人工智能的安全问题不容忽视
现在有很多技术可以欺骗人工智能,也有很多人工智能技术被用来欺骗人。在人工智能(AI)时代,安全问题不容忽视。
近几年,人工智能技术在很多领域都取得了初步的成功,无论是图像分类、视频监控领域的目标跟踪,还是自动驾驶、人脸识别、围棋等方面,都取得了非常好的进展。那么,人工智能技术到底安全不安全?事实上,目前的人工智能技术还存在很多问题。
人工智能并不安全
现在有很多技术可以欺骗人工智能,如在图片上加入一些对抗干扰。所谓对抗干扰,就是针对智能判别式模型的缺陷,设计算法精心构造与正常样本差异极小、能使模型错误识别的样本。如图1所示,本来是一幅手枪的图片,如果加入一些对抗干扰,识别结果就会产生错误,模型会识别为不是枪。在人的前面挂一块具有特定图案的牌子,就能使人在视频监控系统中“隐身”(见图2)。在自动驾驶场景下,如果对限速标识牌加一些扰动,就可以误导自动驾驶系统识别成“Stop”(见图3),显然这在交通上会引起很大的安全隐患。另一方面,人工智能的一些技术现在正在被滥用来欺骗人。例如,利用人工智能生成虚假内容,包括换脸视频、虚假新闻、虚假人脸、虚拟社交账户等。
图1被暴恐检测系统识别成正常图片
图2在智能监控下隐身
图3误导自动驾驶系统
不只在图片和视频领域,在语音识别领域也存在这样的安全隐患。例如,在语音中任意加入非常微小的干扰,语音识别系统也可能会把这段语音识别错。同样,在文本识别领域,只需要改变一个字母就可以使文本内容被错误分类。
除了对抗攻击这种攻击类型外,还有一种叫后门攻击的攻击类型。后门攻击是指向智能识别系统的训练数据安插后门,使其对特定信号敏感,并诱导其产生攻击者指定的错误行为。例如,我们在对机器进行训练时,在某一类的某些样本中插入一个后门模式,如给人的图像加上特定的眼镜作为后门,用一些训练上的技巧让机器人学习到眼镜与某个判断结果(如特定的一个名人)的关联。训练结束后,这个模型针对这样一个人还是能够做出正确的识别,但如果输入另一个人的图片,让他戴上特定的眼镜,他就会被识别成前面那个人。训练的时候,模型里留了一个后门,这同样也是安全隐患。
除了对抗样本、后门外,如果AI技术被滥用,还可能会形成一些新的安全隐患。例如,生成假的内容,但这不全都是人工智能生成的,也有人为生成的。此前,《深圳特区报》报道了深圳最美女孩给残疾乞丐喂饭,感动路人,人民网、新华社各大媒体都有报道。后来,人们深入挖掘,发现这个新闻是人为制造的。现在社交网络上有很多这样的例子,很多所谓的新闻其实是不真实的。一方面,人工智能可以发挥重要作用,可以检测新闻的真假;另一方面,人工智能也可以用来生成虚假内容,用智能算法生成一个根本不存在的人脸。
用人工智能技术生成虚假视频,尤其是使用视频换脸生成某个特定人的视频,有可能对社会稳定甚至国家安全造成威胁。例如,模仿领导人讲话可能就会欺骗社会大众。因此,生成技术是否需要一些鉴别手段或者相应的管理规范,这也是亟须探讨的。例如,生成虚假人脸,建立虚假的社交账户,让它与很多真实的人建立关联关系,甚至形成一些自动对话,看起来好像是一个真实人的账号,实际上完全是虚拟生成的。这样的情况该如何管理还需要我们进一步探索和研究。
人工智能安全隐患的技术剖析
针对AI的安全隐患,要找到防御的方法,首先要了解产生安全隐患的技术。以对抗样本生成为例,其主要分为2类:一类是白盒场景下对抗样本生成;另一类为黑盒场景下对抗样本生成。白盒场景的模型参数完全已知,可以访问模型中所有的参数,这个情况下攻击就会变得相对容易一些,只需要评估信息变化的方向对模型输出的影响,找到灵敏度最高的方向,相应地做出一些扰动干扰,就可以完成对模型的攻击。黑盒场景下攻击则相对较难,大部分实际情况下都是黑盒场景,我们依然可以对模型远程访问,输入样本,拿到检测结果,但无法获得模型里的参数。
现阶段的黑盒攻击可大致分为3类。第一类是基于迁移性的攻击方法,攻击者可以利用目标模型的输入信息和输出信息,训练出一个替换模型模拟目标模型的决策边界,并在替换模型中利用白盒攻击方法生成对抗样本,最后利用对抗样本的迁移性完成对目标模型的攻击。第二类是基于梯度估计的攻击方法,攻击者可以利用有限差分以及自然进化策略等方式来估计梯度信息,同时结合白盒攻击方法生成对抗样本。在自然进化策略中,攻击者可以以多个随机分布的单位向量作为搜索方向,并在这些搜索方向下最大化对抗目标的期望值。第三类是基于决策边界的攻击方法,通过启发式搜索策略搜索决策边界,再沿决策边界不断搜索距离原样本更近的对抗样本。
