智能原则”,被称为人工智能发展的“23条军规”),呼吁全世界在发展人工智能的时候严格遵守这些原则,共同保障人类未来的利益和安全。23条规则规定,人工智能研究的目标应该建立有益的智能,而不是无向的智能。应该设计高度自主的人工智能系统,以确保其目标和行为在整个运行过程中与人类价值观相一致。对于人工智能造成的风险,尤其是那些灾难性的和存在价值性的风险,必须付出与其所造成的影响相称的努力,以用于进行规划和缓解风险。同时,人工智能军事化问题也是国际法律界关注的热点。目前,国际上限制致命性人工智能武器的呼声不绝于耳,有上百家人工智能领先企业呼吁禁止发展致命性人工智能武器。国际社会应当共同努力,加强合作,反对人工智能军事化,共同应对人工智能安全风险。

大连妇科医院排名http://mobile.bohaifk.com/

人工智能时代的安全风险与应对之策

随着安防行业进入智能化时代,人工智能安全已经是行业目前必须面对的新挑战。

数智时代的安全风险

在安防行业,谈起安全,人们自然会想到数据安全、传输安全、网络安全等话题,但其实随着安防行业进入智能化时代,人工智能安全已经是行业目前必须面对的新挑战。

近年来,在大算力和海量大数据的驱动下,以深度学习为代表的AI技术飞速发展,以计算机视觉技术为例,依托广阔的应用场景从理论研究走向大规模的应用落地,人脸识别、目标检测等技术被广泛应用于公共安全、城市交通等领域,推动城市治理的智能化升级。

但在数据驱动智能化发展的背后,安全隐患也不容忽视。瑞莱智慧副总裁唐家渝指出,数据驱动的深度学习算法存在不可靠、不可解释等局限性,即便是开发者也难以理解其内在的运行逻辑,这就导致系统可能遭受到难以被察觉的恶意攻击。

McAfee曾做过一个实验,针对护照的人脸识别系统进行攻击,结合禁飞人员与正常飞行人员的特征,生成对抗样本图案,禁飞人员可凭包含这张生成的虚假照片的护照,顺利通过人脸识别护照系统的检测,顺利登机。这种潜在漏洞在国内安防门禁、考勤系统和手机解锁应用中同样存在。

唐家渝表示,这是深度学习范式下AI应用存在的结构性缺陷,贯穿于AI全生命周期。除了在运行环节对输入数据添加“扰动”,在最开始的模型设计环节,通过在训练数据中添加“污染数据”进行“投毒”,导致模型被埋藏后门,再通过预先设定的触发器激发后门,模型也将输出事先设定的错误结果。

通过数据污染、恶意样本攻击等方式对算法进行深层次攻击已经成为趋势,随着AI技术尤其是计算机视觉技术的广泛应用,这一安全风险的真实威胁开始显现。例如,公共安全领域,视频监控、安检闸机等智能安防设备被不法分子攻击,用于躲避追踪、冒充他人等;交通领域,自动驾驶汽车被干扰“致盲”,引发安全事故等;在金融领域,线上银行的人脸认证被破解,用于非法转账等诈骗行为。

唐家渝介绍,除了算法漏洞,“数据驱动”衍生的安全风险还远不止于此。海量人脸数据被恶意采集、滥用,导致用户隐私泄漏;泄露的人脸照片在表情驱动算法下生成伪造视频,用于攻破人脸核验系统等……如何有效应对人工智能安全风险,保障人工智能安全可控的应用落地成为行业未来发展的一项重要课题。

图:AI版“隐身衣”演示

AI安全风险如何应对

随着智能化场景的深入,人工智能的风险问题将更加的严峻。目前围绕AI的核心要素与环节来看,算法的漏洞、数据的滥用、隐私的泄露,以及技术滥用等问题都日渐严峻。如此,围绕算法、数据、应用等环节的AI治理问题也亟待解决。

针对以上问题,瑞莱智慧围绕“算法可靠、数据安全、应用可控”三大方向展开布局,在算法方面,其推出了业内首个业务级人工智能安全平台“RealSafe”,提供模型安全性测评及防御加固的端到端解决方案;在数据方面,其基于安全多方计算、联邦学习、匿踪查询等技术打造了数据安全共享基础平台隐私保护计算平台“RealSecure”;在应用治理领域,针对“AI换脸”等深度伪造技术滥用现象,瑞莱智慧推出深度伪造内容检测平台“DeepReal”,目前,该公司商业化产品已在政务、金融、能源、互联网等领域落地。

唐家渝认为,人工智能应用是集业务、算法、数据于一体的有机整体,涉及训练、检验、运行等生命周期阶段,所以应面向所有关键流程,布局全面且有针对性地安全防御措施。同时他强调,人工智能安全攻防技术在快速演变过程中,新的攻击手段不断出现,除了要解决“近忧”,更要着眼于“远虑”,对于未知威胁进行研判和防范,因此需打造动态升级、科学前瞻的防御理论及技术体系。

基于此,瑞莱智慧提出了兼顾“被动”和“主动”的防御机制。唐家渝解释道,被动防御为AI应用部署静态的安全能力,防范已知安全风险,比如对外部访问、输入数据、行为决策等进行检测,为算法模型部署加固防护组件等,提升系统抵御攻击的能力。主动防御则是为补充被动式防御的局限,引入和强化人工智能安全团队力量,以动态防御对未知威胁进行风险预判,构建自适应、自生长的安全能力。

AI市场新赛道

AI安全是新兴领域,虽然Google、OpenAI、BAT等科技巨头都有布局人工智能安全领域技术研究,但实际聚焦并将其商业化落地的企业寥寥无几。

作为市场的先行者,唐家渝认为这个领域除了部署技术体系外,更需要框架指导、标准规范、法律合规等多个维度协同推进。据悉目前瑞莱智慧已经与国家工信安全中心、中国信通院、国家互联网应急中心、公安部第三研究所等单位开展合作,联合落地标准制定、测试评估等工作,推动AI安全从“试点示范”走向“推广应用”。

唐家渝表示,目前整个AI产业已经从之前粗放式的高速发展进入到高质量发展的阶段,随着公众对于AI安全性的关注度提升,以及监管政策的出台和引导,未来AI行业将是发展与治理协同的阶段,如何保证AI应用的安全性是一个重要命题。安全AI这一新兴领域,比如AI安全防火墙、基于隐私计算的人脸识别方案等会很快迎来爆发。

安博会期间,安防知识网等媒体与唐家渝进行了一次深度对话。本次访谈中,唐家渝谈到AI安全的落地以及对AI产业的思考。

Q:整个展会看下来,瑞莱智慧非常的特殊,能否为我们简单介绍下企业?

唐家渝:瑞莱智慧孵化自清华大学人工智能研究院,致力于提供基于第三代人工智能技术的AI基础设施,加速安全、可靠、可信的产业智能化升级。核心聚焦安全AI领域,比如数据安全治理、算法可靠性提升,以及保障AI技术应用的安全可控。

Q:人工智能安全的最大挑战是什么?

唐家渝:安全问题的本质是攻防较量,是对抗升级的过程,我们需要永远比对手“快一步”。例如我们的AI防火墙能够检测到现有的一些新型攻击,但是攻击方也在不断更新算法,一旦他们比我们更快找到了新的漏洞,如果不能及时防御,后果可能会比较严重。这个对抗博弈的过程非常艰辛,背后的技术投入与技术难度是非常大的,但也只有这样才能制衡住对方。

Q:用户如何评估瑞莱智慧安全解决方案的效果?

唐家渝:安全的评估难以完全量化,主要通过两类场景来体现:一是用户已经遭受攻击产生损失,利用我们的系统能够将漏洞具体检测出来,同时基于我们的方案避免类似的损失发生;二是如果有更加新型的攻击方式出现,已经部署我们系统的用户通常能够更早地发现风险以及抵御风险,降低损失。

Q:目前哪些用户比较关心人工智能安全?

