博舍

人工智能八大关键技术简析 人工智能包含什么内容和技术

人工智能八大关键技术简析

人工智能是一个非常宽泛的概念,简单来说就是对人类思维的机器模拟,利用机器学习和数据分析方法赋予机器类人的能力。

近些年人工智能有了长足的进步,也一步步融入到了我们的日常生活当中,随着入门门槛的降低,使得我们这些普通人也有了更多接触人工智能的机会。今天我们就来一起了解下人工智能的八大关键技术

计算机视觉技术

计算机视觉,简称CV(ComputerVision),是一门研究如何使计算机更好的“看”世界的科学。给计算机输入图片,图像等数据,通过各种深度学习等算法的计算,使得计算机可以进行识别、跟踪和测量等功能

一般来说,CV技术主要有如下几个步骤:图像获取、预处理、特征提取、检测/分割和高级处理

计算机视觉技术近些年所取得的突破

计算机视觉技术的一些典型应用场景

自然语言处理技术

自然语言处理(NaturalLanguageProcessing)技术是一门通过建立计算机模型、理解和处理自然语言的学科。是指用用计算机对自然语言的形、音、义等信息进行处理并识别的应用,大致包括机器翻译、自动提取文本摘要、文本分类、语音合成、情感分析等。

自然语言处理的技术层次

从2008年开始,自然语言处理技术的发展也是突飞猛进,从最初的词向量到2013年的word2vec,将深度学习与自然语言处理深度结合在一起,并在机器翻译、问答系统,阅读理解等多个方面取得了一定成功。

NLP技术可以分为基础性研究和应用性研究,语音和文本是两个重点方向。各大厂也纷纷入局,并都取得了相当不错的成绩

跨媒体分析推理技术

以前的媒体信息处理模型往往是针对单一的媒体数据进行处理分析,比如图像识别、语音识别,文本识别等等,但是现在越来越多的任务需要跨媒体类别分析,即需要综合处理文本、视频,语音等信息。

对于该项技术,业界也取得了非常不错的成绩

智适应学习技术

智适应学习技术(IntelligentAdaptiveLearning),是教育领域最具突破性的技术。该技术模拟了老师对学生一对一的教学过程,赋予了学习系统个性化教学的能力。在2020年之后,智适应学习技术得到了快速发展,背后的推动里有强大的计算能力和海量的数据,更重要的还有贝叶斯网络算法的应用。

群体智能技术

群体智能(CollectiveIntelligence)也称集体智能,是一种共享的智能,是集结众人的意见进而转化为决策的一种过程,用来对单一个体做出随机性决策的风险。

群体智能的四项原则

群体智能也有很多应用案例

自主无人系统技术

自主无人系统是能够通过先进的技术进行操作或管理,而不需要人工干预的系统,可以应用到无人驾驶、无人机、空间机器人,无人车间等领域。

智能芯片技术

一般来说,运用了人工智能技术的芯片就可以称为智能芯片,智能芯片可按技术架构、功能和应用场景等维度分成多种类别。

智能芯片分类

脑机接口技术

脑机接口(Brain-ComputerInterface)是在人或动物脑与外部设备间建立的直接连接通道。通过单向脑机接口技术,计算机可以接受脑传来的命令,或者发送信号到脑,但不能同时发送和接收信号;而双向脑机接口允许脑和外部设备间的双向信息交换。

脑机接口在各行业中的应用

好了,以上就是今天介绍的人工智能八大关键技术

参考资料:中科院人工智能发展白皮书

人工智能技术的主要应用及基本原理

1:什么是人工智能?

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。人工智主能它是用来研究使计算机来模拟人的某些思维过程和智能行为(如学习,推理,思考,规划等)的学科,主要包括计算机实现智能的原理,制造类似的人脑智能的计算机,使计算机能实现更高层次的应用。

2:人工智能的研究价值

列如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能比人脑做得更好、更快、更准确,因此当代人不再把这种计算看作是“需要人工智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门学科的具体目标自然也是随着时代的变化而发展的。它一方面不断获得新的发展,另一方面又转向更有意义的,更加困难的目标。

3:人工智能的细分领域有哪些?

