博舍

人工智能技术对环境污染的影响机制述评 人工智能在环境方面的应用有哪些特点和优势

人工智能技术对环境污染的影响机制述评

[关键词]人工智能技术;环境污染;全球价值链分工;经济增长;绿色经济

一、引言

人工智能(ArtificialIntelligence,简称AI)技术诞生于20世纪50年代,被称为世界三大尖端技术之一,在第四次科技革命中处于核心地位,为人类社会创造了巨大的经济效益和社会效益。随着数字革命的兴起,德国、日本、中国、美国、欧盟、英国等国家和国际组织先后制定了相关战略和规划,高度重视人工智能的发展,并投入了大量研发资金来打造新一轮产业竞争优势。

目前,社会各界对人工智能的定义尚未达成普遍共识,不同领域的学者给出了不同的解释。传统的人工智能是指开发创造能够模仿、学习和替代人类智能的“思维机器”,驱使机器学习人类行为的思考方式,让机器做本需要人的智慧才能做到的事情[1][2][3]。芬莱森(Finlayson)(2010)则认为,人工智能作为一种战略技术,其核心内容是建立在数字化、信息化基础上的智能化转型[4]。然而随着理论研究和应用领域的扩大,人工智能已成为涉猎广泛的一门科学,其不仅要依靠计算机算法层面的支持,而且更强调思维能力和自主决策能力,即像人一样理性思考和行动的系统[5][6]。

综上可见,虽然目前学术界对人工智能的概念尚未达成共识,但通过总结文献可以发现一些共性:人工智能应能替代人类来完成具体劳动任务;人工智能应具有学习能力。

改革开放以来,在我国经济快速增长的同时,也产生了严重的环境污染问题,如何提升环境污染治理效率成为困扰地方党委政府的重大难题。人工智能作为一项新的前沿技术,为环境污染治理开辟了新的路径,给环境污染治理带来了新的技术革新。但是,人工智能技术影响环境污染的机制是什么?这是一项值得深入研究的课题。基于此,本文拟对人工智能技术如何影响环境污染的相关研究文献进行梳理,以期为理论界和决策部门提供有益的借鉴与依据。

二、人工智能技术影响环境污染治理的机制

(一)促进技术进步的直接效应

研究表明,人工智能技术作为技术进步的一种具体表现形式,是新一代信息技术的代表,是科学技术发展的一次重大革新[7][8][9]。因此,人工智能通过技术进步会对环境污染治理带来直接效应,即人工智能技术的发展促进污染治理技术的提升。人工智能技术的快速发展催生出了一系列新产品并不断延伸到环保领域,为环境治理带来了新的工具,从而有效降低环境污染(见图1),具体而言:

(图1)直接技术进步效应

其次,人工智能与大数据相结合可以扩大环境监测的时空范围。郎芯玉、张志勇(2019)、张旭等(2020)研究发现,人工智能与大数据的结合降低了水污染数据处理的复杂性和成本[11][12],通过广泛安装环境污染传感器,增加监测的持续时间和频率,扩大了监测的覆盖面积。人工智能技术在自主检测设备中的应用,大大降低了收集环境信息的难度和成本,比如基于人工智能的无人驾驶飞行器、无人潜航器以及专用于监测空气污染物的街景车,可以对大气、水、土壤等污染信息进行长时间动态检测。

最后,人工智能技术可以为政府和非政府组织的环境预测、决策提供优化方案。即人工智能技术通过对各种环境数据进行定量分析,从而为环境治理主体(政府和非政府组织)提供决策依据。张伟、李国祥(2021)探讨了人工智能技术运用于环境数据分析、案例研究和数学建模,得出人工智能技术发展可以进行环境预测和辅助决策,从而为环境污染治理带来积极效应[13]。

从实践应用来看,当前已有不少政府和企业合作将人工智能用于环境污染治理领域的成功案例。例如2014年国际商业机器公司(IBM)借助人工智能,开发出一种可减缓北京严重空气污染的新方法,名为“绿色地平线”(GreenHorizon),通过综合多个不同模型的大量数据,该系统不仅可以提前预测北京不同地区空气污染的严重程度,还能给出如何将污染降低到最小的具体建议;微软在2017年推出“一切为了地球”(AllforEarth)计划,预计投入5000万美元用于人工智能的环境治理领域;阿里巴巴运用阿里云强大的计算能力,于2020年6月推出应对全球环境恶化的技术方案ET(EvolutionaryTechnology)环境大脑,实现对污染源的智能感知,并建立综合评估模型进行交叉分析,等等。这些现实案例充分证明了人工智能技术的发展会给环境污染治理带来积极效应。

(二)促进技术进步的间接效应

1.人工智能技术、经济增长与环境污染。传统的技术进步是通过带来新的经济增长点、扩大经济规模来影响环境污染治理。人工智能技术的发展同样会带来经济的高速发展、经济规模的扩大,从而对环境污染治理产生影响。

