2023年人工智能领域发展七大趋势
2022年人工智能领域发展七大趋势
有望在网络安全和智能驾驶等领域“大显身手”
人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。
美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。
增强人类的劳动技能
人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。
比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。
总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。
更大更好的语言建模
语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。
2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。
众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。
网络安全领域的人工智能
今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。
随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。
人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。
人工智能与元宇宙
元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。
人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。
低代码和无代码人工智能
2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。
美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。
自动驾驶交通工具
数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。
特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。
此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。
创造性人工智能
在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。
2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)
【纠错】【责任编辑:吴咏玲】人工智能产业的应用场景和发展模式
1、基础层面:主要有AI芯片、传感器、云计算、减速器等四类核心产品
(1)AI芯片——主要包括GPUFPGA等加速硬件与神经网络芯片、为深度学习提供计算硬件,是重点底层硬件。
(2)传感器——主要对环境、动作、图像等内容进行智能感知,是人工智能的重要数据输入和人机交互硬件。
(3)云计算/大数据——主要为人工智能开发提供云端计算资源和服务,以分布式网络为基础,提高计算效率,包括数据挖掘、监测、交易等,为人工智能产业提供数据的收集、处理、交易等服务。
(4)减速器——作为一种相对精密的机械,主要为人工智能产品降低转速,增加转矩,以满足不同场合下的工作需要,是重要的底层硬件。
2、技术层面:主要有计算机视觉、自然语言处理、语音识别、机器学习等四类核心技术
(1)计算机视觉——包括静动态图像识别与处理等,对目标进行识别、测量及计算。主要应用在智能家居、语音视觉交互、ARVR、电商搜图购物、标签分类检索、美颜特效、智能安防、直播监管、视频平台营销、三维分析等场景。
(2)自然语言处理——基于数据化和框架化,研究语言的收集、识别理解、处理等内容。主要应用在知识图谱、深度问答、推荐引导、机器翻译、预料处理、模型处理等场景。
(3)机器学习——主要以深度学习、增强学习等算法研究为主、赋予机器自主学习并提高性能的能力。主要应用在压缩技术、安防、数据中心、智能家居、公共安全等场景。
(4)语音识别——通过信号处理和识别技术让机器自动识别和理解人类口述的语言,并转换成文本和命令。主要应用在智能电视、智能车载、电话呼叫中心、语音助手、智能移动终端、智能家电等场景。
3、应用层面:主要分为智慧城市、智慧生产、智慧生活三大类应用场景
(1)智慧城市:智慧城市涉及到交通、教育、医疗、零售等与用户生活息息相关的场景,把这些场景集合在同一平台上,增强用户使用习惯将会增强,粘性就会提升。各类场景互联互通,最终达到提升城市运维效率、提升资源管理效率、提升居民生活品质的目的。
典型智慧城市应用场景
(2)智慧生产:形成产品生产导向向需求生产导向转变的智慧生产流程体系
(3)智慧生活:涵盖智慧居住、饮食、健康监护管理、家庭管理等应用场景