人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。

(1):深度学习

深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。                   

深度学习的技术原理:

1.构建一个网络并且随机初始化所有连接的权重; 2.将大量的数据情况输出到这个网络中; 3.网络处理这些动作并且进行学习; 4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重; 5.系统通过如上过程调整权重; 6.在成千上万次的学习之后,超过人类的表现;

(2):计算机视觉

计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……

计算机视觉的技术原理:

计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

(3)语音识别:

语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。

语音识别技术原理:

1、对声音进行处理,使用移动窗函数对声音进行分帧; 2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态; 3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;

(4)引擎推荐:

不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。

引擎推荐技术原理:

推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。

人工智能包含哪些技术

一、概述

近几年各界对人工智能的兴趣激增,自2011年以来,开发与人工智能相关的产品和技术并使之商业化的公司已获得超过总计20亿美元的风险投资,而科技巨头更是投资数十亿美元收购那些人工智能初创公司。相关报道铺天盖地,而巨额投资、计算机导致失业等问题也开始浮现,计算机比人更加聪明并有可能威胁到人类生存这类论断更是被媒体四处引用并引发广泛关注。

IBM承诺拨出10亿美元来使他们的认知计算平台Watson商业化。

谷歌在最近几年里的投资主要集中在人工智能领域,比如收购了8个机器人公司和1个机器学习公司。

Facebook聘用了人工智能学界泰斗YannLeCun来创建自己的人工智能实验室,期望在该领域获得重大突破。

牛津大学的研究人员发表了一篇报告表明,美国大约47%的工作因为机器认知技术自动化而变得岌岌可危。

纽约时报畅销书《TheSecondMachineAge》论断,数字科技和人工智能带来巨大积极改变的时代已经到来,但是随之而来的也有引发大量失业等负面效应。

硅谷创业家ElonMusk则通过不断投资的方式来保持对人工智能的关注。他甚至认为人工智能的危险性超过核武器。

着名理论物理学家StephenHawking认为,如果成功创造出人工智能则意味着人类历史的终结,“除非我们知道如何规避风险。”

即便有如此多炒作,但人工智能领域却也不乏显着的商业行为,这些活动已经或者即将对各个行业和组织产生影响。商业领袖需要透彻理解人工智能的含义以及发展趋势。

二、人工智能与认知科技

揭秘人工智能的首要步骤就是定义专业术语,勾勒历史,同时描述基础性的核心技术。

1、人工智能的定义

人工智能领域苦于存在多种概念和定义,有的太过有的则不够。作为该领域创始人之一的NilsNilsson先生写到:“人工智能缺乏通用的定义。”一本如今已经修订三版的权威性人工智能教科书给出了八项定义,但书中并没有透露其作者究竟倾向于哪种定义。对于我们来说,一种实用的定义即为——人工智能是对计算机系统如何能够履行那些只有依靠人类智慧才能完成的任务的理论研究。例如,视觉感知、语音识别、在不确定条件下做出决策、学习、还有语言翻译等。比起研究人类如何进行思维活动,从人类能够完成的任务角度对人工智能进行定义,而非人类如何思考,在当今时代能够让我们绕开神经机制层面对智慧进行确切定义从而直接探讨它的实际应用。值得一提的是,随着计算机为解决新任务挑战而升级换代并推而广之,人们对那些所谓需要依靠人类智慧才能解决的任务的定义门槛也越来越高。所以,人工智能的定义随着时间而演变,这一现象称之为“人工智能效应”,概括起来就是“人工智能就是要实现所有目前还无法不借助人类智慧才能实现的任务的集合。”

2、人工智能的历史

人工智能并不是一个新名词。实际上,这个领域在20世纪50年代就已经开始启动,这段探索的历史被称为“喧嚣与渴望、挫折与失望交替出现的时代”——最近给出的一个较为恰当的评价。

20世纪50年代明确了人工智能要模拟人类智慧这一大胆目标,从此研究人员开展了一系列贯穿20世纪60年代并延续到70年代的研究项目,这些项目表明,计算机能够完成一系列所本只属于人类能力范畴之内的任务,例如证明定理、求解微积分、通过规划来响应命令、履行物理动作,甚至是模拟心理学家、谱曲这样的活动。

但是,过分简单的算法、匮乏的难以应对不确定环境(这种情形在生活中无处不在)的理论,以及计算能力的限制严重阻碍了我们使用人工智能来解决更加困难和多样的问题。伴随着对缺乏继续努力的失望,人工智能于20世纪70年代中期逐渐淡出公众视野。