唐家渝:主要有三类,一是行业属性对场景及业务安全性关注度较高的群体,例如银行等金融机构,与财产安全直接挂钩;二是国家重大基础设施服务群体,例如电网,一旦有被攻击的风险将造成国家重大财产损失和社会安全问题;最后是监管类国家政府机构,因为部门职能要求,需要利用相应的技术工具对市面上的人工智能产品的安全性进行监管与评测。这是目前比较典型的客户群体,我们觉得,类似于互联网时代网络安全的出现,未来人工智能会像互联网一样,普及是未来趋势,相应的人工智能安全应对也将成为必需。

Q:与互联网安全厂商如360、奇安信等会有合作吗,还是业务是各自分开的?

唐家渝:我们之间属于合作的关系,人工智能安全与网络安全相比,两者针对的目标对象和风险类型是完全不同的,网络安全主要是针对计算机网络系统的安全防护,人工智能安全主要关注的是人工智能系统模型、数据、框架等方面的安全,两者技术点与场景点是不一样的。因此通过开展合作,各自发挥所长,推动全方位的安全服务落地。

Q:安防行业强调的安全是数据存储与数据传输的安全,但瑞莱智慧强调的是用算法去推进安全的应用,对于传统用户而言,目前的接受程度如何?

唐家渝:现阶段看,市场仍需要一个培育的过程,但部分领域的客户已经有这方面的意识。比如我们与公安客户交流,他们对于人工智能安全必要性的认知还是非常高的。当前捕捉在逃嫌疑人的人脸识别系统、视频结构化系统的识别算法会被一些不法分子绕过,因此针对这些安全系统的升级也迫在眉睫。同样的,金融行业的用户接受度也更高,虽然针对AI系统的攻击仍是比较新的,但在利益的驱使下,已经有不少黑产分子在利用这些技术手段实施攻击,头部的银行客户也正在我们的帮助下加速建立完善的人工智能安全体系。另外,我们除了布局算法安全外,也涉及数据安全领域,比如基于隐私计算的数据治理方案,为用户提供全面的安全保障。

Q:瑞莱智慧这类型的企业出现,也意味着AI产业的野蛮生长已经结束,开始进入理性化的阶段,站在您的角度,如何看待AI企业未来的发展?

唐家渝:之前的安防展,AI企业展现的内容还大多聚焦在人脸识别与视频结构化等应用,企业拼到最后也是在数据收集以及场景深耕上竞争。但今年来看的话,AI安全治理开始受到重视,随着数据安全法、算法治理规范等相关条例的出台,以及公众舆论的讨论,使用人脸识别产品的企业对安全问题的关注度越来越高,业界开始出现探索安全可信的AI方案,比如后端治理上,数据采集后的脱敏存储、结合隐私计算的人脸识别方案等。从大环境来看,AI企业的算法效果的差异化已经没那么明显了,未来市场的趋势一定是在追求算法落地效果的基础上要保障算法与数据的安全可控,这有助于整个AI产业的健康发展,同时对我们而言也是个利好的趋势。

Q:除了公安,未来瑞莱智慧会切入其他安防场景,如交通、社区等场景吗?

唐家渝:这些场景我们都有在布局,因为AI安全性问题属于底层的通用问题,当前安全问题的产生源自于深度学习算法的结构性缺陷,我们首先切入公安的人脸识别场景是因为其应用最为广泛,面临的风险也最为严峻。但像智能交通的车牌识别、社区安防的人脸识别和ReID跟踪等场景,同样存在安全风险,我们也在跟这些领域的厂商与主管部门展开合作,共同推进相关场景的AI系统安全性升级。

Q:所有的智能化应用落地都会有困难,那么人工智能安全方案在落地之前会遇到挑战吗?

唐家渝:会的,核心是安全与效果之间的平衡,因为安全方案的引入,或多或少都会对系统的效果产生影响。举一个例子,一些视频结构化系统具有较好的识别效果,但同时容易被攻击误导,这种情况下,我们核心要突破的挑战便是如何最大程度降低被恶意攻击的概率,同时保证系统的识别效果尽可能不受影响,这需要我们对识别算法、攻防算法的技术理论以及实际的业务逻辑都要有深入的理解。

人工智能安全学习笔记

任何一项新技术的发展与应用都存在相互促进又相互制约两个方面:一方面,技术的发展能带来社会的进步与变革;另一方面,技术的应用要以安全为前提,要受到安全保障机制的制约。

人工智能安全

人工智能安全分为三个子方向:

人工智能助力安全(AIforSecurity)人工智能内生安全(AISecurity)人工智能衍生安全(AISafety)

其中,助力安全体现的是人工智能技术的赋能效应;内生安全和衍生安全体现的是人工智能技术的伴生效应。人工智能系统并不是单纯依托技术而构建,还需要与外部多重约束条件共同作用,以形成完备合规的系统。

人工智能安全的体系架构及外部关联如图1所示。人工智能助力安全

主要表现为助力防御和助力攻击两个方面。

在助力防御方面,防御者正在利用人工智能技术提升和扩展其原有防御方法。

人工智能机器学习模型为积极主动的网络防御带来了新途径。智能模型采用积极主动的方式,而不是传统的被动应对方式;同时,利用人工智能的预测能力和机器学习的进化能力,可以为我们提供抵御复杂网络威胁的手段。本质上来讲,最重要的变化是在网络攻击发生之前就进行预警并采取阻断措施。

麻省理工学院研发的基于人工智能的网络安全平台AI2,用人工智能方法来分析网络攻击情况,帮助网络安全分析师做那些类似“大海捞针”的工作。AI2系统首先利用机器学习技术自主扫描数据和活动,把发现的结果反馈给网络安全分析师。网络安全分析师将会标注哪些是真正的网络攻击活动,并将工程师的反馈纳入AI2系统,从而用于对新日志的自动分析。在测试中,研究小组发现AI2的准确性约为现今所使用的自动分析工具的3倍,大大减少误报的概率。另外,AI2在分析过程中可以不断产生新模型,这意味着它可以快速地改善自己的预测率。系统检测越多的攻击活动,收到来自分析师的反馈越多,相对地可以不断提高未来预测的准确性。据报道,AI2通过超过3.6亿行日志文件的训练,使其可以分析出85%的攻击行为,以便告警可疑行为。

在助力攻击方面,攻击者正在利用人工智能技术突破其原有能力边界。

人工智能可以赋能网络攻击,业内称之为自动化或智能化网络攻击。通过机器人在人完全不干预的情况下,自动化地进行计算机的攻击。近年来连续发生的重大黑客事件,包括核心数据库泄密、数以亿计的账户遭入侵、WannaCry勒索病毒等都具有自动化攻击的特点。通过借助自动化工具,攻击者可以在短时间内,以更高效、更隐蔽的方式对大量不同网站进行漏洞扫描和探测,尤其对于0day/Nday漏洞的全网探测,将会更为频繁和高效。人工智能强大的数据挖掘和分析能力,以及由此带来的智能化服务,经常被黑客组织加以利用,借助于人工智能技术,形成更为拟人化和精密化的自动化攻击趋势,这类机器人模拟真人的行为会更聪明、更大胆,也更难以追踪和溯源。当前,自动化、智能化的网络攻击正在不断让网络安全防线频频失守,而这显然需要引起网络安全行业的足够重视,需要从了解自动化网络攻击行为特点入手,及时采取措施。

人工智能内生安全

人工智能内生安全指的是人工智能系统自身存在脆弱性。脆弱性的成因包含诸多因素,人工智能框架/组件、数据、算法、模型等任一环节都可能给系统引入脆弱性。

在框架/组件方面,难以保证框架和组件实现的正确性和透明性是人工智能的内生安全问题。框架(如TensorFlow、Caffe)是开发人工智能系统的基础环境,相当于人们熟悉的VisualC++的SDK库或Python的基础依赖库,重要性不言而喻。

在数据方面,缺乏对数据正确性的甄别能力是人工智能的内生安全问题。例如,数据的丢失和变形、噪声数据的输入,都会对人工智能系统形成严重的干扰。

在算法方面,难以保证算法的正确性是人工智能的内生安全问题。智能算法存在的安全缺陷一直是人工智能安全中的严重问题。例如,对抗样本就是一种利用算法缺陷实施攻击的技术,自动驾驶汽车的许多安全事故也可归结为由于算法不成熟而导致的。