有攻击就有防御,针对对抗样本的检测,目前主要有3种手段。第一种,通过训练二分类器去分类样本是否受到干扰,但通用性会比较差。通常而言,训练一个分类器只能针对某一种特定的攻击算法,但在通常情况下并不知道别人使用哪一种攻击算法。第二种,训练去噪器。所谓的对抗干扰基本上都是样本中加入噪声,通过去噪对样本进行还原,从而实现防御。第三种,用对抗的手段提升模型的鲁棒性,在模型训练中加入对抗样本,模型面对对抗样本时会具有更强的鲁棒性,提高识别的成功率,但训练的复杂度较高。整体而言,这些方法都不很理想,我们亟须研究通用性强、效率高的对抗样本的防御方法。
针对换脸视频的生成,目前主流技术是基于自动编码器进行人脸图像重建。在模型训练阶段,所有的人脸图像使用同一个编码器,这个编码器的目标是学习捕捉人脸的关键特征。对于人脸重构,每个人的脸都有一个单独的解码器,这个解码器用于学习不同人的脸所具有的独特特征。利用训练后的编码器与解码器即可进行虚假人脸生成。
针对换脸视频的鉴别,目前主流技术是基于视觉瑕疵进行鉴别,这个假设是换脸视频具有不真实的情况。因此,可以对眨眼频率、头部姿态估计、光照估计、几何估计等提取特征,利用这些特征去判断人脸的图片或者视频的真假。
对抗攻防已取得一定研究成果
目前,我们在人工智能安全技术上加大了投入,围绕人工智能安全领域的问题开展了一些研究。
第一个工作是针对视频识别模型上的黑盒对抗攻击。在该工作中,我们利用对抗扰动的迁移性,将图像预训练模型中得到的扰动作为视频帧的初始扰动,并在此基础上利用自然进化策略对这些初始扰动噪声进行纠正。当我们得到针对视频域特殊纠正后的梯度信息后,采用投影梯度下降来对输入视频进行更新。该方法可以在黑盒场景下,对主流视频识别模型进行攻击,这也是全球在视频模型黑盒攻击上的第一个工作。我们实现的结果是在目标攻击情况下,需要3万至8万次查询就可以达到93%的攻击成功率,非目标攻击只需要数百个查询就可以完成对主流模型的攻击。目标攻击是指不仅让这个模型识别错,还要指定它把这个东西识别成什么,如把A的照片识别成B。非目标攻击是指只要识别错就可以了,识别成谁则不重要,如A的照片只要不识别成A就可以。
第二个工作是基于时空稀疏的视频对抗攻击。由于视频数据的维度很高,导致攻击算法的复杂度往往较高。对此,我们提出了基于时空稀疏的视频数据对抗攻击方法。时空稀疏是指在生成对抗扰动时,仅对特定帧的特定区域生成扰动,以此降低对抗扰动的搜索空间,提高攻击效率。在该工作中,为了实现时空稀疏,我们根据启发式规则衡量每个帧的重要性,选择视频帧的子集进行扰动;同时,在空间上我们选择指定帧的写入区域,如针对前景运动的人做一些干扰。以此实现高效的视频黑盒攻击。
第三个工作是针对视频识别模型进行后门攻击。针对后门攻击,之前的研究都集中于图像领域,且都是生成固定的棋盘格式的后门,这种方法在视频上的攻击成功率极低。对此,我们提出了一种针对视频数据的后门攻击方法。在该工作中,我们首先对视频数据进行后门生成,并将后门图案安插在视频中不显眼的角落,同时我们对原始视频其他内容施加一些对抗干扰,使得我们识别的模型更加侧重利用后门,以此得到污染数据,并用污染的数据替换原始数据集里对应的数据,实现后门攻击。该工作在公开数据集上取得了比较好的攻击结果,在很多类别上平均攻击成功率可以实现80%左右,远高于现有的基于图像数据的后门攻击方法。
技术对人工智能治理至关重要
未来,技术将在人工智能安全问题检测以及相应规则落实上发挥重要的作用。在保障模型安全方面,通过发展对抗攻防理论设计更加鲁棒的智能模型,确保智能系统在复杂环境下的安全运行,形成人工智能安全评估和管控能力。在隐私保护上,发展联邦学习及差分隐私等理论与技术,规范智能系统分析和使用数据的行为,保障数据所有者的隐私。针对智能系统决策的可解释性问题,发展机器学习可解释性理论与技术,提升智能算法决策流程的人类可理解性,建立可审查、可回溯、可推演的透明监管机制。在决策公平方面,可以利用统计学理论与技术,消除算法与数据中的歧视性偏差,构建无偏见的人工智能系统。最后,为了保证人工智能技术不被滥用,可以通过发展大数据计算与模式识别等理论与技术,预防、检测、监管智能技术被滥用的情况,创造有益于人类福祉的人工智能应用生态。
姜育刚,复旦大学教授、博士生导师,计算机科学技术学院院长、软件学院院长、上海视频技术与系统工程研究中心主任。
文/姜育刚
本文来自《张江科技评论》
关于火热的「人工智能」,这里有你关心的N个问题的解答
这篇文章会稍微有些长,我希望通过产品经理的视角来比较全面地对人工智能做概述和简单的分析。在这篇文章中,我们不会尝试讨论技术问题,NLP、DNN、深度学习等都不会涉及到,而是单纯讨论产品视角,其中的核心内容大多来自我的经验、观察和分析。