20世纪80年代早期,日本发起了一个项目,旨在开发一种在人工智能领域处于领先的计算机结构。西方开始担心会在这个领域输给日本,这种焦虑促使他们决定重新开始对人工智能的投资。20世纪80年代已经出现了人工智能技术产品的商业供应商,其中一些已经上市,例如Intellicorp、Symbolics、和Teknowledge。

20世纪80年代末,几乎一半的“财富500强”都在开发或使用“专家系统”,这是一项通过对人类专家的问题求解能力进行建模,来模拟人类专家解决该领域问题的人工智能技术。

对于专家系统潜力的过高希望彻底掩盖了它本身的局限性,包括明显缺乏常识、难以捕捉专家的隐性知识、建造和维护大型系统这项工作的复杂性和成本,当这一点被越来越多的人所认识到时,人工智能研究再一次脱离轨道。

20世纪90年代在人工智能领域的技术成果始终处于低潮,成果寥寥。反而是神经网络、遗传算法等科技得到了新的关注,这一方面是因为这些技术避免了专家系统的若干限制,另一方面是因为新算法让它们运行起来更加高效。

神经网络的设计受到了大脑结构的启发。遗传算法的机制是,首先迭代生成备选解决方案,然后剔除最差方案,最后通过引入随机变量来产生新的解决方案,从而“进化”出解决问题的最佳方案。

3、人工智能进步的催化剂

截止到21世纪前10年的后期,出现了一系列复兴人工智能研究进程的要素,尤其是一些核心技术。下面将对这些重要的因素和技术进行详细说明。

1)摩尔定律

在价格、体积不变的条件下,计算机的计算能力可以不断增长。这就是被人们所熟知的摩尔定律,它以Intel共同创办人GordonMoore命名。GordonMoore从各种形式的计算中获利,包括人工智能研究人员使用的计算类型。数年以前,先进的系统设计只能在理论上成立但无法实现,因为它所需要的计算机资源过于昂贵或者计算机无法胜任。今天,我们已经拥有了实现这些设计所需要的计算资源。举个梦幻般的例子,现在最新一代微处理器的性能是1971年第一代单片机的400万倍。

2)大数据

得益于互联网、社交媒体、移动设备和廉价的传感器,这个世界产生的数据量急剧增加。随着对这些数据的价值的不断认识,用来管理和分析数据的新技术也得到了发展。大数据是人工智能发展的助推剂,这是因为有些人工智能技术使用统计模型来进行数据的概率推算,比如图像、文本或者语音,通过把这些模型暴露在数据的海洋中,使它们得到不断优化,或者称之为“训练”——现在这样的条件随处可得。

3)互联网和云计算

和大数据现象紧密相关,互联网和云计算可以被认为是人工智能基石有两个原因,第一,它们可以让所有联网的计算机设备都能获得海量数据。这些数据是人们推进人工智能研发所需要的,因此它可以促进人工智能的发展。第二,它们为人们提供了一种可行的合作方式——有时显式有时隐式——来帮助人工智能系统进行训练。比如,有些研究人员使用类似MechanicalTurk这样基于云计算的众包服务来雇佣成千上万的人来描绘数字图像。这就使得图像识别算法可以从这些描绘中进行学习。谷歌翻译通过分析用户的反馈以及使用者的无偿贡献来提高它自动翻译的质量。

4)新算法

算法是解决一个设计程序或完成任务的路径方法。最近几年,新算法的发展极大提高了机器学习的能力,这些算法本身很重要,同时也是其他技术的推动者,比如计算机视觉(这项科技将会在后文描述)。机器学习算法目前被开源使用,这种情形将促成更大进步,因为在开源环境下开发人员可以补足和增强彼此的工作。

4、认知技术

我们将区分人工智能领域和由此延伸的各项技术。大众媒体将人工智能刻画为跟人一样聪明的或比人更聪明的计算机的来临。而各项技术则在以往只有人能做到的特定任务上面表现得越来越好。我们称这些技术为认知技术(下图),认知技术是人工智能领域的产物,它们能完成以往只有人能够完成的任务。而它们正是商业和公共部门的领导者应该关注的。下面我们将介绍几个最重要的认知技术,它们正被广泛采纳并进展迅速,也获得大量投资。

1)计算机视觉

是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

计算机视觉有着广泛应用。其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被Facebook用来自动识别照片里的人物;在安防及监控领域被用来指认嫌疑人;在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多购买选择。