在模型方面,难以保证模型不被窃取或污染是人工智能的内生安全问题。模型是一个可拷贝、可修改的实体文件,就存在被窃取和被植入后门的安全风险,这就是人工智能模型安全需要研究的问题。

人工智能自身存在着脆弱性,例如对抗样本就是人工智能的内生安全问题。对抗样本是机器学习模型的一个有趣现象,反映出了人工智能算法的弱点。攻击者通过在源数据上增加人类难以通过感官辨识到的细微改变,但是却可以让机器学习模型接受并做出错误的分类决定。一个典型的场景就是图像分类模型的对抗样本,通过在图片上叠加精心构造的变化量,在肉眼难以察觉的情况下,让分类模型产生误判。对抗样本除在图像识别领域存在,也在其他领域存在,如语音、文本等。从网络安全领域看,同样存在类似于对抗样本的攻击问题,攻击者通过对恶意代码插入扰动操作就有可能对人工智能模型产生欺骗。例如,有人就设计了一个恶意样本,让分类器将一个存有恶意行为的软件认定为良性的变体,从而可以构造能自动逃逸PDF恶意软件分类器的攻击方法,以此来对抗机器学习在安全中的应用。上述安全问题都可能会导致同样后果,就是导致人工智能系统发生错误的决策、判断,以及系统被控制等问题。

人工智能衍生安全

人工智能衍生安全指的是人工智能系统因自身脆弱性而导致危及其他领域安全。衍生安全问题主要包括四类:

人工智能系统因存在脆弱性而可被攻击人工智能系统因自身失误引发安全事故人工智能武器研发可能引发国际军备竞赛AIA一旦失控将危及人类安全

人工智能的失误可能会给人类带来灾难,从而会形成衍生安全问题。2016年5月7日,在佛罗里达州公路上一辆处于“自动驾驶”模式的特斯拉ModelS以74英里的时速,撞上了拐弯中的白色拖挂式大货车。ModelS从货车车底穿过,车顶被完全掀飞,40岁的驾驶员JoshuaBrown不幸死亡。出事路段限制时速为65英里/时。由于“自动驾驶”模式车前的高清摄像头为长焦镜头,当白色拖挂卡车进入视觉区域内时,摄像头只能看到悬浮在地面上的卡车中部,而无法看见整个车辆;此外,当时阳光强烈(蓝天白云),使得自动驾驶系统无法识别出障碍物是一辆卡车,而更像是飘在天上的云,导致自动刹车未生效。这次事故引发了外界对自动驾驶汽车安全性的争议。这种自动驾驶的缺陷导致人类伤亡的事情,是典型的人工智能衍生安全的案例。

《人工智能安全论述》方滨兴1,2,3崔翔2,3顾钊铨2,3方滨兴院士:人工智能安全之我见人工智能安全方滨兴

人工智能安全风险分析与内涵

1、新的攻击威胁:

攻击方法:对抗样本的攻击、数据投毒、模型窃取、人工智能系统攻击

攻击影响:模型的训练、测试和推断过程中均可能遭受攻击;危害数据和模型的机密性、完整性和可用性。

2、人工智能安全隐患

①算法模型安全隐患:算法是人写的,模型也是人写的,都可能有缺陷,有歧视,有黑箱操作的可能。

②数据安全与隐私保护隐患:采集数据、使用数据、存储数据都不同程度的滥用泄露。

③基础设施安全隐患:简单理解,人工智能也得依赖数据库、操作系统、代码。这些就是基础设施,一旦这些基础被黑客控制了,数据就被泄露了。

④应用安全隐患:自动驾驶(黑客远程入侵控制导致撞车)、生物特征识别(小学生用照片成功忽悠人脸识别)、智能音箱等等。

⑤人工智能滥用:利用语音合成技术假扮受害人亲属实施诈骗、人工智能技术破解登录验证码的效果越来越好、且难以防范、利用人工智能技术模仿人类,如换脸、手写伪造、人声伪造、聊天机器人。

3、安全影响:

国家安全影响:人工智能可用于构建新型军事打击力量,对国防安全造成威胁。

社会伦理挑战:智能人工机器人替代人,造成大量失业;人们不去恋爱了,就和机器人恋爱。

人身安全风险:抽象

人工智能安全标准化白皮书(2019版)

网络空间安全

基于计算的学科,涉及技术,人员,信息和流程,可确保在对手的上下文中进行有保证的操作。它涉及安全计算机系统的创建,操作,分析和测试。这是一门跨学科的学习课程,包括法律,政策,人为因素,道德和风险管理等方面。

网络空间安全不仅关注传统信息安全所研究的信息的保密性、完整性和可用性,同时还关注构成网络空间的基础设施的安全和可信,以及网络对现实社会安全的影响。

专业解析:国际上习惯用机密性,完整性和可用性这三个属性(简称CIA)称为安全性的三个要素。凡是在网络空间中,涉及到CIA三个要素之一的内容,都纳入网络空间安全范畴。包括:防止信息被泄密、防止未授权的访问与篡改、防止系统不可用。

网络空间

网络空间是信息环境中一个整体域,它由独立且相互依存的信息基础设施和网络组成。包括了互联网、电信网、计算机系统、嵌入式处理器和控制器系统。

专业解析:专业上通常把遵循ISO/OSI7层协议框架(有时用TCP/IP协议框架)的设备统称为IT(InformationTechnology)设备或系统,例如路由器、服务器、PC,各类应用软件等。如果把整个范围扩大到所有可以连接到网络上的非IT设备系统:包括工业设备系统(OperationTechnology,简称OT设备)如核电站;物联网设备系统(InternetofThings,简称IoT设备)如蓝牙音箱、自动驾驶汽车。这就是网络空间的范围。特点是:海量+万物。

网络安全NetworkSecurity

为防止,检测和监视计算机网络和网络可访问资源的未经授权的访问、滥用、修改或拒绝而采取的策略、过程和做法组成。包含网络设备安全、网络信息安全、网络软件安全。

专业解析:网络安全通常是指遵循ISO7层协议框架(或TCP/IP)的IT设备之间如何保障机密性、完整性和可用性的问题。如:系统被攻击,设备通信时被黑客嗅探获取密码。特点:IT设备。

信息安全

严谨定义:ISO27001定义:保护组织有价值的信息资产机密性、完整性和可用性,而建立的组织、策略与流程。专业解析:企业内部有价值的信息资产包括硬件、软件、服务、人员、数据、无形资产等。如何保护这些资产的机密性、完整性和可用性。例如:防止公司重要数据库服务器被破坏。可能是外部黑客,也可能是内部人员破坏。

数据安全

严谨定义:维基百科:保护数字数据免受破坏力和未经授权用户的有害行为的侵害,例如网络攻击或数据泄露。

专业解析:结构化数据、半结构化数据及非结构化数据在其整个生命周期中的机密性、完整性和可用性的保护。

重要性

进入21世纪,随着信息化建设和IT技术的快速发展,各种网络技术的应用更加广泛深入,同时出现很多网络安全问题,致使网络安全技术的重要性更加突出,网络安全已经成为各国关注的焦点,不仅关系到机构和个人用户的信息资源和资产风险,也关系到国家安全和社会稳定,已成为热门研究和人才需求的新领域。必须在法律、管理、技术、道德各方面采取切实可行的有效措施,才能确保网络建设与应用“又好又快”地稳定发展。

网络空间已经逐步发展成为继陆、海、空、天之后的第五大战略空间,是影响国家安全、社会稳定、经济发展和文化传播的核心、关键和基础。网络空间具有开放性、异构性、移动性、动态性、安全性等特性,不断演化出下一代互联网、5G移动通信网络、移动互联网、物联网等新型网络形式,以及云计算、大数据、社交网络等众多新型的服务模式。

网络安全已经成为世界热门研究课题之一,并引起社会广泛关注。网络安全是个系统工程,已经成为信息化建设和应用的首要任务。网络安全技术涉及法律法规、政策、策略、规范、标准、机制、措施、管理和技术等方面,是网络安全的重要保障。