目前现有研究从理论和实证层面都证明人工智能会带来经济增长。以任务模型为代表的理论模型大多认为工业机器人、自动化与人工智能等新兴生产方式会促进经济增长,这一点也得到了相关实证分析的证实。例如,格雷茨(Graets)、迈克尔斯(Michaels)(2018)基于1993-2007年的行业面板数据的计量检验发现,人工智能等新兴生产方式使得经济增长速度提高了0.37%[14]。杨光、侯钰(2020)使用机器人国际联合会(IRF)发布的工业机器人数据证明机器人的使用确实对经济增长具有促进作用,特别是随着人口红利消失,效果将更加显著[9]。阿西莫格鲁(Acemoglu)、雷斯特雷波(Restrepo)(2017)、陈秋霖等(2018)研究发现,在经历快速老龄化的国家中,年轻和中年劳动力的稀缺可以促进机器人(和其他智能化生产)的充分采用,从而促进总产出的增加[15][16]。程承坪、陈志(2021)认为,人工智能技术可以直接和间接带来经济增长,直接增长效应表现为促进劳动生产率的提升和产业链的延长,间接增长效应表现为人力资本供给的增加、市场效率和政府治理效率的提高[17]。阿吉翁(Aghion)等(2017)将人工智能技术引入到商品和服务的生产函数中,得出人工智能技术会带来经济总的平衡增长。在知识的非竞争性导致收益递增的条件下,人工智能技术还可以产生某种形式的奇点,甚至可能带来经济在有限的时间内获得无限的收入[18]。林晨等(2020)从优化资本结构的角度探讨了人工智能技术对经济增长的影响机制,认为人工智能技术的发展可以降低住房和基建支出对居民消费的挤压,使资本更多流向实体经济,成为新的经济增长点[19]。

环境污染问题与经济增长速度有着非常密切的联系。就现有研究而言,经济增长对环境污染的影响大致可分为三个阶段。第一个阶段是1972年以美国学者梅多斯(Meadows)为代表的罗马俱乐部提出的“增长极限说”,该理论认为工业化必然造成对自然和生态环境的极度破坏,通过模拟计算预计2100年到来之前,工业化将达到最高点,但同时人类将面临严重的粮食缺乏、资源枯竭,人口也将停止增长,社会因此而崩溃。第二个阶段是1991年美国经济学家格罗斯曼(Grossman)和克鲁格(Krueger)提出的环境库兹涅茨曲线假说(EKC),认为经济增长与环境污染呈倒“U”型关系,即环境污染随着经济增长由上升到下降的变化趋势,这是最为主流接受的一种假说。该假说认为新技术诞生之后,随着经济高速发展、人均收入不断提高,从而带来污染排放的增多。但随着技术不断成熟,经济进一步增长,一方面,因生产者环保意识提升,主动减少生产过程中的污染物排放;另一方面,政府加大环境规制力度,倒逼生产者采用清洁生产技术,从而使环境污染得到有效控制。第三个阶段是对环境库兹涅茨曲线假说的质疑,部分研究结论证实经济增长与环境污染之间的关系不仅呈现出倒“U”型形态,而且呈现出“U”型、“N”型、单调上升型、单调下降型等形态,不同污染物的排放与经济增长之间的关系也呈现出差异性,这些都对环境库兹涅茨曲线假说提出了挑战[20][21][22]。

总之,学者们从理论和实证层面都已经证明了人工智能技术的发展会带来经济增长和经济规模的扩大,但人工智能通过经济增长对环境污染产生影响的方向尚不明确(见图2),是否符合环境库兹涅茨曲线假说的倒“U”型还需要进一步的实证检验。

(图2)间接技术进步效应

2.人工智能技术、全球价值链分工与环境污染治理。人工智能技术通过改变国际生产分工和贸易模式,提高一国在全球价值链体系中的分工地位,促进价值链升级,进而对一国的环境污染产生影响。一般来说,处于全球价值链高端的国家,主要从事产品研发、品牌销售运营等高技术、高附加值活动,资源消耗水平低,能源利用率高,污染物排放相对较少。相比之下,处于全球价值链低端的国家,则主要从事低附加值和高能耗的加工、装配和制造过程,容易带来大量污染物的排放。因此,全球价值链分工地位的提升将减少一国的环境污染。

人工智能技术如何影响全球价值链分工?在以人工智能技术为代表的新技术革命背景下,全球价值链中各国的地位和国际分工将面临深刻的调整。第一,从成本角度看,人工智能降低了贸易和生产成本,提高了生产效率,提升一国在全球价值链体系中的分工地位。吕越(2020)基于中国行业层面数据的实证研究发现,人工智能技术的采用会显著提升行业的全球价值链位置。究其原因在于人工智能技术的运用能减少低端生产环节的劳动使用量,进而降低了企业的生产成本,提高了企业的劳动生产率[23]。刘亮等(2020)的研究也得出了类似的结论[24]。第二,从创新角度看,人工智能通过技术创新深化了全球价值链分工。刘斌(2010)认为人工智能技术将一国的创新投入和创新产出发挥其引致效应,即引致创新投入(研发投入)和创新产出(专利申请数量)的增加,从而带来一国价值链分工地位的提升[3]。第三,从资源配置角度来看,刘斌(2010)指出人工智能技术的发展带来了劳动和资本两类核心生产要素的配置效率提升,进而促进一国企业全球价值链分工地位升级[3]。总之,无论是国家、行业还是微观企业层面,人工智能都能显著提升一国的全球价值链分工地位,促进一国全球价值链升级。

全球价值链分工地位和参与程度如何影响一国的环境污染治理?近年来,随着全球投入产出表的编制,全球价值链分工测算方法、指标也在不断改进,使得更多国内外学者们开始关注全球价值链分工对环境污染的影响问题。然而大部分文献均基于格罗斯曼(Grossman)和克鲁格(Kruege)的经典模型,将规模效应、结构效应以及技术效应作为控制变量或门槛变量,分析全球价值链分工对碳排放的影响机制。许统生和薛智韵(2011)、余娟娟(2017)、徐辉和苗菊英(2018)则认为全球价值链分工可通过结构、技术与规模效应影响企业污染的水平[25][26][27]。还有部分文献基于构建全球价值链分工位置和参与度指标,讨论其对环境污染的影响。