人工智能火了相当长一阵子,许多资本、创业者、大小公司似乎都在追逐这难得的风口,特别是李开复老师在多个公开场合鼓吹人工智能概念之后,随处可见的都是关于人工智能的报道和分析的文章。
人工智能作为计算机科学皇冠上最耀眼的明珠,过去几十年一直吸引着无数的计算机科学家、从业者去攀登,无数人在不断摸索人工智能的未来技术。作为一名在人工智能领域从业过,又保持持续关注的产品经理,我在阅读了大量的文章之后,所看到的要么是将人工智能作为噱头去讨论一个空泛的行业话题,要么是在深刻分析人工智能背后的技术。我深刻感受到这些文章对于产品经理而言并没有实质性的帮助,反倒是容易让人迷惑。
所以,我决定结合自己的经验、观察和分析,希望从产品的视角来对人工智能进行一场相对全面的概述和讨论,也希望在这个过程中能够提升自己对人工智能的理解,并且希望吸引更多的小伙伴参与到讨论中来。
一、人工智能产品到底是什么?1、所谓的人工智能产品到底是什么?在计算机世界中,基于海量数据积累,构建的一套基于海量数据的数据统计分析,它能够为一些应用场景下的关键决策带来指导和支撑,这种产品模型有一个通用的名词,叫做大数据运算。而那些基于大数据运算所做的几乎所有的场景化产品,都可以被称作人工智能产品。
人工智能产品是有别于人工智能技术的,技术是核心的竞争力,而产品的终极是要能够使用。
我们举个例子,基于深度学习技术所进行的图像识别,是一种人工智能的技术,而利用这种技术所设计的可以被用户使用的产品,就是人工智能产品,比如微软小冰的“小冰识狗”功能。
2、在人工智能产品中,产品经理应该重点关注什么?在人工智能产品中,我们重点讨论的应该是场景化问题,而非技术问题或者数据问题。作为产品经理,我们所关注的核心应该是如何将成型的人工智能技术运用到合适的场景中。
众所周知,人工智能的技术到今天为止依然处于发展阶段,没有哪一项技术已经臻于完美。在技术发展过程中做产品,往往需要考虑的就是取长补短,有的放矢。
比如AlphaGo,作为其主要开发者的DeepMind团队,在过去几年一直在一个场景下进行深入的研究,从而取得了突破性的进展。再比如亚马逊Echo音响中的人工智能语音助手Alexa,人机对话是一个非常复杂的学术难题,但是Alexa聪明地限制了场景(语音交互+智能家居),从而使得用户的体验变得非常好。
所以,当我们在讨论人工智能产品的时候,它必须是聚焦于一个具体的场景,或者是一个可控的场景,从而面向特定的用户群体所,去提供一套有价值的产品或者服务。如果说把人工智能拆解为几个关键名词,比如“数据”、“算法”、“场景”、“硬件”等等,我认为其中最关键的应当是“场景”,而此时我们会发现,“场景化”正是我们作为产品经理一直所从事的工作。
二、人工智能是如何火爆起来的?现在我们简单回答第二个问题,人工智能火爆起来的原因。
事实上,在过去几十年中,人工智能一直是计算机科学中相当热门的领域,无论是机器学习、神经网络,都一直有各种科研组织为之奋斗,只是我们大多数人作为计算机基础科学之外的路人甲无从得知而已。然而,这几年人工智能突然火爆起来,在我看来至少有如下两个方面的原因。
1、客观原因随着云计算的发展,数据的采集、处理和分析都变得容易,大数据得以存在于各行各业各种数据体系中,大数据的普及带来的就是人工智能的火爆。
而且,深度学习技术的发展带来了许多新鲜的思路和解决方案,无论是图像处理、自然语言处理、大数据分析、推荐引擎技术等等,一下子使得许多幕后技术可以走到台前,使得许多产品功能可以直接应用上深度学习带来的技术变革。这种技术带来的福音,使得人工智能变得更加接近用户,所以关注度的提升带来了火爆的效果。
2、主观原因如果说互联网Web1.0起源于1990年的话,互联网Web2.0则是在大约2007-2010年开始普及。Web1.0时代下,人机交互的方式是通过PC个人电脑完成,人们每天有固定的时间使用电脑,电脑帮助人们更快的连接信息、连接他人、连接交易。随着智能手机的普及,Web2.0时代到来,我们不再受限于电脑的不便携性,人们可以随时随地通过手机访问网络,碎片化的人机交互特性带来的冲击非常巨大。信息获取的方式不再只通过媒体,自媒体也可以承载更多信息,甚至付费时代也随之而来;我们去聊天时,不再有在线离线之别,随时随地与人沟通。这些变革一致持续至今。