机器视觉作为一个相关学科,泛指在工业自动化领域的视觉应用。在这些应用里,计算机在高度受限的工厂环境里识别诸如生产零件一类的物体,因此相对于寻求在非受限环境里操作的计算机视觉来说目标更为简单。计算机视觉是一个正在进行中的研究,而机器视觉则是“已经解决的问题”,是系统工程方面的课题而非研究层面的课题。因为应用范围的持续扩大,计算机视觉领域的初创公司自2011年起已经吸引了数亿美元的风投资本。

2)机器学习

指的是计算机系统无需遵照显式的程序指令而只是依靠暴露在数据中来提升自身性能的能力。其核心在于,机器学习是从数据中自动发现模式,模式一旦被发现便可用于做预测。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息的数据库,系统就会学习到可用来预测信用卡欺诈的模式。处理的交易数据越多,预测就会越好。

机器学习的应用范围非常广泛,针对那些产生庞大数据的活动,它几乎拥有改进一切性能的潜力。除了欺诈甄别之外,这些活动还包括销售预测、库存管理、石油和天然气勘探、以及公共卫生。机器学习技术在其他的认知技术领域也扮演着重要角色,比如计算机视觉,它能在海量图像中通过不断训练和改进视觉模型来提高其识别对象的能力。现如今,机器学习已经成为认知技术中最炙手可热的研究领域之一,在2011-2014年中这段时间内就已吸引了近十亿美元的风险投资。谷歌也在2014年斥资4亿美金收购Deepmind这家研究机器学习技术的公司。

深度学习是机器学习的一个重要的扩展。

3)自然语言处理

是指计算机拥有的人类般文本处理的能力,比如,从文本中提取意义,甚至从那些可读的、风格自然、语法正确的文本中自主解读出含义。一个自然语言处理系统并不了解人类处理文本的方式,但是它却可以用非常复杂与成熟的手段巧妙处理文本,例如自动识别一份文档中所有被提及的人与地点;识别文档的核心议题;或者在一堆仅人类可读的合同中,将各种条款与条件提取出来并制作成表。以上这些任务通过传统的文本处理软件根本不可能完成,后者仅能针对简单的文本匹配与模式进行操作。请思考一个老生常谈的例子,它可以体现自然语言处理面临的一个挑战。在句子“光阴似箭(Timeflieslikeanarrow)”中每一个单词的意义看起来都很清晰,直到系统遇到这样的句子“果蝇喜欢香蕉(Fruitflieslikeabanana)”,用“水果(fruit)”替代了“时间(time)”,并用“香蕉(banana)”替代“箭(arrow)”,就改变了“飞逝/飞着的(like)”与“像/喜欢(like)”这两个单词的意思。

自然语言处理,像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合。建立语言模型来预测语言表达的概率分布,举例来说,就是某一串给定字符或单词表达某一特定语义的最大可能性。选定的特征可以和文中的某些元素结合来识别一段文字,通过识别这些元素可以把某类文字同其他文字区别开来,比如垃圾邮件同正常邮件。以机器学习为驱动的分类方法将成为筛选的标准,用来决定一封邮件是否属于垃圾邮件。

因为语境对于理解“timeflies(时光飞逝)”和“fruitflies(果蝇)”的区别是如此重要,所以自然语言处理技术的实际应用领域相对较窄,这些领域包括分析顾客对某项特定产品和服务的反馈、自动发现民事诉讼或政府调查中的某些含义、以及自动书写诸如企业营收和体育运动的公式化范文等。

4)机器人技术

将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、致动器、以及设计巧妙的硬件中,这就催生了新一代的机器人,它有能力与人类一起工作,能在各种未知环境中灵活处理不同的任务。例如无人机,还有可以在车间为人类分担工作的“cobots”,还包括那些从玩具到家务助手的消费类产品。

5)语音识别技术

主要是关注自动且准确的转录人类的语音。该技术必须面对一些与自然语言处理类似的问题,在不同口音的处理、背景噪音、区分同音异形异义词(“buy”和“by”听起来是一样的)方面存在一些困难,同时还需要具有跟上正常语速的工作速度。语音识别系统使用一些与自然语言处理系统相同的技术,再辅以其他技术,比如描述声音和其出现在特定序列和语言中概率的声学模型等。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。比如Domino’sPizza最近推出了一个允许用户通过语音下单的移动APP。