首先,通过构建全球价值链位置指标,大部分学者得出了全球价值链位置的提升能显著降低一国污染排放的说法,即一国全球价值链位置越高,越处于上游,污染排放越少。陶长琪、徐志琴(2019)分别从行业和国家层面实证分析全球价值链嵌入位置对贸易隐含碳排放的作用,发现全球价值链位置的提升能有效减少碳排放[28]。曲晨耀等(2020)基于2000-2014年17个制造业的面板数据,探讨了全球价值链位置对中国制造业经济绿色转型的影响,研究发现,提高全球价值链位置能够快速推动中国制造业的经济绿色转型[29]。孙传旺(2019)基于2000-2011年全球60个国家的面板数据的实证研究认为,一国的全球价值链位置与其碳效率(carbonefficiency,是对生产主体产生碳足迹效率的一种量化测度方法)存在显著的正相关关系。全球价值链位置与其碳效率的正相关关系在经济发展较为落后的发展中国家尤为显著,这意味着在发展中国家提高全球价值链位置可以更大程度地减少碳排放,减少环境污染[30]。王腊芳等人(2020)计算了中国制造业全球价值链活动的总平均生产长度并检验了全球价值链生产长度对能源强度的影响,其研究结果发现全球价值链总平均生产长度显著影响能源消耗强度,并呈现倒“U”型非线性关系[31],这在一定程度上表明一国全球价值链位置对污染排放的影响呈先升后降的趋势。

其次,大部分学者的研究表明全球价值链参与度与环境污染呈非线性关系,即全球价值链参与度对环境污染存在门槛效应。具体而言,王静(2019)基于1995-2011年期间62个国家和地区的面板数据,估算了一国全球价值链参与度对二氧化碳排放的影响,研究发现,全球价值链的参与度与人均二氧化碳排放量之间呈现倒“U”型关系[32]。曲晨耀等(2020)通过阈值回归发现,当参与度超过一定阈值时,全球价值链参与度对绿色经济转型的影响由抑制变为促进[29]。王玉燕等(2015)研究发现,全球价值链参与度通过“链中学效应”促进污染减排,但某些行业可能存在“俘获锁定效应”,即被锁定在附加值低且污染高的生产环节,这些行业的全球价值链参与度与污染排放之间可能表现为“U”型关系[33]。杨飞等(2017)的实证研究发现,中国全球价值链参与度对污染排放的影响存在门槛效应[34]。也有研究认为,全球价值链参与度与一国的环境污染存在线性关系,即全球价值链参与度对环境污染有负向影响。赵国梅等(2020)基于2000-2014年42个国家的数据,研究得出,全球价值链参与度与碳排放强度之间存在负向关系,特别地,与发达国家相比,发展中国家的全球价值链参与对隐含碳排放强度的负向影响更大[35]。总之,关于全球价值链分工对环境污染的影响,由于学者们对全球价值链分工指标选取方法的不同,即部分学者采用全球价值链位置指标,部分学者采用全球价值链参与度指标来衡量全球价值链分工程度,因而得出了不同的结论。

综合以上研究,本文提出人工智能技术发展可以通过提升一国全球价值链分工地位,从而降低污染排放的论断,其机理在于:一国处于全球价值链高端的行业多为知识技术密集型产业,技术含量高,污染程度低,而处于全球价值链低端的行业多为能源和资本密集型行业,污染相对较高。人工智能技术的发展及其在工业生产中的运用,将使得一国更多的从事知识技术密集型行业的生产与分工,显著提升一国的全球价值链分工地位,降低污染物排放(见图2)。

三、未来研究方向与研究趋势展望

人工智能技术正在催生第四次工业革命,是第四次工业革命的新引擎,也引发了该命题的学术研究热潮,使得越来越多的学者关注人工智能与技术进步、经济增长、劳动力就业、全球价值链等的关系。人工智能技术目前已广泛应用于环境治理的各个层面,并将给环境污染治理带来变革。但实际上目前关于人工智能技术如何影响环境污染的相关研究尚不多,特别是关于传导机制的研究仍处于空白,只有少量的定性研究指出人工智能技术能够显著改善环境污染,提高环境治理能力。本文通过梳理人工智能技术与经济增长、全球价值链分工、环境污染等相关文献,得出人工智能技术作为新一代信息技术的代表会对环境污染产生直接和间接影响的结论。直接技术进步效应表现在人工智能技术发展催生出的一系列新技术和新产品可用于环境污染治理领域,减少一国的环境污染。间接技术进步效应一是表现为人工智能技术的发展会扩大经济规模,促进经济增长,从而对环境污染产生影响,但影响方向不明确,是否存在倒“U”型关系需进一步检验;二是表现为人工智能技术会提升一国的全球价值链分工地位,促进全球价值链升级,从而降低一国的环境污染。

目前直接研究人工智能对环境污染影响机制、指标构建、数据获取等方面尚存在如下不足,这些也是人工智能技术影响环境污染的进一步研究方向:

一是人工智能技术对环境污染的影响路径、机制复杂,难以用实证模型加以验证。人工智能技术对环境污染的影响既存在直接影响又存在间接影响,同时,在封闭经济环境和开放环境下的影响机制也不一样。人工智能技术直接运用于环境治理,能有效减少环境污染,但同时随着人工智能技术的发展、工业机器人的大量使用,生产力大幅度提高,生产规模扩大,也有可能加剧环境污染,或者存在非线性关系。在开放经济条件下,人工智能技术发展能显著提高一国全球价值链地位,从而减少该国的环境污染,但这一正向效应存在国家和行业异质性,即对于处于不同发展阶段的国家和不同污染和技术密集度的行业的影响效应是不同的。总之,如何将人工智能技术引入环境污染模型仍需进一步探索。