当我们回过头去看的时候,发现Web1.0到Web2.0大约持续了15年,而Web2.0至今也已有10年。时代的发展总是有一些有趣的规律,今天,我们已经开始考虑Web3.0时代,那个时候的人机交互方式又会有怎样的特质呢?在最近几年冒出来的各种聊天机器人产品、智能硬件产品其实已经在尝试回答这一问题,而资本又需要推进这一新鲜事物的萌芽和发展。所以,我们看到了大量的主观报道开始追踪任何新鲜的人工智能产品,不断吸引着人们的目光投向这个未知的创新领域,李开复老师的演讲其实从一定程度上也是在不断主观传播人工智能产品。这些主观的传播,所带来的便是人工智能的火爆。
更重要的是,主观传播对于投资界、从业者而言价值和意义都巨大,因为关注度的提升,这个领域所聚集的能量、人才、资源就会增加,这对于刚刚开始产品化的人工智能而言大有裨益。
三、站在产品的视角,人工智能的本质是什么?接下来,我们要开始逐步探讨本文的核心部分。首先看看,站在产品视角的人工智能本质。
如果我们回过头来看我们自己做过的产品、或者用过的产品时,我们作为产品经理所需要思考的应该是如下的三个方面。
产品的架构和路径是什么样的:用户画像是什么,用户会按照怎样的路径逐个使用功能,哪个功能是主功能,哪个是辅助功能,哪个是运营功能,功能的频率分布是什么,等等。产品的流量是如何运作的:用户拉新如何而来,用户留存和活跃如何保持,我们所追求的DAU、MAU如何完成,killerfeature是什么,等等。产品的商业化是如何完成的:流量漏斗是如何形成的,最后变现的模式是什么,商业模式稳固吗,和竞争对手的差异是什么,等等。那么,当我们去看待人工智能在产品上的本质时,其实也应该是站在以上三个问题的视角的。
1、人工智能解决了什么产品问题人工智能一定是解决了产品上的某个问题才能凸显期价值的,哪怕是游戏价值。互联网作为一种效率工具,其在连接人与一切中起到了至关重要的作用,也创造了巨大的价值,那么人工智能有可能在这种连接提升价值吗?
举个例子。当我们去使用一些金融类软件或者服务时,最需要提升的安全问题。过往这么多年,许多金融软件或服务不愿意在客户端提供过多的功能,主要是担心网络安全或者用户丢失手机等问题。但是随着人脸识别技术的突飞猛进,许多软件都引入了人脸识别的功能,在你进行一些大额交易或者安全风险比较高的操作时,会要求你打开前置摄像头进行一些列的眨眼睛、左右摇头、上下摇头的动作,从而确保你是真实的本人(虽然有些软件并没有使用到人工智能技术,只是把你的这些步骤给录制下来,作为证据而已)。这种技术+产品(场景)的应用,就极大地提升了效率的价值,解决的是产品的问题。
人工智能解决的当然不只是产品某一方面的问题,甚至有时解决的是整个企业解决方案的问题。
举个例子来说,当一家企业积累了超过10年的行业数据,这些数据涉及交易、记录、财务、仓储、物流等等方方面面,普通的算法已经处理不了这种复杂的数据体系。此时,大数据可以有效地通过数据统计分析在其中找寻到一些特殊的规律,譬如当运送货物的时间改变时,可能交易数量会产生翻倍的增长。这种通过大数据找到规律,然后加以辅助决策的输出,所构成的产品模型就是人工智能。因为人是不可能找到这种规律,也就不可能做出这种决策。
所以,我们能够看到,人工智能对于产品而言,其价值是在过去多年的互联网价值体现上的一种延续,都是期望能够将效率优势更大化。
2、人工智能之于流量我不认为人工智能是一个行业,而应该是一种手段或者方式,其目的是提升流量的价值。
在我之前的一篇文章《人工智能「风口」,先行者为什么是搜索引擎?》中,我聊到了百度的明星人工智能产品DuerOS操作系统,其便是为百度提升流量的价值。DuerOS操作系统是可以在各种不同场景下进行接入的,从而完成一些功能。比如可以给你播音乐,为你点外卖,帮你控制家里的智能家居等等。这种多场景的接入其实就是一种数据层面上的深入沉淀,一个在百度上搜索过的用户,又用过百度知道、贴吧这些产品,百度大致能够分析出来他是多大年龄、哪里人、什么工作、什么学历等等,这些数据曾经是在线上卖给广告商用来做广告投放的。在DuerOS接入之后,百度又可以拿到这个人家里都是什么电器、每天几点在家、比较在意哪些生活品质、对哪方面的消费比较冲动等等,此时百度不仅可以把这个用户卖得更贵,甚至可以直接介入广告后的消费商品推荐。这些种种的场景,其实就是DuerOS帮助百度将其已有的流量优势加深,使得百度所拥有的用户数据价值优势得到提升。
我始终相信,人工智能真正有价值的是流量的价值。Web1.0时代,一个流量只是一次点击或者访问,而到了Web2.0时代,一个流量变成了一个可以数据化具象的人,那么到了Web3.0时代,一个流量是不是就应该是一个真是的个体的所有场景延展呢?