6)专家系统

上面提到的认知技术进步飞快并吸引了大量投资,其他相对成熟的认知技术仍然是企业软件系统的重要组成部分。这些日渐成熟的认知技术包括决策最优化——自动完成对复杂决策或者在资源有限的前提下做出最佳权衡;规划和调度——使设计一系列行动流程来满足目标和观察约束;规则导向系统——为专家系统提供基础的技术,使用知识和规则的数据库来自动完成从信息中进行推论的处理过程。

人工智能主要包括哪些研究内容,人工智能现状和发展方向是什么

人工智能主要包括哪些研究内容,人工智能现状和发展方向是什么?发布时间:2020-08-1313:42:01来源:ITPUB博客阅读:871作者:巴菲特的小秘栏目:互联网科技

人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

随着20世纪中叶电子计算机产生以来,科学技术得到迅猛发展,人工智能也随之产生和发展。人工智能已经应用到我们生活的很多领域,伴随着研究的发展,人工智能会更加深入的影响我们的生活。

1.什么是人工智能

“人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。

人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

2.人工智能的应用领域

今天,AI能力更倾向于应用到人类或其他动物智能的某一或某几方面,并用自动化替代,有时候也用于对其进行模拟。这些在高性能计算机调度之下的智能行为远远比人类的行为更为强大。

2.1路径查找和路径规划

在最小代价路径规划和路径查找系统中,可以使用专门的技术,它们中有一些非常灵巧微妙,另一些则仅仅是用蛮力解决:来模拟对理解的直觉迅速转换或者对普通人大脑生成过程的识别,结果有时非常令人惊讶!路径查找就是路径规划问题的一种变体。

不管怎样,当对真实世界中存在的问题应用AI技术的时候,您所遇到和需要克服的挑战有很多,但其中最令人烦恼的一个就是问题的规模和复杂度,即使在人类看来这些问题非常理所当然、简单和幼稚。早些年,AI研究的大部分工作是用于开发快速、高效、充分理解的查找方法。

2.2规则和专家系统

人工智能的发展到今天开始使用知识库来代替器官或机构记忆,多年来专家系统以及基于规则的决策系统在人类诊断和经验分析上一直处于主导地位。它用于在知识库中挖掘出问题的答案、寻找关联性、模式提取等等相关工作。

事实上,专家系统甚至可以用作游戏的一个可玩性特色。想象在一个实时战略游戏当中,您训练一个罗马士兵军团,让其攻击、抵御某种特定类型的敌人。然后,您又训练了敌人军队,让它再次抵御罗马军团的进攻,依次反复。

每一个历史军队所有的进攻和防御能力都包含在一个具有代表性的数据库中。当某一特定环境设置出现时,这些军队就需要找出一种策略来进行防御,这种需要由某种软件来提供,其中封装了这些环境作为一组参数,用于在专家系统中进行查找操作,从而寻找出抵御敌人的最佳方法。

3.人工智能的现状与发展方向

3.1人工智能的现状

20世纪90年代A.I.技术的发展在各个领域均展示长足发展——学习、教学、案件推理、策划、自然环境认识及方位识别、翻译,乃至游戏软件等领域都瞄准了A.I.的研发。1997IBM(国际商用机械公司)制造的电脑“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫。到了90年代末,以A.I.技术为基础的网络信息搜索软件已是国际互联网的基本构件。2000年互动机械宠物面世。麻省理工学院推出了会做数十种面部表情的机器人Kisinel。

3.2人工智能发展的方向

关于A.I.人们最迫切希望知道的问题是,它真能和人一般聪明吗?许多科学家相信,这只是个时间上的问题。A.I.软件设计师库尔兹维尔认为迟至2020年A.I.即可聪明过人。IBM的霍恩估计比较保守,他认为A.I.赶上人还需要40—50年时间。AT&T的斯通则说他的目标是在2050前组建一只能挑战曼联的A.I.足球队。他这不是开玩笑。

在许多方面,A.I.大脑比人类更有优势。人脑的学习吸收新知识的过程非常慢。要说一口流利的英语至少得半年或两三年时间(吹牛广告中的例子除外)。而要让A.I.学会讲法语,只需为它装上一个说法语软件,数秒之间一个A.I.法语专家便诞生了。