中国对人工智能应用于环境污染的相关研究还较为有限。中国作为最大的发展中国家,以往靠牺牲环境来获取发展速度的经济增长模式带来了巨大的污染治理压力,经济绿色转型发展迫在眉睫。人工智能技术在中国工业生产中的应用将对环境污染带来哪些效应?显然值得进一步深入探讨。

[参考文献]

[1]Minsky,M.1961,“StepsTowardArtificialIntelligent”,ProceedingsoftheIRE,Vo1.49(1).

[2]Min,H.2010,“ArtificialIntelligentinSupplyChainManagement:TheoryandApplications”,internationalJournalofLogistics:ResearchandApplications,Vo1.13(1).

[3]刘斌,潘彤.人工智能对制造业价值链分工的影响效应研究[J].数量经济技术经济研究,2020,(10).

[4]FinlaysonM.A.RichardsW,WinstonP.H.Computationalmodelsofnarrative:Reviewofaworkshop[J].AIMagazine,2010,(2).

[5]Cerka,P.Grigiene,J.andSirbikyte,G.,2015,“LiabilityforDamagesCausedbyArtificialIntelligence”,ComputerLaw&SecurityReview,Vo1.31(3).

[6]Li,D.andY.Du,2017,ArtificialIntelligencewithUncertainty,BocaRaton:CRCpress.

[7]Kromann,L.,J.R.Skaksen,andA.Sorensen.Automation,LaborProductivityandEmployment:ACrossCountryComparison[R].CEBR,CopenhagenBusinessSchool,2011.

[8]Brynjolfsson,E.andL.M.Hitt.Computingproductivity:Firm-levelEvidence[J].ReviewofEconomicsandStatistics,2003,85(4).

[9]杨光,侯钰.工业机器人的使用、技术升级与经济增长[J].中国工业经济,2020,(10).

[10]张文博.环境治理中的人工智能[J].国外社会科学前沿,2019,(10).

[11]郎芯玉,张志勇.浅谈人工智能在水质监测领域的应用[J].计算机产品与流通,2019,(12).

[12]王旭,王钊越,潘艺蓉,罗雨莉,刘俊新,杨敏.人工智能在21世纪水与环境领域应用的问题及对策[J].中国科学院院刊,2020,(9).

[13]张伟,李国祥.环境分权体制下人工智能对环境污染治理的影响[J].陕西师范大学学报(哲学社会科学版),2021,(3).

[14]Graetz,G.andG.Michaels.RobotsatWork:TheImpactonProductivityandJobs[J].ReviewofEconomicsandStatistics,2018,(5).

[15]AcemogluD,RestrepoP.Secularstagnation?Theeffectofagingoneconomicgrowthintheageofautomation[J].AmericanEconomicReview,2017,(5).

[16]陈秋霖,许多,周羿.人口老龄化背景下人工智能的劳动力替代效应:基于跨国面板数据和中国省级面板数据的分析[J].中国人口科学,2018,(6).

[17]程承坪,陈志.人工智能促进中国经济增长的机理——基于理论与实证研究[J].经济问题,2021,(10).

[18]AghionP,JonesB,JonesC.Artificialintelligenceandeconomicgrowth[R].NBERWorkingPaper,2017.

[19]林晨,陈小亮,陈伟泽,等.人工智能、经济增长与居民消费改善:资本结构优化的视角[J].中国工业经济,2020,(2).

[20]OnafoworaOA,OwoyeO.BoundstestingapproachtoanalysisoftheenvironmentKuznetscurvehypothesis[J].EnergyEconomics,2014,(44).

[21]AllardA,TakmanJ,UddinGS,etal.TheN-shapedenvironmentalKuznetscurve:anempiricalevaluationusingapanelquantileregressionapproach[J].EnvironmentalScienceandPollutionResearch,2018,25(6).

[22]LiuK,LinB.ResearchoninfluencingfactorsofenvironmentalpollutioninChina:Aspatialeconometricanalysis[J].JournalofCleanerProduction,2019,206(1).

[23]吕越,谷玮,包群.人工智能与中国企业参与全球价值链分工[J].中国工业经济,2020,(5).

[25]许统生,薛智韵.制造业出口碳排放:总量、结构、要素分解[J].财贸研究,2011,(3).

[26]余娟娟.全球价值链嵌入影响了企业排污强度吗——基于PSM匹配及倍差法的微观分析[J].国际贸易问题,2017,(12).

[27]徐辉,苗菊英.我国制造业承接外包的环境效应[J].环境经济研究,2018,(2).

[28]陶长琪,徐志琴.融入全球价值链有利于实现贸易隐含碳减排吗?[J].数量经济研究,2019,(1).

[29]ChenyaoQu,JunShao,ZhonghuaCheng,CanembeddinginglobalvaluechaindrivegreengrowthinChina’smanufacturingindustry?[J].JournalofCleanerProduction,2020(268).

[30]ChuanwangSun,ZhiLi,TiemengMa,RunyongHe,Carbonefficiencyandinternationalspecializationposition:Evidencefromglobalvaluechainpositionindexofmanufacture[J].EnergyPolicy,2019(128).