在人工智能产品中,流量也许更加专注的是深度,而非单纯的广度。人的本质是懒惰的,人工智能无论在交互上、处理问题的方式上都更加接近于自然,亚马逊的Alexa可以通过ifttt+workflow(不了解的同学可以自行百度一下)的方式,让一条指令完成一系列特定的任务,这种在效率上的提升可以极大地提升流量运营的深度,让用户的Engagement大大提升,其想象空间就会变得巨大。如果一个助手产品就可以帮我完成一系列工作,我还何必要下载一堆乱七八糟的应用呢?
3、讨论商业模式话题我不认为人工智能的创业公司都是奔着科研去的,凡是从商的公司,从投入第一笔资金开始就已经想好了第一种盈利的模式。在我们国家,由于技术型驱动的公司并非主流,大部分的人工智能公司都是在场景化下去解决一个具体的商业问题,从而试图盈利。
举个例子。之前锤子手机发布会上,有一家人工智能公司“三角兽”可谓出彩,其提供的功能“BigBang”功能也深受锤子粉丝的喜爱。三角兽事实上做的是一个聊天机器人产品,他们拥有一支几十人的顶级算法工程师团队(许多人和我曾经是同事~~),但是他们并没有只做一个“小黄鸡”聊天机器人就了事,而是通过聊天技术的积累,开始为各种B端企业提供聊天引擎,而且每一次服务的合作都是付费的,其盈利模式也就可以窥斑见豹了。
当大公司组建团队去做人工智能时,更是会提前考虑商业上的价值。没有哪一家公司是随便就跳进来做人工智能产品的,哪怕是BAT,也是在结合自身业务的基础上来搭建人工智能的团队。百度会因为用户数据的拓展而开发DuerOS,阿里也会因为需要提升交易额而去做它需要做的人工智能。
除了商业盈利目的之外,商业意义的另一层含义是对未来的投资。企业介入未来技术的研发工作,其实一定程度上是确保其核心竞争力的持续性。作为科技性质的互联网公司,技术一定是最后的竞争壁垒,人工智能技术的积累对于任何一家有研发实力的互联网公司都是值得投资的,无论早晚。
四、如何看待人工智能产品分类?现在,我们来看看人工智能产品的分类。
我对人工智能产品进行了一个二维坐标系的划分,具体如下:
人工智能产品坐标系(图)
在今天,几乎所有的人工智能产品都可以落入到这个坐标系中,下面我对这个坐标系进行一个简单的解释。
1、To企业服务VSTo个人产品企业服务也就是我们常说的ToB业务,而个人产品更多是我们常说的ToC业务。ToB解决的其实是一家机构正在面临的经营中的问题,而ToC则是在为一群特定的用户提供一组具体的功能。
我们举几个例子。
国内有一家公司叫做“第四范式”,国外也有一家类似的公司叫做“Palantir”,他们都是典型的ToB型人工智能公司,他们的产品具有非常显著的特征,就是结合企业自身的数据和特征进行产品的落地和实行,我们不能简单说他们是外包公司,更应该说他们是PaaS+SaaS的结合体,通过其自身云端的技术模型,结合企业的情景来解决问题。
亚马逊的Alexa、微软小冰、Siri、度秘,这些产品都是ToC的典范,他们是面向个人用户的产品,是通过其自身的产品迭代来满足特定人群的需求。
2、存量业务VS增量业务存量业务所对应的是已经成熟的产品模式,而增量业务是创新的产品模式。这么说可能会比较抽象,我举几个例子来说明一下。
(1)存量业务
比如说搜索引擎,我们过去十几年使用搜索引擎时,最习惯的交互方式是,输入关键词,然后迅速出来一大堆的搜索结果,我们从被高亮的结果中选中我们最想要的那个,从而完成搜索。有时候一次搜索没找到结果,还得再来搜一次。今天,必应搜索在美国正在尝试一种新的产品,通过聊天对话的方式来完成搜索。简单说,就是问机器人一个问题,机器人迅速从所有问题中找到最可能的一个结果给你,如果错了,就继续在聊天对话框中提问。这个技术的难度在于对每次回答结果的精确性要求非常高,而且多轮对话之后能够通过上下文动态提升准确率。这就是一个典型的存量业务,因为搜索业务本身并没有改变,只是加入了人工智能产品,从而使得搜索业务变得高效。
再比如亚马逊在美国推出的AmazonGo,也是通过人工智能技术提升了快速购物的效率,所以也是一个存量业务。
(2)增量业务
增量业务通常可以直接对标为创新型应用,是过去很少有人尝试过的一种新的产品模式,或者从来就不存在过的新的场景。
比如Siri,GoogleNow,Cortana,他们都属于增量业务,因为过去从来没有人用手机做语音助手,他们都属于这个领域的创新者。这个领域中还包括国内的图灵机器人、出门问问、助理来也等等。
再比如自动驾驶产品,它可以算作是存量业务+增量业务。因为自动驾驶不能算是在驾驶舱放了一个会开车的机器人,而是完全改变了汽车的形态,自动驾驶的未来就是不再有驾驶员,甚至连交通事故都可以避免,这种创新有可能改变整个汽车行业的未来。
其实,当我们认真去梳理人工智能产品分类时,我们会发现,大多数的产品都会落到“增量业务”这个象限中,因为增量代表创新,创新就容易突破现有的业务束缚,其改变的价值有时甚至很难估量,但是这并不妨碍如此多的公司投入其中。