信息、物资、能源已经成为人类社会赖以生存与发展的三大支柱和重要保障,信息技术的快速发展为人类社会带来了深刻的变革。随着计算机网络技术的快速发展,我国在网络化建设方面取得了令人瞩目的成就,电子银行、电子商务和电子政务的广泛应用,使计算机网络已经深入到国家的政治、经济、文化和国防建设的各个领域,遍布现代信息化社会的工作和生活每个层面,“数字化经济”和全球电子交易一体化正在形成。网络安全不仅关系到国计民生,还与国家安全密切相关,不仅涉及到国家政治、军事和经济各个方面,而且影响到国家的安全和主权。随着信息化和网络技术的广泛应用,网络安全的重要性尤为突出。因此,网络技术中最关键也最容易被忽视的安全问题,正在危及网络的健康发展和应用,网络安全技术及应用越来越受到世界的关注。

jtj2008知道合伙人教育行家https://blog.csdn.net/agiogo/article/details/115861564

人工智能论文范文(5篇)

人工智能论文全文(5篇)

时间:2023-04-1322:16:52

第1篇:人工智能论文范文

第一,植物的规格要确定好,要结合植物所适应的地质条件来对各种规格的植物进行协调搭配。一般来说,中型及其以上规格的乔木作为园林的架构之一,会对整个园林所呈现出来的景观效果起着重要作用,应当先进行安放,然后才是小型规格的植物的安放,保证在园林景观的细节处做好处理;第二,要合理组合植物的品种类型,落叶植物和针叶常绿植物之间在园林中所占的比例应当保持一定的平衡关系,对于植物如花卉、叶丛的颜色要协调好,一般以夏东两季的植物色彩为主色调,其他色调为辅,以保证视觉上能起到互相补充的效果。

2园林设计中人工智能应用现状

2.1系统操作方面

由于园林设计既涉及艺术方法也涉及到技术手段,因此,对操作人员的综合能力要求就比较高,也就是说,操作人员应当对建筑理论、园林绿植知识和计算机基础三方面综合掌握,而事实上,很多参与园林设计的人员并没有很强的工程操作能力,要求太高,难以实现。

2.2园林可重复使用性方面

目前来说,园林的重复使用性还是太低,因为每个地方的气候条件和地理环境都不相同,所以,针对一个地方所制作的园林设计并不能简单地复制到另一个地方,如苏州园林的设计不能直接用在辽宁的园林设计,原因在于北方相对南方来说,园林供水相对困难,山石种类不同,绿植花卉种类也不如南方园林的丰富,而且南北审美观不同,北方园林设计多采用浑厚石材,绿植多为松、柏、杨、柳、榆、槐,加上三季更迭的花灌木,呈现刚健雄浑的特点,而南方则因为花木种类丰富,布局特别,注重山石与水的搭配,独具精致淡雅的特点,由此可见,园林的可重复使用性不高。

2.3计算机辅助设计方面

计算机辅助设计即常说的CAD。目前来说,CAD并不能完全对口符合园林设计的需求,因为CAD只能呈现出单一的图形画面,既不利于设计者进行设计,也不利于客户对设计者的设计的理解,导致客户与设计者之间难免信息不对称,造成一定的信息偏差,影响之后园林设计出来的成果。

3加强人工智能在园林设计中应用的办法

3.1园林子系统的设计

作为整个园林系统的组成部分,园林子系统的设定概要应通过计算机实施建模,来对项目实施进行基本设定,在获得项目系统的自动生成规则之后,在对所收集到的园林基本数进行存档,来作为全局的运行参数,在一定程度上影响了计算机的运行结果。一般来说,存档信息有园林的设计规模、投资情况、发展需求以及相关的环境因素等,存档后,可能会对建筑的规模大小、选址、风格特点以及植物的搭配等造成影响。

3.2地形子系统的设计

地形子系统的设计应当是通过计算机对采集到的地质数据进行推理而后才进行的。一般来说,会采用规则引擎最为计算机的推理机,是基于专家系统的模式下进行推理的,工作原理是由机器来仿造人类在对事件进行考虑的思维和方法,通过进行试探性的方法来进行推理,并不断地对推理所得出来的结果进行解释和验证。对地质情况进行实时实地勘查是保证园林设计图纸正常输出的要求,这是不能单纯地依靠计算机来实现的,因为地质勘查涉及到很多复杂地形的勘查,只能依靠人工的方式。地质勘查可以分为前期阶段和后期阶段。前期阶段主要是设定园林工程的初稿,因此,只要对地质情况进行系统的粗略勘察即可。后期阶段主要是完成图纸设计要求,因此,对数据准确性要求更高,并勘查人员对此进行较为细致的处理。这以后才是通过对计算机智能系统软件的使用来将前期阶段和后期阶段所获得的数据进行智能化处理,完成相关数据的细化以及修正,然后通过系统推理得到一个初步的园林模型。

3.3主干道路子系统的设计

对地形子系统进行地形数据的输出即可得到主干道路设计,因为我们首先完成了地形的设计,因此,在接下来对道路进行设计的过程中就可以有效地避免其他的建筑和设施的干扰,这之后的设计才能按部就班地开展。推理的总体规则为:首先,由园林的建设规模、投资情况等来对道路的类型和所需费用等进行计算,得到相关数据;然后,结合之前的输出地形图来生成推荐道路图,并检查道路的密度是否符合园林的设计规范,接着根据道路建设定额表来对工程造价进行计算,看是否符合预期投资情况;最后,对道路图进行人工的调整,并反复验算。

3.4图纸和图表输出子系统的设计

第2篇:人工智能论文范文

“人工智能”一词最早是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能其英文全称为ArtificialIntelligence,缩写为人所共知的AI,它主要是对用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统等进行研究讨论。对于人工智能的定义义众说不一,一般有两种说法:一种是人工智能是关于知识的学科,即怎样对知识进行表示以及怎样获取知识并对知识进行使用的科学;另一种是人工智能研究的是如何实现让计算机做过去只有人才能够做的智能工作。但是不管是哪一种,它都是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能的定义可以分为两部分,即“人工”和“智能”。对于“人工”,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。诞生对于“智能”,则存在着很大的争议。因为这涉及到了诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人类唯一能够了解的智能就是人类本身的智能。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。人工智能的实现方式有2种方法。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(Engineeringapproach),它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法(Modelingapproach),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。

2人工智能的发展

对于人工智能的研究一共可以分为五个阶段。第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP表处理语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入了低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:问题求解的方法过度重视,却忽视知识重要性。第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向高潮。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。同时国际人工智能联合会于1969年成立。第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学但是的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。第五个阶段是20世纪90年代后。网络技术的出现于发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向到基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅只对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。

3对人工智能的思考

3.1人工智能与人的智能

从哲学上的量变引起质变的角度来讲,人工智能在不断的发展过程中一定会产生质的飞跃。在最初,人工智能只具有简单的模拟功能,但是发展到现在已经具备了思考的能力(逻辑推理分析),这已经表明人工智能在不断量变的过程中已经发生了质变。有人认为有人会说人工智能不会超过人类的智能,理由是人工智能是人类创造出来的。但是现实中很多人类创造出来的东西已经在某一些方面超过了人类本身的能力,例如起重机的力气超过人类很多;汽车速度也远超过人类的速度。人类之所以会制造出各种各样的工具,其目的就是希望自身的能力能通过这些工具进行延伸和突破。人类研究人工智能就是希望人工智能帮助人类实现人类某些无法实现的东西。还有人认为人工智能是人类创造出来的,所以它一定存在着致命的弱点,也因此人的智能优于人工智能。但是殊不知人类与机器相比也有着十分明显的弱点,例如人类所需要的生存条件比机器更加的严格,人类思维会受到人的情绪所影响,而机器只是受到程序的影响,它们没有情绪的起伏。就目前的人工智能而言,它们在某一些领域比人类更强。但是目前我们必须正视人工智能的一些还没有办法改变的缺陷,那就是人工智能的学习能力与创新能力。人工智能的知识获取大部门都是人为的进行灌输,而无法像人类自身那样进行主动的学习。同时人工智能只能够利用已有的知识去解决一些问题,但是却还不能够创造性的提出一些新的东西。

