郭绍青:人工智能助力教师教学创新
人工智能作为关键共性与颠覆性技术,正在对产业结构、生活环境等产生影响。人工智能进入教育领域,推动了智能学习系统、虚实融合学习环境、智能教育助理等智能系统和工具的开发与供给,智能教育环境建设已现端倪。实现机器智能与人类(教师)智慧相融合指向学习者的高级思维发展、创新能力培养,启迪学习者智慧的新教育,培养复合型、创新型、战略型、智慧型的人才,能够对人工智能与人类智慧相融合从事社会工作的劳动者的智慧教育进行广泛讨论。教师作为人工智能融入教育的直接利益相关者,具备利用人工智能学习系统和工具开展教学的知识与技能,提升人工智能技术素养显得十分重要。当前人工智能教育产品正在快速进入学校与课堂,为教师利用人工智能技术实现教学创新提供了支撑。
智能诊断助力教师优化课堂教学。适应性学习系统、手写板、智能阅卷等系统进入学校,为教师提供了对学生个体、小组、班级等随堂数据和课外数据采集与分析的手段,教师利用数据分析结果,精准定位学生个性学习问题与班级的普遍问题,找准学生个性与共性薄弱点、聚集学生学习障碍点,改进教学策略与方法,进行分层、分类教学,提升教师在课堂教学中解决学生学习问题的针对性与教学效率。
学习分析技术助力教师开展规模个性化教学。《中国教育现代化2035》提出“走班制、选课制等教学组织模式……利用现代技术加快推动人才培养模式改革,实现规模化教育与个性化培养的有机结合”的要求,具备大数据学习分析功能的网络学习空间的应用,对学生学习的精准画像,使教师在精准掌握学情的基础上,能够有效组织翻转课堂、小组合作学习、探究学习等学习活动。同时,学习分析技术正在推动网络学习空间中以个性化发展为核心的动态学习组织的发展,并引发实体学校动态走班制度的建立,实体学校与网络学习空间相融合的动态学习组织发展,将使教师实施规模个性化教学成为现实。
课堂智能分析助力教师精准教研。集自然语言处理、计算机视觉、生物特征识别等技术的课堂教学智能分析系统的应用,实现了对课堂教学过程数据的伴随性采集,汇聚课堂教学多维数据的智能分析能够形成更加精准的教师课堂教学行为的可视化分析结果。跨校际、跨区域的教研活动,利用课堂教学智能分析系统的分析报告,结合教研员与优秀教师评价分析,为研修教师提供精准服务,指导、组织、协助研修教师进行深度学习,对提升研修效果与效率具有显著作用。
智能学习系统助力教师提升教学质量。目前相对成熟的智能学习系统主要集中在智能语言学习方面。英语流利说、英语趣配音等一批利用自然语言处理技术开发的智能语言学习系统进入了教育领域,教师利用英语智能学习系统能够支持学生的听说训练,特别是在面向农村教学点的专递课堂中的应用,能够弥补教师自身的能力缺陷。同时利用自然语言处理技术与AR/VR相融合开发的藏、维双语智能学习系统将为学生提供多通道的人机交互,提升国家通用语言的学习质量。
人工智能助力教师家校协同。人工智能技术在家校协同教育中的应用,正在改变家校教育分离、难以形成合力与协同监管的现状。一些县区在推动人工智能教育应用过程中,利用人工智能技术助力家校协同教育,利用智能校徽与体温和人脸采集摄像机,无感采集学生体温、运动量、行动轨迹等数据,协助教师与家长掌握学生健康状况、安全信息、运动强度。要求学生阅读课外书籍,并在每天规定时间内利用纸笔系统写出读后感,教师能够及时进行点评,对培养学生的学习习惯、扩宽知识面等发挥了积极作用。(西北师范大学郭绍青)
人工智能实验实训室解决方案
人工智能专业课程设计表1:专业学习领域课程体系设置表