[31]LafangWang,YoufuYue,RuiXie,ShaojianWang,HowglobalvaluechainparticipationaffectsChina’senergyintensity[J].JournalofEnvironmentalManagement,2020(260).

[32]JingWang,GuanghuaWan,ChenWang,ParticipationinGVCsandCO2emissions[J].EnergyEconomics,2019(84)1.

[33]王玉燕,王建秀,阎俊爱.全球价值链嵌入的节能减排双重效应——来自中国工业面板数据的经验研究[J].中国软科学,2015,(8).

[34]杨飞,孙文远,张松林.全球价值链嵌入、技术进步与污染排放——基于中国分行业数据的实证研究[J].世界经济研究,2017,(2).

[35]GuomeiZhao,CenjieLiu.Carbonemissionintensityembodiedintradeanditsdrivingfactorsfromtheperspectiveofglobalvaluechain[J].EnvironmentalScienceandPollutionResearch,2020,27(25).

[参考文献]

[1]Minsky,M.1961,“StepsTowardArtificialIntelligent”,ProceedingsoftheIRE,Vo1.49(1).

[2]Min,H.2010,“ArtificialIntelligentinSupplyChainManagement:TheoryandApplications”,internationalJournalofLogistics:ResearchandApplications,Vo1.13(1).

[3]刘斌,潘彤.人工智能对制造业价值链分工的影响效应研究[J].数量经济技术经济研究,2020,(10).

[4]FinlaysonM.A.RichardsW,WinstonP.H.Computationalmodelsofnarrative:Reviewofaworkshop[J].AIMagazine,2010,(2).

[5]Cerka,P.Grigiene,J.andSirbikyte,G.,2015,“LiabilityforDamagesCausedbyArtificialIntelligence”,ComputerLaw&SecurityReview,Vo1.31(3).

[6]Li,D.andY.Du,2017,ArtificialIntelligencewithUncertainty,BocaRaton:CRCpress.

[7]Kromann,L.,J.R.Skaksen,andA.Sorensen.Automation,LaborProductivityandEmployment:ACrossCountryComparison[R].CEBR,CopenhagenBusinessSchool,2011.

[8]Brynjolfsson,E.andL.M.Hitt.Computingproductivity:Firm-levelEvidence[J].ReviewofEconomicsandStatistics,2003,85(4).

[9]杨光,侯钰.工业机器人的使用、技术升级与经济增长[J].中国工业经济,2020,(10).

[10]张文博.环境治理中的人工智能[J].国外社会科学前沿,2019,(10).

[11]郎芯玉,张志勇.浅谈人工智能在水质监测领域的应用[J].计算机产品与流通,2019,(12).

[12]王旭,王钊越,潘艺蓉,罗雨莉,刘俊新,杨敏.人工智能在21世纪水与环境领域应用的问题及对策[J].中国科学院院刊,2020,(9).

[13]张伟,李国祥.环境分权体制下人工智能对环境污染治理的影响[J].陕西师范大学学报(哲学社会科学版),2021,(3).

[14]Graetz,G.andG.Michaels.RobotsatWork:TheImpactonProductivityandJobs[J].ReviewofEconomicsandStatistics,2018,(5).

[15]AcemogluD,RestrepoP.Secularstagnation?Theeffectofagingoneconomicgrowthintheageofautomation[J].AmericanEconomicReview,2017,(5).

[16]陈秋霖,许多,周羿.人口老龄化背景下人工智能的劳动力替代效应:基于跨国面板数据和中国省级面板数据的分析[J].中国人口科学,2018,(6).

[17]程承坪,陈志.人工智能促进中国经济增长的机理——基于理论与实证研究[J].经济问题,2021,(10).

[18]AghionP,JonesB,JonesC.Artificialintelligenceandeconomicgrowth[R].NBERWorkingPaper,2017.

[19]林晨,陈小亮,陈伟泽,等.人工智能、经济增长与居民消费改善:资本结构优化的视角[J].中国工业经济,2020,(2).

[20]OnafoworaOA,OwoyeO.BoundstestingapproachtoanalysisoftheenvironmentKuznetscurvehypothesis[J].EnergyEconomics,2014,(44).

[21]AllardA,TakmanJ,UddinGS,etal.TheN-shapedenvironmentalKuznetscurve:anempiricalevaluationusingapanelquantileregressionapproach[J].EnvironmentalScienceandPollutionResearch,2018,25(6).

[22]LiuK,LinB.ResearchoninfluencingfactorsofenvironmentalpollutioninChina:Aspatialeconometricanalysis[J].JournalofCleanerProduction,2019,206(1).

[23]吕越,谷玮,包群.人工智能与中国企业参与全球价值链分工[J].中国工业经济,2020,(5).

[25]许统生,薛智韵.制造业出口碳排放:总量、结构、要素分解[J].财贸研究,2011,(3).

[26]余娟娟.全球价值链嵌入影响了企业排污强度吗——基于PSM匹配及倍差法的微观分析[J].国际贸易问题,2017,(12).

[27]徐辉,苗菊英.我国制造业承接外包的环境效应[J].环境经济研究,2018,(2).

[28]陶长琪,徐志琴.融入全球价值链有利于实现贸易隐含碳减排吗?[J].数量经济研究,2019,(1).

[29]ChenyaoQu,JunShao,ZhonghuaCheng,CanembeddinginglobalvaluechaindrivegreengrowthinChina’smanufacturingindustry?[J].JournalofCleanerProduction,2020(268).