3.2对机器人三大定律的困惑

美国最著名的科普作家艾萨克.阿西莫夫提出过比较著名的机器人三大定律:第一定律,机器人不得伤害人,或任人受到伤害而无所作为;第二定律,机器人应服从人的一切命令,但命令与第一定律相抵触时例外;第三定律,机器人必须保护自身的安全,但不得与第一、第二定律相抵触。虽然这只是科幻作家所提出的一家之言,但是也代表了人类对与人工智能发展的一种期望与担心。人们害怕自己所创造出来的人工智能会伤害人类自己。但是阿西莫夫所提出三大定律都是以人类为中心的,而忽视了人工智能本身。或许这是人类的一种天性,世间所有的事物都应该围绕人类自身来定义、发展。就好像人类自以为掌控了能够改变大自然的力量,最终却被大自然反噬一样。同时,随着科学技术的发展,人工智能已经不单单需要逻辑思维与模仿,同时还应该将情感赋予人工智能。因为随着科学家对人类大脑和精神系统的研究的深入,已经愈来愈肯定情感是智能的一部分。如果人工智能具有了情感之后,人类的自我中心又是否会伤害到人类自己创造出来的人工智能。

3.3对人工智能未来的思考

人工智能有着十分巨大的发展潜力,对于人工智能的研究虽然经过了很多年,但是这也仅仅是刚刚开始而已,继续研究下去在很多方面都会有重大的突破。自动推理是人工智能最经典的一个研究分支,它的基本理论是人工智能其它分支的共同基础。一直以来人工智能最热门的研究内容里面就有自动推理,同时在该知识系统中的动态演化特征及可行性推理的研究是一个十分热门的研究内容,很有可能取得大的突破。机器学习一直在致力于研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。在过去的很长的一段时间内都没有取得十分显著的成果。但是许多新的学习方法相继问世,并且已经有了实际的应用,这充分的说明在这方面的研究已经有了很大的进步。自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。在经过人工智能研究人员的艰苦努力之后,在该领域中已取得了大量令人瞩目的理论与实际应用成果,许多产品已经进人了众多领域。智能信息检索技术在Internet技术的影响下,近年来发展势头十分迅猛,而且已经成为了人工智能的一个独立研究分支。

第3篇:人工智能论文范文

关键词:人工智能;新闻生产伦理;道德困境

一、人工智能技术在新闻生产中的现状分析

诞生于1960年的计算机辅助新闻是人工智能在新闻生产领域最早的应用。2000年左右,计算机辅助新闻开始进入数据驱动新闻阶段。2006年,汤普森公司开始将新闻机器人运用于财经数据分析,并生产出新闻,这标志着现代意义上的人工智能新闻真正产生。当前,人工智能主要依靠自然语言处理、预测分析和机器学习三种技术。在新闻报道中,人工智能的运用大致可分为自动化生产、人机交互和智能推荐三种类型。

(一)数据挖掘和机器写作推动新闻的自动化生产数据挖掘和机器写作是一种打破了新闻人工作常规模式的特殊的新闻生产方式,依赖于庞大的数据资源,运用技术的手段化繁为简,省去了传统新闻出稿的步骤。因此,数据的积累和清晰的数据支撑是推动新闻自动化生产的关键。这种将采访、写作、编辑、校对、分发、反馈等新闻生产环节融合在一起的方式,节省了人力、物力和时间,大大简化了新闻生产的过程,进一步优化了新闻生产的流程。这意味着,在一些专业报道中,机器人挖掘的数据会比记者发现、找到的数据更为精确可信,人和机器展现出平等合作、相互理解、辅助的关系,在不同方面各显其能,互相配合,可以让记者从单调重复的工作中逃离,从而更加专注于挖掘数字背后的意义,去做更有创造力的事。

(二)智能音箱和聊天机器改变人机交互的传统模式2017年7月,国务院的《新一代人工智能发展规划》中提到未来我国几十年人工智能的发展蓝图,着重强调发展人机智能共生的行为增强与脑机协同及人机群组协同等关键理论和技术,并指出未来人机协同将成为主流的生产和服务方式。智能语音服务由两部分构成,一部分是硬件,一部分是智能语音助手。硬件为语音助手提供运行环境,从物理上接受声音指令,并进行反馈。因此,智能语音可以通过声音方便地与终端交流,不需要控制手机或者终端界面就能参与数字生活和工作的方方面面。社会学家戈夫曼的场景理论认为,媒介、场景和行为之间存在高度的关联与互动关系。“场景”作为内容、形式、社交之后媒体的又一核心要素,在定制化需求体验和实现用户价值匹配方面得到了极大程度的体现。从这个意义上来说,智能语音扩张了我们进行媒介消费的空间。

(三)基于兴趣的智能推荐助推新闻传播的个性化人工智能视域下的智能推荐是指通过技术手段介入信息内容和信息受众之间,更改内容的传播方式和路径,从而更好地利用用户行为大数据,在“千人千面”的背景下实现用户不同偏好的内容推荐,达到分析并改变信息受众阅读偏好的效果。2019年,尼曼实验室在预测新闻业趋势时选出的一个关键词是“Newsfatigue”(新闻疲劳症)。因此,基于用户兴趣的算法可以督促记者更加全面地考虑用户需求,增加新闻内容曝光量,唤起用户的更多互动,从而更加有目的地进行个性化的推荐,将信息精准地投向用户,节省时间,优化用户在人工智能视域下的新闻阅读体验。

二、新闻生产伦理在人工智能视域下面临的困境

新闻伦理学的研究对象除新闻工作者的职业道德外,还应包括新闻媒体的社会道德功能。无论是从社会和谐还是科技发展的角度,传统媒体一直遵循的生产伦理价值,如真实性、客观性、把关控制等,都在新媒体技术的冲击下不断地受到挑战。

(一)新闻工作者面临的职业道德挑战1.人在技术裹挟下影响对新闻客观性的认识黄旦教授认为“客观性是指意识到新闻报道中的主观”,从而要求事实和价值分开的一种专业信念和道德准则。2019年两会期间,国内多家媒体都采用了时下流行的轻松、生活化的vlog报道形式。在传统新闻人看来,这种在生产过程中模糊新闻和娱乐、事实和意见的边界,无异于“国家和教堂间的界限”。随着技术的不断发展,算法成了大众传播中的“把关人”,控制着人类信息分发的权力,驱动着媒介生态环境的重构。这种信息生产、筛选与分发其实是一种有意识的信息“加工”行为。技术本身无好坏,但技术如何使用,算法按什么逻辑编写,界面如何设计等,都受到政治经济和人类心理的影响。2.科技的发展加剧新闻反转,影响新闻真实性真实是新闻的生命。近年来,“反转新闻”大量进入公众视野。闾丘露薇认为:“所谓的反转,只不过是公共舆论基于错误或者并不足够的信息而做出的价值判断,之后被更多的事实所证明是错误的而已。”“反转新闻”之所以出现,是由于传统媒体面临着互联网科技的冲击而陷入经济运营的困境,调查型记者的数量急剧锐减,越来越少的媒体机构有充足的时间、资源投入深入的调查。同时,在智能化算法的分发下,具有视觉冲击力、语言夸张的报道得到更多的推荐,使得真相或有用的信息隐藏在众多的声音中,用户更加难以把握事件的真实性。因此,信息不再是人们发现真相的帮手,而变成了认识世界的障碍,当用户无法获得优质的信息时,再多的信息也失去了意义。3.人工智能视域下新闻生产权力主体的转移法国思想家布莱兹•帕斯卡曾说,人的“主体性”指的是“与客体相对的主体所具有的特性,包括独立性、个体性、能动性以及占有和改变客体的能力”。但人工智能介入新闻生产与报道后会对部分职业新闻工作者带来冲击,担心一旦新闻生产的权力从人类手中交给机器,人类为了追求幸福快乐会放弃以人为中心的价值观,秉承以数据为中心的世界观,那么新闻生产者所谓的思想,即其引以为豪的创造天性也就逐渐逝去了,成了麻木的人、过时的人。但就目前来看,机器新闻取代的只是程序化、格式化的新闻报道,而这正是人的主体性得到释放的一种方式和渠道。然而需要承认的是,人工智能发展的脚步不会停止,只会被更巧妙地利用起来。在这种情况下,新闻生产者调和好工具理性与价值理性之间的冲突就显得十分必要了。