人工智能实训室建设人工智能技术服务专业旨在培养人工智能产业的应用型人才,使本专业的高校毕业具备数据标注、人工智能产品部署安装、人工智能产品调试、人工智能系统运维、人工智能产品推广、产品销售与咨询、售前售后技术支持等能力,以满足企事业单位对于人工智能领域高素质技术应用型人才的需求。
人工智能相关专业的知识体系比较复杂,对于的教学、实训的质量要求更高。教学主要是以理论知识为主,培养学生对于本专业知识体系框架的建立。对对于实训而言,旨在培养学生的设备安装、部署、环境搭建、运维、故障排除修复等实操能力。所以实训室的建设必须要能够提供学生动手实践的空间,能够将学生学习到的理论知识转化为实操能力,让学生全面掌握人工智能产品的组件、系统架构、部署流程、运行流程等知识。所以人工智能实训室的实训设备必须以实际行业应用为依托,对主流的人工智能产品进行模型化重构,让学生、老师可以和人工智能的行业应用进行无缝对接,轻而易举的完成人工智能理论知识的成果转化,做出一些看得见、摸得着人工智能项目应用。
唯众人工智能专业建设解决方案以人工智能人才需求为导向,基于唯众人工智能实训平台,从招生准备、人才培养、课程体系、师资建设、科研支撑、环境建设、持续改进的高校专业建设七大层面,为高校提供创新性实训室及新型人才培养模式。人工智能实训室的建设主要包括:体验区、实训区、测试区三个区域。
1、体验区:展示大屏、展示平台、人工智能创客产品、硬件模型、文化墙、灯光系统等。
2、实训区:硬件平台、软件平台、资源系统三个方面。
(1)硬件平台包括:唯众人工智能AIoT实训装置、唯众人工智能视觉实训平台、唯众人工智能语音实训平台、人工智能创新实践小车、PC机、实训工位
(2)软件平台包括:IT教学云平台、云虚拟实训平台、融合云平台、图形化编程工具、可视化界面设计工具。
(3)资源系统包括:人工智能基础系统资源、人工智能视觉实训资源、人工智能语音实训资源、人工智能综合项目案例资源、人工智能Python教学资源、人工智能TensorFlow教学资源、Linux基础教学资源、Hadoop基础教学资源、Hadoop实训案例资源、Spark基础教学资源、Spark实训案例资源。
3、组装测试区:组装工位、组装工具、实验赛道、测试组件等。
人工智能实训设备技术优势1)、硬件功能强大
核心板CPU采用了六核ARM64位处理器(双核Cortex-A72+四核Cortex-A53),主频高达1.8GHz,GPU为四核ARMMali-T860MP4GPU,另外配备有人工智能专用NPU,支持8bit/16bit运算,运算性能高达3.0TOPs。内存方面配备了6GBLPDDR3,储存为32GBeMMC。通信方面支持TCP/IP、WIFI、蓝牙、MQTT、Socket、ssh、串口等。并且配备有丰富的外设接口(SPI、IIC、UART、GPIO等),可以满足学生和老师不同的学习和开发需求。
2)、支持各种主流的深度学习框架
唯众人工智能AI实训平台支持TensorFlow、Keras、Caffe、Mxnet、Pytorch等主流深度学习框架,并在基础环境中提供TensoFlow、Keras、YoLov3的开发环境和依赖。
3)、支持零编程
终端节点使用的是ESP32模块,开发语言为MicroPython,该开发语言和Python3类似,配合唯众图形化编程工具可以让学生和老师在不需要了解任何底层知识的情况下结合人工智能AI实训平台核心板的识别结果做出AIoT的典型行业应用的小型模型。
4)、完美融合物联网
唯众人工智能AI实训平台的对硬件进行了兼容性设计,在硬件上可以同时满足物联网、人工智能和嵌入式三个专业的实训需求。这样大大提高了实训设备在学习不同专业的复用率,能够大大减少学校实训室场地不足的带来的问题,同时也能够为解决学校建设多个实训室资金不足的问题。