[30]ChuanwangSun,ZhiLi,TiemengMa,RunyongHe,Carbonefficiencyandinternationalspecializationposition:Evidencefromglobalvaluechainpositionindexofmanufacture[J].EnergyPolicy,2019(128).

[31]LafangWang,YoufuYue,RuiXie,ShaojianWang,HowglobalvaluechainparticipationaffectsChina’senergyintensity[J].JournalofEnvironmentalManagement,2020(260).

[32]JingWang,GuanghuaWan,ChenWang,ParticipationinGVCsandCO2emissions[J].EnergyEconomics,2019(84)1.

[33]王玉燕,王建秀,阎俊爱.全球价值链嵌入的节能减排双重效应——来自中国工业面板数据的经验研究[J].中国软科学,2015,(8).

[34]杨飞,孙文远,张松林.全球价值链嵌入、技术进步与污染排放——基于中国分行业数据的实证研究[J].世界经济研究,2017,(2).

[35]GuomeiZhao,CenjieLiu.Carbonemissionintensityembodiedintradeanditsdrivingfactorsfromtheperspectiveofglobalvaluechain[J].EnvironmentalScienceandPollutionResearch,2020,27(25).

原文引用:喻春娇,李奥.人工智能技术对环境污染的影响机制述评,2022,(01):50-57

来源:《决策与信息》2022年第01期

作者:喻春娇(1971-),女,湖北京山人,湖北大学商学院教授,博士生导师,经济学博士,湖北开放经济研究中心副主任,主要从事国际贸易理论与政策、国际生产网络研究;李奥(1997-),女,湖北宜昌人,湖北大学商学院硕士研究生。

责编:李利林、编辑:邓汝濛返回搜狐,查看更多

当AI遇上能源 看人工智能在能源领域的应用

AI在能源领域的应用

人工智能(AI)技术已经被广泛地应用于能源领域中的系统建模、预测、控制和优化等方面。

(来源:微信公众号“交能网”ID:jiaonengwang)

能源是人类社会的中心,并推动着技术和整体人类福祉的发展。然而,随着全球人口的稳定增长(预计到2050年将达到近100亿),能源供应必须与需求保持一致。因此,关于资源的决策和管理已变得至关重要,因为如果决策不当,可能会产生巨大的经济影响或导致能源短缺。

人工智能(ArtificialIntelligence,AI)技术具有高效解决复杂问题的突出优点,在可再生能源需求逐渐增加的今天,能源系统对信息的实时性要求越来越高,同时需要灵活的解决方案,因此人工智能技术在能源互联网中具有广泛的应用前景。在能源行业中,数据收集器和传感器的广泛使用收集了大量有关能耗的数据,这些数据可以帮助理解,建模和预测物理行为以及人类对能源的影响,因此,目前人工智能技术已经被广泛地应用于能源领域中的系统建模、预测、控制和优化等方面。

清华大学中国科技政策研究中心在其发布的《中国人工智能发展2018》报告中,通过对德温特全球专利权人的专利公开数据进行分析,发现AI领域中Top10专利权人分布如下图:

图1:AI领域中Top10专利权人分布(单位:件)(来源:参考资料1)

国家电网公司作为唯一一家中国企业在AI领域中与国际竞争对手在专利布局中占有一席之地,也说明AI技术在能源领域的巨大应用潜力。国家电网公司的AI相关发明技术主要应用在电网控制、配电网、风电站、新能源等领域。

当然,在整个电力系统中,除了电源侧和输电侧以外,AI在用户侧的应用也十分流行,例如负荷预测、需求侧管理和用户分类等等。下图描述了一个以新能源为电源的微网中AI的典型应用。AI技术,如机器学习、模糊逻辑、自然语言处理、大数据技术等,以及一些混合AI方法为电力系统的设计、模拟、预测、控制、优化、评估、监测、故障诊断、需求侧管理等都提供了强大的工具。

图2:AI在电力能源领域的应用(来源:参考资料2)

能源领域中常用的人工智能技术

机器学习

机器学习理论主要是设计和分析一些让计算机可以主动“学习”的算法。在能源行业可应用在实现电网工程的可视化,辅助电厂优化电网内部设置等。自然语言处理自然语言处理让计算机把输入的语言数据变成有意思的符号和关系,然后进行再处理。在能源行业,自然语言处理可以用在自动获取能源数据,为进一步能情况分析做准备。

大数据技术

大数据技术指对各种来源的大量非结构化或者结构化数据进行分析,利用人工智能从数据中挖掘信息,帮助决策。在能源行业中,对电厂的管理与运营是大数据技术的例子之一。

深度学习

深度学习使用包含复杂结构或多重非线性变换购置的多个处理层对数据进行高层抽象。在能源行业中,利用深度学习优化钻井效率,可以提高20%的生产效率并减少40%的成本。

计算机视觉

计算机视觉是研究如何使机器实现人眼“看“的功能的技术。计算机视觉中的图像识别在能源行业可以应用在能源勘探,通过收集的信息描绘地层结构等。

模糊逻辑模糊逻辑是建立在多值逻辑基础上的人工智能基础理论,运用模糊集合的方法来研究模糊性思维、语言形式及其规律的科学。对于模型未知或不能确定的描述系统,模糊逻辑可以应用模糊集合和模糊规则进行推理,实行模糊综合判断。在能源行业,模糊逻辑可以用在处理不完整的油气田地质数据,从而优化勘测模型,推理出更精细的地质构造情况。