(二)新闻媒体面临的社会道德挑战1.个性化的推荐导致信息茧房和政治极化现象2006年,美国学者桑斯坦提出了“信息茧房”的概念,指的是人们根据不同的兴趣、价值观、身份、经历形成不同的部落,通过增强部落内部联系获得归属感。但由于每个人只接触属于自己的个人议程设置,就会出现和圈内人交流加剧意见极化的现象,而对外交流则很难进行沟通,从而使社会意见整合变得更加困难,公共生活更加难以协调,整个舆论生态环境不断恶化,有价值、有意义的信息难以得到有效的传递。如果说,过去我们评价一个新闻事件的影响力,看中的是它是否推动了制度变革,那么现在的评价标准或许就变成造就了几篇“10万+”。尤其是社交媒体中的机器人,运用算法,通过点赞、分享和搜索信息,将未经过筛选的假新闻传播力进行数量级扩大,导致受众缺乏社会责任感,难以认知自己所处的大环境,封闭于自我的想象中,使得极化现象在种族、宗教分裂原本就十分剧烈的发展中国家显得更加突出。尤其是对那些基础机构薄弱的国家来说,虚拟世界的愤怒激发的是现实世界中的暴力。而在经济结构稳定的国家,新闻生产的低门槛和低成本也使得假新闻泛滥,选民的自由意志被操纵,政治站位被重新定义。这一切都是技术缺陷在流量驱动商业模式下所带来的结果。2.社会资本的推动加剧了算法歧视和社会偏见技术和社会之间的关系是双向互动的。一种技术如何被使用、产生了怎样的效果,固然和技术本身的特性有关,但也会受到政治经济社会整体环境的影响。萨菲娅•诺布尔提到,Google搜索引擎的返回结果及其排序主要受到PageRank算法的影响,它会根据一个页面的超链接被其他页面引用的数量来决定搜索结果的排序。其背后的逻辑可以称为“引用多的即是好的或重要的”,这是一种价值判断,也是一种利益交换,遵循和延续了社会上的主流看法,但如果主流看法本身是带有偏见的,那么算法将延续这种偏见。这说明了算法并不是中立客观的,歧视就在眼前,但是披着中立的外衣,对社会上的边缘群体产生系统性的压迫。算法既可能复制主流社会对边缘群体的偏见,也可能受到商业资本的影响,将信息和知识商品化,从而加剧社会的不平等。3.人工智能扩大对数据的使用和隐私的侵犯信息社会的发展使得各国对隐私权保护的重心再一次发生了转移,促成这种变化的原因在于政府和商业组织搜集了太多受众自己都不知道的信息。因此,人工智能时代,我们每个人都生活在数据与算法中,无时无刻不在被“记录”和“监控”着。就像福柯所说的“全景监狱”,受众就是其中的一个个“囚犯”,而作为“狱卒”的媒体集团投其所好地向受众推送新闻,受众在享受人工智能带来的便利服务的同时,也会对自我控制权的丧失、个人信息的使用以及隐私的侵犯感到深深的忧虑。2019年1月,腾讯对各年龄层用户特征进行画像分析的大数据报告被网友质疑:微信“监控”了聊天数据。这不是社交媒体第一次遇到类似的质疑。即使腾讯声称所有数据均已进行匿名及脱敏处理,不涉及具体用户的隐私内容,但并不能完全消除公众的疑虑。当忧虑隐私近乎成为生活的一种常态,我们不禁要思考这样一个问题:我们到底是如何被技术力量裹挟着走到今天这一步的?又是在何时,我们开始认为体验了就要记录,记录了就要上传,上传了就要分享的这种行为模式再正常不过?

三、新闻生产伦理在人工智能视域下的发展策略

(一)从个人层面规范新闻生产伦理智能手机的迅速普及使新闻制作的门槛和成本降低,传统的新闻传播模式被打破,我们已来到一个人人均可发声的“去中心化”时代。作为人工智能时代的信息传播者,我们不仅要提高自我的媒介工具使用素养,还应不断加强在海量信息中筛选出有用信息的鉴别能力,从源头上降低新闻受失真、虚假信息误导的可能性。同时,在传受角色功能定位不断消弭的今天,提高传播者的媒介素养,使其拥有多元化的信息获取渠道、独立自主的思想意识和道德水平,给冰冷的算法和数据注入“温度”和人文关怀,不仅可以抵御经济快速发展带来的社会问题,也是净化舆论生态环境的需要。只有这样,人工智能时代的传媒业才能走得更远。此外,在智能信息时代,科学家、工程师不仅人数众多,而且参与社会重大决策和治理,他们的行为会对他人、社会带来比其他人更大的影响。他们在参与新闻生产的过程中通过合理的结构代码决定什么被看见,什么被隐藏,直接影响着新闻生产伦理。利用技术能做好事,也能做坏事,关键是被谁使用,如何使用。那么,要研究媒体技术在新闻生产伦理中的应用就不能忽视对开发应用这一技术的科技工作者的伦理道德规范。

(二)从组织层面规范新闻生产伦理与其他完全市场化的商品不同,媒体机构的公信力一方面承担着自身的发展前景,另一方面也关乎着国家社会的安全稳定。在人工智能背景下,新时代的媒体机构具有大众性和多元性等特征,覆盖的内容更加广泛,大多是靠广告获取收入,部分是通过付费订阅,且不同媒体机构间的竞争愈发激烈。但受众情愿买单的背后是对媒介机构的信任,一旦媒介机构肆无忌惮地利用受众的信任去欺骗受众,不遵守基本的媒介伦理,终会遭到受众的抛弃。因此,媒体机构要保证新闻的真实性、客观性,不断强化媒体机构履行社会责任的方式,推动社会的进步。在本质上,企业的社会责任和商业利益是一致的。当企业成长得足够强大时,“外部性”就会被内化。一个假新闻和低俗信息泛滥、全民娱乐至上、戾气十足的社会,不会为互联网的健康发展提供适合的土壤,所以要追究新闻平台的主体责任。平台在享受着杠杆规模效应的同时,更应该用高于法律和行业的标准来要求自己。另一方面,对于技术导致的部分问题,平台也可以通过技术的发展来解决。目前,“区块链+媒体”肩负着媒体人的夙愿,虽然这种模式对现有媒体生态的改变十分有限。但从“效率”转向“价值”,单一的技术思维转向立体的社会思维、公共思维来看,这是平台型产品发展壮大过程中的必经之路,也是以后互联网产业的重要动向。

(三)从社会层面规范新闻生产伦理在技术迭展的情况下,与新出现的人工智能相关的法律制定,在缺乏有价值的参照系下,很多方面的实施往往落后于新技术、新实践的发展。因此,我国于2017年开始实行的《网络安全法》对网络运营者在搜集用户信息、个人信息方面做出了规定,并对不当运用用户信息的行为给出了明确的处罚条例。人工智能媒体时代条件下,我们必须本着维护和发展的原则来实现人工智能的法律体系,慎重处理人工智能技术给社会带来的贡献,客观地看待它的价值和潜在的风险,尽快完善法律法规,适应新的媒体环境,特别是在人工智能技术无所不能的情况下,更要强调其价值理性,规范其行为,慎用公众数据,保护公众隐私,营造一个良好的新闻生态环境。

四、结语

人工智能与新闻传媒业的融合越来越成为行业人讨论的焦点。人工智能技术在改变着新闻信息生产、传播方式的同时,也要求着原有的新闻生产伦理做出调整,以适应科技的发展。除此之外,人工智能导致的在新闻生产领域产生的伦理问题,不是技术的失败,而是科学发展与我们对自身及他人在新闻生产过程中产生的伦理之间的深层联系。因此,探究人工智能在新闻生产伦理领域的发展及其带来的问题,不仅能够拓展新闻生产伦理与技术的研究视野,更有助于指导人工智能在未来不断变革的新闻实践。

参考文献:

1.张志强.新闻算法推送对“信息茧房”的构建探究[J].新媒体研究,2018(14):24-25.