到此为止,我们大致就可以站在产品的角度对任何一款人工智能产品进行如上的归类了。
3、人工智能的产品形态但是到此为止并没有结束,我还想多谈一个话题:人工智能的产品形态。
当我们回首来看已有的人工智能产品时,我们会有一个很强烈的认知:人工智能产品似乎没有什么端的概念,更多是一种服务的概念。我们很难定焦Siri的端到底是什么,可能就是一个麦克风,也可能是一个App,而自动驾驶产品就更难以定义其端是什么了。
其实端是什么并不重要。我认为在未来也许就没有端的概念了,智能硬件的普及会使得任何可以与人接触的地方都可以成为人工智能产品的承载,也许是语言交互,也许是体感交互,甚至也许是脑电波交互。端不再是关键,而自然的交互方式才是关键。
五、回答几个看待人工智能产品化的问题聊完上面的几个话题之后,我们开始回归产品经理的工作中来。
1、人工智能产品经理需要拥有什么能力?首先我们回答:人工智能产品经理需要懂技术吗?
其实可能需要,也可能不需要。
我之前写过一篇文章,叫做《产品经理到底要不要懂技术?》。在那篇文章中,我着重表达了一个观点——产品经理不需要了解技术的实现细节,但是需要有产品架构的能力和产品逻辑的能力。相应的,在人工智能的产品中,我们也不必清楚地知道DNN的细节是什么,深度学习到底是怎么学习的,而是需要知道,技术的模块是什么,用户的场景是什么,如何通过产品经二者结合起来。如果你在产品设计的过程中,需要了解到技术模块的细节,那么你可能才需要稍微学习一下技术的大概模块逻辑而已。你并不需要懂得技术是怎么实现的,那不是你工作的核心。
其实在我看来,人工智能的产品经理与其他互联网的产品经理没有本质的区别,我在前一篇文章《运营驱动:一个懂得“运营”真谛的人,才算是真正的互联网人》的文末讲述了我此前在微软小冰的一段工作经历。微软小冰在产品上分为两大部分,一部分是核心聊天CoreChat,另一部分是场景化的运营功能。在这个过程中,需要产品经理拥有强大的产品架构能力、逻辑能力、场景化能力、功能交互设计能力、运营能力、甚至是BD的能力,这一切看起来和其他领域的产品经理并没有太多不同。
所以,对于人工智能产品经理而言,需要拥有的仍然是最基本的产品能力。
2、人工智能的风口值得追吗?答:值得。我如上的描述,不言而喻。
3、人工智能产品化的过程是什么样的?我有一个不成熟的小理论,叫做“100,10,1”,可以来试着回答这个问题。
“100,10,1”的角度来看人工智能:
100:幻想100年以后的世界回因为人工智能变成什么样的?10:设想10年后人工智能会在哪些领域完全取代人类?1:思考1年中,哪些行业会在人工智能下受到直接的冲击?结合对未来的畅想,如果我们要去做人工智能产品经理,我们更需要关注的是接下来会发生些什么。其实,在一些行业已经开始涉及人工智能的部分功能,比如医疗行业的智能辅助诊断决策系统,比如汽车行业的自动驾驶辅助功能,比如金融行业的人脸识别技术。
六、总结当下的人工智能仍然处于发展的初期,只有极少数的功能会被极少数的用户使用到,这更像是一个试错尝鲜的过程,任何新的技术都是一次产业变革的驱动,无非是大变革还是小变革之别。而人工智能所带来的变革无疑是巨大的,无论从人机交互上,还是互联网效率提升上,或是单纯从创新上来看,人工智能都会对未来人们生活、商业活动带来巨大的冲击,作为产品经理,我们早晚都会不得不关注到人工智能领域中来,正如10年前的产品经理不得不开始从PC向智能手机领域转变。
也许未来,会正如电影《HER》中所描述的那样,人类与机器人终将和谐共存,许多需求的满足会通过人工智能来达到,甚至是生理上的需求。
#专栏作家帅帅的帅,“优护家”联合创始人兼COO;前微软小冰初创成员,前微软高级产品经理;北京大学计算机系硕士。专注产品、运营和商业的分析,热衷产品方法论的总结。热爱足球、民谣音乐、吉他弹唱、软笔书法、阅读和旅游,热爱生活。
本文原创发布于人人都是产品经理。未经许可,禁止转载。
人工智能的伦理挑战
原标题:人工智能的伦理挑战控制论之父维纳在他的名著《人有人的用处》中曾在谈到自动化技术和智能机器之后,得出了一个危言耸听的结论:“这些机器的趋势是要在所有层面上取代人类,而非只是用机器能源和力量取代人类的能源和力量。很显然,这种新的取代将对我们的生活产生深远影响。”维纳的这句谶语,在今天未必成为现实,但已经成为诸多文学和影视作品中的题材。《银翼杀手》《机械公敌》《西部世界》等电影以人工智能反抗和超越人类为题材,机器人向乞讨的人类施舍的画作登上《纽约客》杂志2017年10月23日的封面……人们越来越倾向于讨论人工智能究竟在何时会形成属于自己的意识,并超越人类,让人类沦为它们的奴仆。
一