另一个更难解答的问题:A.I.是否能拥有情感。目前没有人有把握回答这个问题。

于是剩下一个最可怕的问题:A.I.机器人能变得比人类更聪明,并反戈一击与人类为敌?库尔兹维尔、技术学家比尔·乔伊认为这并非不可能。霍恩在这个问题上拿不太稳。

霍恩认为虽然电脑的粗略运算能力可超过人类,但它不可能具备人类所有精细的特征,因为人类对自己的大脑拥有的许多微妙能力并不了解,更无从仿模相应软件。

库尔维兹的看法比较乐观,他认为人类在开发超级A.I.的同时,在对它们的引导和管理方面也将相应提高,因此将永远走在前面,掌握控制权。

由以上分析我们可以了解到,人工智能得到了全球从学术界到应用领域的高度重视,为了使我们的命题那更加美好,为了使我国在人工智能领域赶超国外先进行列,我们应该加大研究和投入力度,培养更多的超一流人才。

http://yyk.familydoctor.com.cn/21523/推荐阅读:数据库设计主要包括的内容是什么研究人工智能方面python用哪个版本更好

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

主要人工智能包括上一篇新闻:python中注释是什么意思下一篇新闻:Python中多重继承是什么猜你喜欢香港cn2的vps访问速度快吗香港cn2的vps适合搭建哪些网站便宜海外vps购买怎么选择便宜海外vps怎么租用便宜海外vps的ip被墙如何解决便宜海外vps选择要注意哪些问题香港vps访问速度变慢的原因有哪些怎么辨别真假香港vps企业网站怎么选择香港vps香港vps的IP为什么会被封

人工智能技术包括哪些

  人工智能是当今科技领域最热门的技术之一,也是众多业界和业界人士关注的焦点。但我们每天都在关注着人工智能的投融资行情,人工智能独角兽企业的动态,科技巨头们在人工智能领域的布局,人工智能技术研发的状况,等等,很少有静下心来去梳理,但要想对人工智能有更深入、更长远的关注,首先要对人工智能产业链有一个更清晰的了解。接下来,小编就为大家讲解一下人工智能技术包括哪些,一起看看吧。

CTAccel联捷科技00条点评咨询产品免费试用解决用户选型困难的好软件,有各维度的信息客户案例暂无合作品牌2

人工智能技术包括哪些?

大数据 

  大数据,或称为海量数据,是指需要一个全新的处理模式,以获得更强的决策力、洞察力和流程优化能力,从而使信息资产达到高增长率和多样化。即能够从各种类型的数据中快速地获取有价值的信息,是一种大数据技术。海量数据是智能升级和进化的基础,有了海量数据,海量数据就能不断模拟演练,不断向真正的人工智能靠拢。

  机器视觉、语音识别、自然语言处理、机器学习、大数据等五项技术相互补充,相互关联,同时各方面的应用也各有侧重。不难看出,这五项技术中,人工智能技术的复杂性以及技术进步所要克服的重重困难。

计算机视觉

  顾名思义,计算机视觉就是使计算机具有人眼所能观察和识别的能力,再进一步说,就是用摄像机和计算机代替人眼对目标进行识别、跟踪和测量,再进一步做图形处理,使计算机处理的图像更适合于人眼所看到或传输到仪器进行检测。

  计算机视觉是一门科学,研究与之相关的理论和技术,旨在建立人工智能系统,从图像或多维数据中获取“信息”。目前,计算机视觉主要停留在图像信息的表达和目标识别方面,人工智能则更加重视推理和决策。

  现在的计算机视觉主要应用于安全摄像机,交通摄像机,无人驾驶,无人机,金融,医疗等领域。代表公司有传统的大公司,如海康威视、大华股份等,还有商汤科技、云从科技、依图科技和旷视科技等独角兽企业,还有思岚科技、速感科技、云天励飞、Yi+、图漾信息、码隆科技、格灵深瞳、Insta360等初创企业。

语音识别 

  语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高新技术。语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别是人机交互的基础,主要解决让机器听清楚人说什么的难题。人工智能目前落地最成功的就是语音识别技术。语音识别目前主要应用在车联网、智能翻译、智能家居、自动驾驶方面,国内最具代表性的企业是科大讯飞,此外还有云知声、普强信息、声智科技、GMEMS通用微科技等初创企业。