人工智能在能源领域的应用方向

预测预测是人工智能在能源领域最常见的应用,包括能源经济方面的预测如负荷预测和电价预测,以及发电输出功率预测。在电源侧,针对风能、太阳能、水能等可再生能源受天气条件影响较大的特点,可以采用深度置信网络(DBN)、集成学习以及条件变分编码器等技术,利用其在多层次网络训练、多分类综合决策、特征自主提取与学习、强大泛化能力等方面的优势,基于调控大数据(天气、环境、大气条件、电站地理位置和电网历史运行数据等),整合多种预测模型和算法,采用无监督/半监督的自主学习方式分析和发现数据内部规律、多种因素间的耦合关联关,对可再生能源发电进行预测,提高可再生能源的预测精度。在用户侧,传统上通常使用工程方法和统计方法进行负荷预测。但这些方法基本上是线性模型,而负荷和功率模式通常是外生变量的非线性函数。因此统计方法在预测的准确性和灵活性上具有不足之处。随着ANN预测方法的发展,深度学习技术有望通过更高层次的抽象来提高预测精度。此外模糊逻辑、遗传算法和SVM等也广泛地应用到了预测中,这些技术与深度学习的结合应用得到了很高的预测精度。南网总调自动化处技术专家梁寿愚早在2015年就自行学习AI,基于谷歌旗下的TensorFlow开源框架,摸索AI与电网调度业务的结合,实现基于AI的负荷预测模型,取代原来几个小时的人工测算,日前预测准确率高达97%。

故障检测与诊断AI技术在电力系统故障诊断方面发挥着关键作用。主要使用的AI技术包括:模糊逻辑模型、广义回归神经网络方法、多核SVM、免疫神经网络、分布式机器学习、ANN、神经模糊和小波神经网络、隐马尔可夫模型。

需求侧管理

需求侧管理是智能电网中重要的功能之一,可以提高智能电网的可持续性,并降低整体运营成本和碳排放水平。传统能源管理系统中现有的需求侧管理策略大多采用系统特定的技术和算法。此外,现有的策略只能处理有限数量的有限类型的可控负载。隐马尔可夫模型、聚类算法、遗传算法、机器学习等AI技术在负荷辨识、多用户协调控制、错峰控制等方面有很好的应用。

人工智能技术在能源领域中的应用已经获得了良好的发展,虽然在我国这方面的应用研究才刚刚进入轨道,但我国能源行业的持续发展、电力系统数据总量的不断增加以及市场竞争的影响和加大,都为人工智能技术的应用提供了广阔

什么是人工智能人工智能的应用有哪些

什么是人工智能?

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

人工智能的应用有哪些

实际应用:机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。…研究范畴…自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式…应用领域…智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂等

应用领域

语音识别领域。除了大家已较为熟悉的科大讯飞输入法,一家叫作云知声的人工智能公司,最近开发了智能医疗语音录入系统,采用了国内面向医疗领域的智能“语音识别”技术,能实时准确地将语音转换成文本。这项应用不仅能避免复制粘贴操作,增加病历输入安全性,而且可以节省医生的时间。目前,一些医院已应用了这一技术。

金融智能投资领域。所谓智能投(资)顾(问),即利用计算机的算法优化理财资产配置。目前,国内进行智能投顾业务的企业已经超过20家,其面向的服务群体,就是那些并不十分富有、却有强烈资产配置需求的人群。

中国的BAT(百度、阿里、腾讯)都已涉足人工智能。2016年,“百度大脑”项目正式启动,致力于打造综合的人工智能平台;阿里巴巴推出了人工智能项目“ET”,未来将具备感知能力,并在交通、工业、健康等领域输出决策;腾讯已将人工智能的相关技术,应用于QQ、金融、微信业务板块。

而其他诸多企业都在开发人工智能的“对话机器人”(相当于“虚拟助理”),如微软的“小娜”、谷歌的“Allo”、苹果的Siri、百度的“度秘”等。

人工智能在国防领域的七大应用

-1-人工智能在国防领域的应用

人工智能在国防领域的应用主要用于7个方面:情报、监视和侦察,后勤,网络空间行动,信息操纵和深度伪造,指挥和控制,半自动和自动驾驶车辆,致命自主武器系统。

(1)情报、监视和侦察。由于有大量可用数据集,因此人工智能在情报领域有很大的用处。情报界以及有大量相关的正在进行中的人工智能项目了。就CIA(中央情报局)就有140个使用AI来完成图像识别和预测分析任务的项目。

(2)后勤。人工智能在军事后勤领域也有很大的应用潜力。空军已经开始使用人工智能来进行飞机维护预测。

(3)网络空间行动。人工智能也有望成为促进军事网络空间行动的关键技术。参议院军事委员会、美国网络司令部司令上将MichaelRogers早在2016年就认为,在网络空间领域只以来人类情报是一个失败的战略。随后他澄清说,应当应用一定程度的人工智能或机器学习技术。DARPA2016网络挑战赛也证明了AI赋能的网络工具的潜在能力,比赛参与者开发了能够自动检测、评估和分发补丁的AI算法。这些能力都可以在未来的网络活动中提供不同的优势。

(4)信息操纵和深度伪造。人工智能技术可以用来制造逼真的伪造图片、音频和视频,这也就是今年大火的“deepfakes”(深度伪造)技术。恶意攻击者可以用深度伪造技术来发起信息操纵活动,攻击每个,如生成虚假新闻报道、影响公共信息、侵蚀公共信任、损害名人名声。为了应对深度伪造技术,DARPA发起了媒体取证项目,以寻求自动检测修改、提供关于视觉媒体真实性信息的理由。