维纳的激进言辞和今天普通人对人工智能的担心有夸张的成分,但人工智能技术的飞速发展的确给未来带来了一系列挑战。其中,人工智能发展最大的问题,不是技术上的瓶颈,而是人工智能与人类的关系问题,这催生了人工智能的伦理学和跨人类主义的伦理学问题。准确来说,这种伦理学已经与传统的伦理学旨趣发生了较大的偏移,其原因在于,人工智能的伦理学讨论的不再是人与人之间的关系,也不是与自然界的既定事实(如动物,生态)之间的关系,而是人类与自己所发明的一种产品构成的关联,由于这种特殊的产品――根据未来学家库兹威尔在《奇点临近》中的说法――一旦超过了某个奇点,就存在彻底压倒人类的可能性,在这种情况下,人与人之间的伦理是否还能约束人类与这个超越奇点的存在之间的关系?
实际上,对人工智能与人类之间伦理关系的研究,不能脱离对人工智能技术本身的讨论。在人工智能领域,从一开始,准确来说是依从着两种完全不同的路径来进行的。
首先,是真正意义上的人工智能的路径,1956年,在达特茅斯学院召开了一次特殊的研讨会,会议的组织者约翰・麦卡锡为这次会议起了一个特殊的名字:人工智能(简称AI)夏季研讨会。这是第一次在学术范围内使用“人工智能”的名称,而参与达特茅斯会议的麦卡锡和明斯基等人直接将这个名词作为一个新的研究方向的名称。实际上,麦卡锡和明斯基思考的是,如何将我们人类的各种感觉,包括视觉、听觉、触觉,甚至大脑的思考都变成称作“信息论之父”的香农意义上的信息,并加以控制和应用。这一阶段上的人工智能的发展,在很大程度上还是对人类行为的模拟,其理论基础来自德国哲学家莱布尼茨的设想,即将人类的各种感觉可以转化为量化的信息数据,也就是说,我们可以将人类的各种感觉经验和思维经验看成是一个复杂的形式符号系统,如果具有强大的信息采集能力和数据分析能力,就能完整地模拟出人类的感觉和思维。这也是为什么明斯基信心十足地宣称:“人的脑子不过是肉做的电脑。”麦卡锡和明斯基不仅成功地模拟出视觉和听觉经验,后来的特里・谢伊诺斯基和杰弗里・辛顿也根据对认知科学和脑科学的最新进展,发明了一个“NETtalk”的程序,模拟了类似于人的“神经元”的网络,让该网络可以像人的大脑一样进行学习,并能够做出简单的思考。
然而,在这个阶段中,所谓的人工智能在更大程度上都是在模拟人的感觉和思维,让一种更像人的思维机器能够诞生。著名的图灵测试,也是在是否能够像人一样思考的标准上进行的。图灵测试的原理很简单,让测试一方和被测试一方彼此分开,只用简单的对话来让处在测试一方的人判断,被测试方是人还是机器,如果有30%的人无法判断对方是人还是机器时,则代表通过了图灵测试。所以,图灵测试的目的,仍然在检验人工智能是否更像人类。但是,问题在于,机器思维在作出自己的判断时,是否需要人的思维这个中介?也就是说,机器是否需要先绕一个弯路,即将自己的思维装扮得像一个人类,再去作出判断?显然,对于人工智能来说,答案是否定的,因为如果人工智能是用来解决某些实际问题,它们根本不需要让自己经过人类思维这个中介,再去思考和解决问题。人类的思维具有一定的定势和短板,强制性地模拟人类大脑思维的方式,并不是人工智能发展的良好选择。
二
所以,人工智能的发展走向了另一个方向,即智能增强(简称IA)上。如果模拟真实的人的大脑和思维的方向不再重要,那么,人工智能是否能发展出一种纯粹机器的学习和思维方式?倘若机器能够思维,是否能以机器本身的方式来进行。这就出现了机器学习的概念。机器学习的概念,实际上已经成为发展出属于机器本身的学习方式,通过海量的信息和数据收集,让机器从这些信息中提出自己的抽象观念,例如,在给机器浏览了上万张猫的图片之后,让机器从这些图片信息中自己提炼出关于猫的概念。这个时候,很难说机器自己抽象出来的猫的概念,与人类自己理解的猫的概念之间是否存在着差别。不过,最关键的是,一旦机器提炼出属于自己的概念和观念之后,这些抽象的概念和观念将会成为机器自身的思考方式的基础,这些机器自己抽象出来的概念就会形成一种不依赖于人的思考模式网络。当我们讨论打败李世石的阿尔法狗时,我们已经看到了这种机器式思维的凌厉之处,这种机器学习的思维已经让通常意义上的围棋定势丧失了威力,从而让习惯于人类思维的棋手瞬间崩溃。一个不再像人一样思维的机器,或许对于人类来说,会带来更大的恐慌。毕竟,模拟人类大脑和思维的人工智能,尚具有一定的可控性,但基于机器思维的人工智能,我们显然不能作出上述简单的结论,因为,根据与人工智能对弈之后的棋手来说,甚至在多次复盘之后,他们仍然无法理解像阿尔法狗这样的人工智能如何走出下一步棋。
不过,说智能增强技术是对人类的取代,似乎也言之尚早,至少第一个提出“智能增强”的工程师恩格尔巴特并不这么认为。对于恩格尔巴特来说,麦卡锡和明斯基的方向旨在建立机器和人类的同质性,这种同质性思维模式的建立,反而与人类处于一种竞争关系之中,这就像《西部世界》中那些总是将自己当成人类的机器人一样,他们谋求与人类平起平坐的关系。智能增强技术的目的则完全不是这样,它更关心的是人与智能机器之间的互补性,如何利用智能机器来弥补人类思维上的不足。比如自动驾驶技术就是一种典型的智能增强技术,自动驾驶技术的实现,不仅是在汽车上安装了自动驾驶的程序,更关键地还需要采集大量的地图地貌信息,还需要自动驾驶的程序能够在影像资料上判断一些移动的偶然性因素,如突然穿过马路的人。自动驾驶技术能够取代容易疲劳和分心的驾驶员,让人类从繁重的驾驶任务中解放出来。同样,在分拣快递、在汽车工厂里自动组装的机器人也属于智能增强类性质的智能,它们不关心如何更像人类,而是关心如何用自己的方式来解决问题。