自然语言处理 

  自然语言处理主要包括自然语言理解和自然语言产生两个方面,实现人与人之间的自然语言通信,就是使计算机既能理解自然语言文本,又能用自然语言文本表达特定的意图、思想等,前者称为自然语言理解,后者称为自然语言产生。

  在计算机科学和人工智能领域,自然语言处理是一个重要发展方向。天然语言处理的最终目的是用自然语言与计算机交流,这样,人们就可以使用他们最熟悉的语言来使用计算机,而不再需要花费大量的时间和精力去学习各种不太自然和习惯的计算机语言。

  对于某些应用而言,具有相当自然语言处理能力的实际系统已经出现,典型的例子有:自然语言界面的多语种数据库和专家系统,各种机器翻译系统,全文信息检索系统,自动文摘系统等。在国内BAT、京东、科大讯飞都有涉及自然语言处理的业务,此外还有爱特曼,出门在外询问,思必驰,蓦然认知,三角兽科技,森亿智能,义学教育,智齿客服等新兴企业涌现。

机器学习

 人工智能的核心是机器学习,机器学习让机器拥有与人一样的学习能力,专门研究计算机如何模拟或实现人的学习行为,从而获得新的知识或技能,重组已有的知识结构,使其不断提高自身的性能。

  机器学习已经得到了非常广泛的应用,例如:数据挖掘,计算机视觉,自然语言处理,生物特征识别,搜索引擎,医疗诊断,发现信用卡诈骗,证券市场分析,DNA序列排序,语音和手写识别,战略性游戏和机器人应用。我国机器学习企业有优必选、图灵机器人、李群自动化等。极智嘉科技公司,Rokid等。

  随着人工智能在各个领域的广泛应用,人工智能在与人们生活密切相关的领域得到了迅速发展,不仅为行业带来了巨大的利益,而且极大地方便了人们的生活。以上就是小编为大家带来的人工智能技术包括哪些的介绍,希望对您有帮助。

人工智能 领域六大分类

1)深度学习

 深度学习是基于现有的数据进行学习操作,是机器学习研究中的一个新的领域,机在于建立、模拟人脑进行分析学习的神经网

络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。

 

2)自然语言处理

自然语言处理是用自然语言同计算机进行通讯的一种技术。人工智能的分支学科,研究用电子计算机模拟人的语言交际过程,

使计算机能理解和运用人类社会的自然语言如汉语、英语等,实现人机之间的自然语言通信,以代替人的部分脑力劳动,

包括查询资料、解答问题、摘录文献、汇编资料以及一切有关自然语言信息的加工处理。例如生活中的电话机器人的核心技术

之一就是自然语言处理

 

3)计算机视觉​​​​​​​

计算机视觉是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适

合人眼观察或传送给仪器检测的图像。计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完

成处理和解释。计算机视觉的最终研究目标就是使计算机能像人那样通过视觉观察和理解世界,具有自主适应环境的能力。

计算机视觉应用的实例有很多,包括用于控制过程、导航、自动检测等方面。

 

4)智能机器人​​​​​​​

如今我们的身边逐渐开始出现很多智能机器人,他们具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、

嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这些机器人都离不开人工智能的技术支持。

科学家们认为,智能机器人的研发方向是,给机器人装上“大脑芯片”,从而使其智能性更强,在认知学习、自动组织、对模糊信

息的综合处理等方面将会前进一大步。

 

5)自动程序设计​​​​​​​

自动程序设计是指根据给定问题的原始描述,自动生成满足要求的程序。它是软件工程和人工智能相结合的研究课题。自动程序

设计主要包含程序综合和程序验证两方面内容。前者实现自动编程,即用户只需告知机器“做什么”,无须告诉“怎么做”,这后一步

的工作由机器自动完成;后者是程序的自动验证,自动完成正确性的检查。其目的是提高软件生产率和软件产品质量。

自动程序设计的任务是设计一个程序系统,接受关于所设计的程序要求实现某个目标非常高级描述作为其输入,然后自动生成一

个能完成这个目标的具体程序。该研究的重大贡献之一是把程序调试的概念作为问题求解的策略来使用。

 

6)数据挖掘

 数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。它通常与计算机科学有关,并通过统计、在线分析处

理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。它的分析方法包括:分

类、估计、预测、相关性分组或关联规则、聚类和复杂数据类型挖掘。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