(5)指挥和控制。美国军方正在利用AI在分析方面的能力应用于指挥和控制。空军就开发了一个用于多域指挥和控制的系统,未来人工智能还可能用于融合来自不同域的传感器的数据来创建一个信息的单独源。

(6)半自动和自动驾驶车辆。所有的美国军事服务都在努力将人工智能融入到半自动和自动驾驶车辆中,包括战斗机、无人机、地面车辆和海军舰艇等。人工智能在这些领域的应用与商业半自动驾驶车辆类似,即使用人工智能技术来感知环境、识别物体、融合传感器数据、规划路径、以及与其他车辆之间进行通信。

(7)致命自主武器系统(LAWS)。LAWS是一种特殊的武器系统,使用传感器和计算机算法来独立地识别目标和指挥武器系统在没有人为干预的情况下打击目标。虽然这样的系统目前还不存在,但军事专家相信在未来通信降级或拒绝的特殊环境下,传统武器系统无法工作的情况下LAWS会启到很重要的作用。

-2-军事AI融合的挑战

从冷战开始,主要的国防相关技术在商用之前都是由政府主导的项目首先开发的,包括原子核技术、GPS和互联网技术。DARPA的战略计算计划(StrategicComputingInitiative)从1983到1993年10年间共投入10亿美元来开发人工智能在军事应用领域的探索,但进展缓慢。目前,商业公司正在引领人工智能的发展,随后国防部才采纳这些工具并应用于军事领域。对如此具有战略重要性的技术来说,只有一小部分商业公司在开发是非常不同寻常的。除了投资领域的快速变化外,人工智能技术在军事领域的应用存在来自技术、过程、人员和文化方面的挑战。

2.1国际竞争

随着人工智能军事应用的规模和复杂程度不断变大,国会和国防部许多官员都非常关注该领域的国际竞争。参议员TedCruz在thedawnofAI听证会的评论中表示,对美国来说,放弃发展人工智能的领导地位(相当于中国、俄罗斯等国家)不仅会使美国处于技术劣势,还可能对国家安全产生严重影响。

2.2人工智能的机遇和挑战

(1)自治。许多自主系统都多少使用了人工智能技术。相关专家认为军事系统在一些特殊任务中替换人类会获有很大的优势,如:长时间的情报收集和分析,清除化学武器对环境污染带来的破坏等。在这些任务中,自主系统可以减少相关风险,降低成本,为国防部使命提供一系列的价值,如下图所示。

(2)速度和耐力。人工智能引入了在极限时间范围内作战的方法,提供给系统在GHZ速度反应的能力,具有动态加速对抗速度的潜力。现在一般公认的是,时间在战争中具有非常重要的优势,并且反过来会促进军事人工智能应用的广泛应用。

(3)规模化。人工智能可以通过增强人类能力和使用更加廉价但性能更佳的军事系统来形成群聚效应。并且,人工智能系统可以增加单个服务单元的效率。有分析师称,人工智能系统的使用可能使得军事力量与人力规模和经济实力无关。

(4)信息优势。人工智能为数据量指数级增长提供了一种有效的分析方法。据国防部数据,军队共拥有11000架无人机,每个无人机每天都记录了相当于三个NFL赛季的高清录像。但国防部没有足够的人员或系统来处理这些数据以提取出有价值的情报。未来人工智能算法会生成自己的数据来进一步分析,以完成类似提取非结构化数据、金融数据、选举结果到报告中的任务。

(5)预测性。人工智能算法可以产生一些出乎意外的结果。并确实有很多失败的案例,前DARPA主任AratiPrabhakar表示,我们发现人工智能是一项非常有能力的技术,但同时也是非常有限的,而且出错的一些方式可能人类从来不会发生。如果人工智能系统发规模部署,那么系统失败可能会引发明显的风险。分析师称人工智能系统识别的方式可能是相同的,可能会引发大规模的破坏效应。

(6)可解释性。目前,性能最好的人工智能算法都无法解释其工作过程。DARPA和其他组织都在努力来对人工智能算法有更好的理解。可解释性对军事应用来说具有特殊的意义,因为人工智能系统推理的透明度会影响操作人员对系统和系统结果的信任度。可解释性还会对军事AI系统可验证和确认的性能带来影响。由于缺乏可解释的输出,AI系统在军事测试时无法通过审计来确认系统满足了性能的标准。

(7)漏洞利用。人工智能系统可能会增加系统被利用的可能性。首先,AI系统的普及增加了可被黑的系统的数量。其次,AI系统存在被窃取的漏洞,而且几乎都是基于软件的方式。最后,对手还可以精心引入图像分类器和其他类型的错误引发的漏洞。这些漏洞引发了我们对鲁棒性数据安全、网络安全、测试和评估过程的需求。

-3-人工智能对战场的影响

尽管人工智能还没有以一种正式的形式进入战场,但专家们预测了人工智能会对未来战争带来潜在影响。这种影响将是多方面的,包括商业投资率、国际竞争力、促进人工智能的能力、对AI应用的军事态度、AI特定战争概念的开发。

许多专家断言人工智能军事应用是一种“必然”,认为它必然会带来重大影响。然而,2016年1月,时任联席会议副主席保罗·塞尔瓦将军指出国防部仍在评估人工智能的潜力。企业开发的人工智能技术提供了军事作战的乘数效应吗?如果是,那么可能需要改变我们的战斗方式。如果不是,那么军队需要提高现有的能力以在对手面前取得一定的优势。目前国会也在考虑影响军事AI应用的一些场景并对其进行分析和监管。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