5)、支持可视化界面设计工具
唯众可视化界面设计工具是辅助师生用来构建AIoT应用程序的教学工具,它采用图形化界面来代替代码开发界面,通过拖拽、移动控件与控件节点,来完成页面设计。在学生和老师学习AIoT完整项目时,可以通过唯众可视化界面设计工具进行控制页面的辅助构建。
6)、支持模型转换
唯众人工智能AI实训平台提供模型转换工具,可以将学生和老师在X86架构的计算机中生成的hdf5、pb、onnx人工智能模块转化为ARM64架构的平台能够运行的人工智能模型,解决学生和老师的人工智能项目跨平台部署的问题。
7)、配套完整的开发环境
唯众人工智能AI实训平台基础资源包中就包含了人工智能完整的开发环境,包括TensorFlow、Keras、Python、OpenCV、PIL、gcc、scipy等。学生和老师不需要自己动手搭建复杂的人工智能开发环境,可以直接进行实训项目案例的学习。同时唯众提供了基础环境镜像包,可以帮助学生和老师随时恢复初始状态。另外唯众的人工智能技术团队会不定期对开发环境进行扩展以适配新的业务场景。
人工智能实训室空间设计3D效果图教学支持理论教学
教学资源:《Linux基础》、《认识人工智能》、《Python基础》、《Python入门》、《Python进阶》、《TensorFlow基础》、《TensorFlow入门》、《TensorFlow进阶》、《Python网络爬虫》、《Linux基础》、《Hadoop生态系统与环境搭建》、《Spark大数据分析》等。
实训项目
唯众的实训资源主要分为五个大方向:人工智能基础、机器学习、计算机视觉、自然语言处理、Hadoop生态开发、Spark大数据分析。
人工智能基础资源包包括:Python、TensorFlow、YoLo、OpenCV、PIL、MU、MQTT.fx等。
人工智能视觉资源包
(1)图像基本操作类:滑块控制三原色实验;
(2)图像检测类:轮廓边界框检测实验;表面划痕检测实验;行人检测实验;车牌目标识别实验;人脸检测实验等;
(3)图像变换类:图像黑白变换实验;图像灰度变换实验;图像取反变换实验;图像锐化变换实验等。
(4)图像修复类:图像污点修复实验;
(5)图像识别类:红绿灯识别实验;字符识别实验;猫狗分类实验;车牌识别实验;人脸识别实验;目标检测实验;手势识别实验等。
(6)图像跟踪类:目标跟踪器实验;图像采集监控实验;智能监控云台实验。
(7)双目类:双目标定实验、双目校正实验、双目测距实验;
(8)三维图像类:三维立体空间重建实验。人工智能语音资源包
(1)语音采集类:语音采集、语音波形显示、语音编码、语音采样频率转换等;
(2)语音信号类:语音信号强度、白噪声信号、语音短时傅里叶变换、音频自动增益控制等;
(3)语音检测类:语音端点检测;
(4)语音噪声类:语音增强;语音添加噪声;
(5)语音模型类:LSTM声学模型训练;情感分析;知识图谱关系抽取;
(6)声源定位类:实时声源定位;
(7)语音识别类:语音识别;分词识别;词性标注;命名识别;
(8)语音合成类:语音合成。
人工智能项目综合案例资源包
1.手写数字识别项目案例WZ-AISZ-V1.0
2.人脸识别系统项目案例WZ-AIRL-V1.0
3.情感灯控系统项目案例WZ-AIBQ-V1.0
4.性别识别项目案例WZ-AIXB-V1.0
5.智能家居系统项目案例WZ-AIYY-V1.0
6.智能游戏交互系统项目案例WZ-AIYX-V1.0
7.智能识别监控系统项目案例WZ-AIYO-V1.0
文章来源:http://www.whwkzc.com/html/2020/rgznsjjjfa_1222/201.html