2.赵瑜.人工智能时代的新闻伦理:行动与治理[J].学术前沿,2018(24):6-15.

3.许向东.关于人工智能时代新闻伦理与法规的思考[J].学术前沿,2018(12):60-66.

第4篇:人工智能论文范文

陈宝鑫等采用蒙特利尔认知量表,制定中医证候观察表,通过采集中医四诊信息,研究血管源性认知功能障碍合并代谢综合征患者的中医证候特点,总结出血管源性MCI合并代谢综合征组痰、瘀最为多见,非代谢综合征组以阴虚、血虚最为多见。血管源性MCI的证候要素主要为阴虚、阳虚、痰湿、火热、血瘀、气虚、血虚等7个证候要素。张允岭等采用因子分析寻找血管源性认知障碍的常见证候要素,统计其证候要素分布特点,最终得出6种证候要素,按比例大小依次为气虚、血瘀、痰、阴虚、阳虚、火。余忠海等在对历代医家以及大量文献研究的基础上,总结出MCI中医证型可以归纳为肾虚证、血瘀证、痰浊证、气血亏虚证、热毒内盛证、腑滞浊留证、阴虚阳亢证、气郁证。赵明星等以中医证素辨证理论为指导,设心、肝、脾、肺、肾五脏为病位要素,以气虚、血虚、阴虚、阳虚、精亏、痰、瘀等为病性要素,初步发现肾精亏虚证、心气虚证、痰浊证、血瘀证是MCI常见证型。以上对于MCI的中医证候的研究,都是基于小样本,被研究对象大都在65岁以上,而近年来,随着生活方式的改变、社会压力的不断增大,年龄在65岁以下非老年人记忆力也有明显下降趋势,其中也不乏有非正常的记忆减退,即MCI患者,因此,对65岁以下MCI患者的研究应引起足够重视。

二、临床治疗研究

1.药物治疗

田军彪等根据MCI浊凝清窍,瘀损脑络的病机确立了化浊解毒活血通络法,方中石菖蒲辟秽化浊,黄连味苦性寒,苦能去浊,寒可清毒,郁金活血兼有清心开窍之功,三药合而为君。川芎为血中气药,地龙性善走窜,两药可通达脑络气血之瘀滞,丹参、赤芍凉血活血,当归养血活血,诸药共担臣药之职。茯苓健脾渗湿,使痰浊无以生成。泽泻渗湿泄热,使浊毒之邪从下而出,为方中之佐。川芎上行头目兼有引经之用,为方中之使。共奏化浊解毒、活血通络之功。区树阳等治疗MCI则以健脾益气、活血化瘀、通窍益脑为原则。选用半夏燥湿化痰,天麻、僵蚕熄风化痰,白术燥湿分健脾,黄芪、党参健脾益气,丹参、赤芍、桃仁、红花活血化瘀通经络;配合川芎理气通滞、黄精、益智仁补肝肾益智。从化痰通窍汤组成看,经现代药理学研究,方中党参、黄芪、益智仁、白术、黄精,能提高老年人体质和免疫功能,同时丹参、红花、川芎、赤芍、桃仁、半夏可降低老年人的血液黏稠度,对MCI患者的微循环有显著改善作用,对改善老年人认知功能障碍有明显疗效。

2.非药物治疗

针灸等非药物治疗在MCI治疗康复中起着重要作用,针灸是中医又一特色,但是目前研究较少。陈仿英等通过观察64名老年MCI患者,在药物治疗同时给予耳穴压豆(耳穴心、肾、额、皮质下、神门),结果表明耳穴压豆辅助治疗MCI简便易行、无创、无明显不良反应,易被老年人接受。推拿具有疏通经络、调和气血的功效,孙莉等通过推拿百会、风池(双)、翳风(双)、四白(双)、印堂对MCI进行干预,通过调和气血、醒脑开窍,改善脑动脉的血液供应和局部血液循环,从而改善下降的认知状况或延缓MCI进程。潘锋丰认为可以针对加重认知功能障碍的因素进行治疗,如睡眠障碍的评估和治疗在改善患者记忆和认知功能过程中是重要的因素;孤独也被看做是加重认知损害的因素,对于那些社交网络缺乏或相对局限的人群,其痴呆风险增加,而随着社会联系的增加,痴呆风险呈现下降趋势。因此认为,使MCI患者身心放松,保持积极畅快的心情对MCI防治也会产生积极作用,但尚需大样本研究以证实。

三、MCI的预防

随着生活方式的改变、社会压力不断增加,各类疾病患病率明显上升,而65岁以下非老年人患MCI的概率也在不断增大,但医务人员对这类人群的关注度普遍较低,这应引起研究人员重视。在舒缓精神压力的同时,更应该注意MCI的预防。目前,还没有合适的药物可以预防MCI发生,但是,从中医辨证角度来看,65岁以下非老年人的中医证候类型大多以痰浊、瘀血为主,早期进行干预可能会减少MCI发生,同时改变不良生活方式、积极干预危险因素,对减少MCI发生肯定会产生积极作用。

四、问题与展望

第5篇:人工智能论文范文

关键词:科技期刊;人工智能;数字化;同行评议

2021年,中共中央宣传部、教育部、科技部印发《关于推动学术期刊繁荣发展的意见》,指出学术期刊要加快融合发展,推动数字化转型,引导学术期刊适应移动化、智能化发展方向,推动融合发展平台建设。人工智能正推动社会从数字化、网络化向智能化转型,科技期刊是率先有效引入人工智能的领域,人工智能与科技期刊出版的融合是发展的必然趋势。人工智能技术正越来越多地被开发、应用来帮助作者和出版人员,如对海量文献进行检索和分析,提取有用的信息;协助组稿审稿、编辑加工、出版发行;检出学术不端、鉴别数据造假等。人工智能可提高期刊出版和学术交流的效率,保证客观公正性和质量控制,减少人为偏倚和编辑职业倦怠,未来甚至可以指导特定领域如何开展新的研究。科技期刊出版平台未来将不仅限于提供学术论文数据库服务,还可以提供更多的信息和服务,人工智能在科技期刊出版中的应用前景值得思考和探索。