三
这样,由于智能增强技术带来了两种平面,一方面是人类思维的平面,另一方面是机器的平面,所以,两个平面之间也需要一个接口技术。接口技术让人与智能机器的沟通成为可能。当接口技术的主要开创者费尔森斯丁来到伯克利大学时,距离恩格尔巴特在那里讨论智能增强技术已经有10年之久。费尔森斯丁用犹太神话中的一个形象――土傀儡――来形容今天的接口技术下人与智能机器的关系,与其说今天的人工智能在奇点临近时,旨在超越和取代人类,不如说今天的人工智能技术越来越倾向于以人类为中心的傀儡学,在这种观念的指引下,今天的人工智能的发展目标并不是产生一种独立的意识,而是如何形成与人类交流的接口技术。在这个意义上,我们可以从费尔森斯丁的傀儡学角度来重新理解人工智能与人的关系的伦理学,也就是说,人类与智能机器的关系,既不是纯粹的利用关系,因为人工智能已经不再是机器或软件,也不是对人的取代,成为人类的主人,而是一种共生性的伙伴关系。当苹果公司开发与人类交流的智能软件Siri时,乔布斯就提出Siri是人类与机器合作的一个最朴实、最优雅的模型。以后,我们或许会看到,当一些国家逐渐陷入老龄化社会之后,无论是一线的生产,还是对这些因衰老而无法行动的老人的照料,或许都会面对这样的人与智能机器的接口技术问题,这是一种人与人工智能之间的新伦理学,他们将构成一种跨人类主义,或许,我们在这种景象中看到的不一定是伦理的灾难,而是一种新的希望。
(作者:蓝江,系南京大学哲学系教授)
人工智能的发展与未来
随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。
现如今,各种AI产品已经逐步进入了我们的生活|Pixabay
19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。
20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。
至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。
智能,是一种特殊的物质构造形式。
就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?
图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。
英国数学家,计算机学家图灵
这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。
虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。
1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。
而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。
而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。
而这之后,人工智能的发展也与图灵的想象有所不同。
现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。
但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。
人工智能让芯片的处理能力得以提升|Pixabay
从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。
虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。
参考文献
[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.
[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.
[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.
[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.
[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.
[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987
作者:张雨晨
编辑:韩越扬
[责编:赵宇豪]