一、人工智能在审稿中的应用

Dimensions数据显示,2019年有超过420万篇,与十年前相比翻了一番。辛巴信息(SimbaInformation)统计数据显示,每年有超过250万篇学术在28000余种英文科技期刊上,科技期刊同行评议的论文数量是这个数量的两倍以上。数量的增加意味着高质量同行评议审稿的需求增加,也带来了严格保持审稿高质量和高标准的挑战。数量如此庞大的学术论文交到数量相对较少的固定的学者间进行同行评议,势必造成审稿效率的低下和学术论文的延迟发表。同行评议过程还存在个人偏见,审稿人可能是稿件作者的竞争者或反对者,抑或是朋友、未来的合作者或资助者等,这些可能会影响审稿意见的客观性和公正性。在实际的期刊出版工作中,也缺乏对审稿人审稿质量,以及拖延审稿或无效审稿等不当行为的约束和监督。这种情况亟须人工智能等可用于决策支持的技术来保证海量论文得到严格、一贯且高效的审评。引入人工智能技术可以大大优化审稿流程、提高审稿效率、缩短审稿周期。人工智能可以从网络出版平台的专家数据库中快速匹配符合选题方向的审稿专家,帮助提高审稿的效率和成功率。人工智能可以在数据库中根据研究方向、审稿记录、审稿效率和其他预设条件等,自动筛选最合适的审稿专家,分析排序后生成审稿人列表;并根据审稿人信息自动完成审稿邀请邮件的发送,还可以实时监控审稿状态和审稿人反馈;一旦出现审稿超时,自动向列表中下一位审稿人发出审稿邀请;收到审稿人的审稿意见后,实时通过邮件、APP、短信等及时反馈给期刊编辑进行相应处理。人工智能还可以根据论文标题、摘要、关键词和正文内容等对来稿进行初审,对图文进行快速识别,对论文的真实性、合理性、逻辑性、科学性、创新性和规范性等做出判断,为编辑初审提供详尽精准的参考。人工智能可以对论文的学术价值进行初步判断,对其中的文字和插图等进行深度识别。人工智能可以整句或整段地阅读释义,能识别出传统软件识别不出的同义表达,如此可减少学术不端,保证期刊的学术价值和品质。人工智能或许可以一定程度上遏制掠夺性期刊和掠夺性出版的泛滥。人工智能通过帮助编辑寻找新的审稿人并进行自动审稿等,大大提高学术和科技出版机构编辑出版高质量学术论文的能力,增加学术和科技期刊的论文接纳能力,也就减少了掠夺性期刊侵占学术资源的机会。人工智能还能对已发表的论文进行自动浏览回顾,基于掠夺性期刊的一些特征和标准,帮助筛选出那些不坚持标准的掠夺性期刊和出版商。Elsevier用人工智能软件EVISE取代了其过时的编辑系统,支持其编辑流程,提高了学术论文处理效率。EVISE可将来稿链接学术不端检测软件,从数据库中筛选推荐合适的审稿专家,链接其他项目资源对稿件内容、科学性和审稿人利益冲突等进行检测,自动生成与个人或机构的往来邮件等。开放获取期刊出版商Frontiers推出人工智能软件AIRA,对Frontiers的10万名编辑、审稿人和作者开放,能帮助他们自动评估学术论文的质量。AIRA可以阅读每篇论文,并在几秒钟内给出20条建议,包括对文字质量、图表的完整性、学术不端检测以及可能的利益冲突等。AIRA经过了Frontiers的审稿经验培训和测试,已完全融入Frontiers的内部工作流程,自动筛选和识别潜在的审稿人,加快审稿进程的同时,保证质量控制和客观公正,缩短了发表时滞,提高了出版效率。AIRA通过给出建议及半自动化检查的方式提供决策支持,仍然由相关领域专业人士做出最终决策,这种用户反馈被AIRA捕捉并进行学习和自我完善,这种人机协作有助于保证高准确性和高效率。

二、人工智能在策划选题中的应用

传统的策划选题依靠编委和编辑的经验、知识积累对学科发展方向的判断和预见,这种方式受人为因素限制,容易忽略有价值的选题且费时费力。未来,我们可借助人工智能的帮助,对已发表的海量文献、资源数据库进行检索分析,获取有用的信息进行相应的操作。人工智能可以从网络出版平台的专家数据库中快速匹配符合选题方向的作者,帮助提高组稿的效率和成功率。数据思维就是利用数据来深度挖掘和了解需求,了解存在和需要解决的问题,通过量化的数据来解决问题。人工智能基于大数据可以辅助选题策划选题、收集专家学者信息和研究方向,通过读者阅读信息和反馈来分析其关注点和需求,提供个性化的文献检索和信息传递服务等。人工智能可以通过对大数据的深度挖掘和学习,通过云计算技术,敏锐捕捉专业领域的新热点、新技术、新理论等;基于读者的阅读习惯、倾向及频率等进行量化分析,获取读者的需求信息;对国家自然科学基金等基金组织申报和资助情况、科技奖获奖情况、国际学术会议研讨热点等进行整合分析,对文献数据库等潜在信息进行挖掘和分析,快速推测出哪些内容具有独创性、前瞻性和话题性,生成选题策划资源库,帮助期刊编辑更精准高效的策划选题。基于人工智能的新型搜索工具Iris.AI,可以帮助学者从海量文献中筛选研究论文或专利等,提取关键的数据和要查找的信息。学术搜索平台SemanticScholar也是基于人工智能自主学习的学术搜索引擎,可快速筛选相关有用内容,并在一定程度上理解这些内容,展示相关主题历年文章发表情况及相关推荐内容等,可辅助期刊策划选题。

三、人工智能在编校加工中的应用

传统期刊出版工作中,编辑需要在细致琐碎的编校加工工作中花费大量时间和精力,编辑主观因素影响编校质量和效率,编辑易产生职业倦怠,传统编校模式难以应对现代出版工作快节奏和大体量的挑战。人工智能可以自动对稿件进行编校加工,帮助提高科技期刊的编校效率和规范编校质量。人工智能不仅能对错别字、语法等进行更正处理,还能对专业词汇的表达、参考文献的格式、引用是否合适等进行识别,还能检查出是否遗漏重要的研究部分、统计学分析方法是否有问题、是否为了达到想要的结果而改动过数据,还能理解图像和说明文字的逻辑关系,自动为插图补充描述性文字、为文字配上插图、为文本格式的文字生成曲线图等,还能完成后续的排版和校对。将机械、重复、枯燥的编辑工作交给人工智能完成,这将大大减轻编辑的工作负担,并大大缩短稿件的处理周期。IBM公司的智能机器人“沃森”曾为名为TheDrum的市场营销公司独立编辑出版了一整期杂志,这期杂志大部分内容的编辑、加工、排版和校对等都由人工智能独自完成。科技期刊内容的编校涉及对稿件内容的理解,但人工智能依然能很好地完成内容和格式的编校加工和规范化处理。人工智能还可以帮助编辑高效处理信息、调取和整合分析数据资源,优化期刊出版流程和期刊编辑的工作内容。编辑有望从原来繁琐的工作中解放出来,转到对专业性和方向性的把控上。

四、人工智能在推广发行中的应用

人工智能可以高效完成学术成果的推广和传播。人工智能程序可实时将科技期刊论文向所有大型学术论文数据库上传发送,并能根据读者研究领域、浏览阅读习惯、科研和社交平台动态等大数据进行实时监测分析。基于读者的信息需求,实现向相关领域读者的精准信息推送,大大提高学术成果的传播效率和影响力。人工智能平台还可通过对读者的需求信息进行分析,获取相关领域关注点,反馈给期刊审稿系统,增加对相关学术内容的收录建议。国家新闻出版署武汉重点实验室打造的开放科学计划(OSID计划),体现了利用人工智能实现多元化精准推送的重要性,打破传统出版模式编辑到读者的单向内容服务模式,为读者和作者提供了多维度交流空间,丰富了学术论文的传播交流方式,扩大了学术传播的广度和深度。TrendMD公司的内容推荐引擎,可以将科技期刊的稿件推荐到上千个科研网站。期刊网站安装TrendMD插件后,经过筛选的内容链接便会自动出现在网页的指定位置,通过数据挖掘算法对稿件进行自动推荐,将相关内容推荐给感兴趣的潜在读者,实现科技期刊学术资源的精准传播和高效共享。通过精准推送,科技期刊的论文曝光率和点击率都会增加,一方面为学者开展学术研究提供了新的资源和参考,另一方面实现了科技期刊传播推广的效率和精准度。

五、人工智能在论文写作中的应用

人工智能也被尝试用于论文写作,人工智能软件不仅可以实现识别和记录功能,还能学习掌握不同专业的写作方式和技巧,能高效地协助作者完成论文写作,甚至还能进行内容创新。例如,ManuscriptWriter软件可以从SciNote的ELN和开放获取杂志的相关文献提取数据,通过机器学习和人工智能技术,帮助作者生成一个论文初稿,供作者进一步编辑利用。Trinka是首款专为学术、科技和商业写作设计的人工智能软件,能纠正上万种复杂书写错误,且能纠正其他工具不能检出的复杂语言错误,尤其是学术和科技写作中的专业术语及专用表述等,对论文给出详细建议。但人工智能软件撰写的假论文事件一度引起人们对科技期刊同行评议制度的质疑,SCIgen软件生成的假论文骗过了斯普林格等知名出版机构和期刊。可能在收集相关资料用于背景的撰写方面,人工智能有一定的优势,但撰写后面的讨论部分,就需要研究者的智慧了。讨论部分是最具创造性和创新性的部分,最能体现研究者个性风格、行文习惯和思维方式的部分,每位学者都会将自己的专长和学识等融入讨论部分,这不是人工智能可以轻易取代的。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