人工智能属于面向未来的新事物,应用场景是人工智能发展的主要驱动力。下面简要分析医疗、交通、教育、金融、生活、零售、安防、园区、环保、政务等10个细分领域的人工智能应用场景及商业模式。
典型应用1:AI+医疗——中国医疗人工智能处于风口期,医学影像和疾病风险管理为热点
智能医疗,从技术细分角度看,主要包括使用机器学习技术实现药物性能、晶型预测、基因测序预测等;使用智能语音与自然语言处理技术实现电子病历、智能问诊、导诊等;使用机器视觉技术实现医学图像识别、病灶识别、皮肤病自检等。从应用场景来看,主要有虚拟助理、医学影像、辅助诊疗、疾病风险预测、药物挖掘、健康管理、医院管理、辅助医学研究平台等八大AI+医疗市场应用场景,其中医学影像和疾病风险管理为热门领域。
典型应用2:AI+交通——中国市场规模庞大,形成四类无人驾驶主流商业产品
智能驾驶其涉及的领域包括芯片、软件算法、高清地图、安全控制等。目前主要商业产品有无人驾驶出租车、无人驾驶卡车、无人巴士和无人驾驶送货车;无人驾驶车辆将设计拥有更高的安全性且能极大地降低人力成本,成为诸多相关企业的关注的焦点。
(1)无人驾驶出租车:人驾驶出租车因为其安全性更高,因此被很多汽车服务业关注,目前,无人驾驶出租车已经处于测试阶段。2015年软件公司NuTonomy在新加坡开始无人驾驶出租车测试,计划2018年完成整个无人驾驶服务的商业化
(2)无人驾驶卡车:无人驾驶卡车能有效降低司机因长时间、长距离运输而疲惫导致的安全事故。2016年11月,中国福田汽车联合百度在上海发布了国内首款无人驾驶卡车。
(3)无人巴士:固定的行驶路径、固定的停靠车站,使得无人驾驶巴士成为解决公众出行的新办法。2017年10月,百度联合金龙客车合作生产无人公交车,预计在2018年实现整车量产。
(4)无人驾驶送货车:货物运输最后一公里为运输行业的瓶颈,无人送货车能够全天候工作,加大增加工作效率。2017年7月,英国杂货电商公司Ocado在伦敦东部测试了无人送货车。
典型应用3:AI+生活——以IoT为基础的家居生态圈,主要有八大市场热点领域
智慧生活是一个以IoT为基础的家居生态圈,其主要包括智能照明系统、智能能源管理系统、智能视听系统、智能安防系统等。市场热点集中在硬件支持、智慧场景应用、产品、平台等方面,主要有机器学习、无线模块、智能家庭平台、智能家居娱乐系统、家居安防、健康家庭医疗系统等智能家居市场八大热点。
典型应用4:AI+金融——智能金融变革金融业务全流程
AI技术赋能金融领域,主要包括智能风控、智能投顾、智能投研、智能支付、智能营销和智能客服等。从金融角度来讲,智能的发展依附产业链涉及资金获取、资金生成、资金对接到场景深入的资金流动全流程,主要应用于银行、证券、保险、p2p、众筹等领域。
典型应用5:AI+教育——千亿庞大市场规模,三大应用主体与十三大应用场景
智能教育可分为学习管理、学习评测、教学辅导、教学认知思考四个环节,全面覆盖“教、学、考、评、管”产业链条,并已在幼教、K12、高等教育、职业教育、在线教育等各类细分赛道加速落地。围绕教育机构、教师、学生等三大主体,智能教育产品主要应用于教育评测、拍照答题、智能教学、智能教育、智能阅卷等十三大场景。
典型应用6:AI+零售——实现零售购物的无人化、定制化、智能化,提升购物体验
AI+零售将实现零售购物的全面无人化、定制化、智能化,实现消费者购物体验的全面升级。典型的应用场景主要有智能提车和找车、室内定位及营销、客流统计、智能穿衣镜、机器人导购、自助支付、库存盘点等场景。
(1)智能停车和找车。为智能停车模块,帮助用户解决“快速停车及找车”的痛点。如阿里巴巴推出的喵街App中包含智能停车及找车模块,目前已经应用于几十家购物中心。
(2)室内定位及营销。在用户购物及浏览过程中快速根据用户需求、物品位置实现精准匹配。如北京大悦城等商场已经实现了室内导航及定位营销,iBeacon的技术解决方案颇受青睐。
(3)客流统计。实时统计客流、输出特定人群预警、定向营销及服务建议。如图普科技,利用开发客流统计解决方案,为天佑城的活动策划和招商部门提供客观数据佐证。
(4)智能穿衣镜。为用户提供个性化的定制服务,增加用户实际购物体验。智能虚拟穿衣镜已经在Lily、马克华菲等诸多品牌门店中部署。
(5)机器人导购。增加用户购物过程的趣味性,从而提升销售。如零售机器人“豹小贩”实现从“人找货”到“货找人”的转变,自动走到人流量大的地方,主动推荐商品。
(6)自助支付。收银服务机提供屏幕视频、文字、语音三种指引方式,引导自助支付。如国内阿里的刷脸支付尝试。
(7)库存盘点。库存盘点机器人替代仓库管理员,提升工作效率。如德国MetraLabs推出机器人Tory,为德国服装零售商AdlerModemrkte提供库存盘点服务。
典型应用7:AI+安防——平安城市、园区、校园、家居、金融等一体化智能安防建设
智能安防是人工智能最先大规模应用,并持续产生商业价值的领域,主要依托低速无人驾驶、环境感知、目标检测、物体识别、多模态交互等技术,实现目标跟踪检测与异常行为分析,视频质量诊断与摘要分析,人脸识别与特征提取分析,车辆识别与特征提取分析等,实现平安城市、园区智能安防、校园智能安防、家居智能安防、金融智能安防等一体化智能建设。
(1)平安城市——开展城市监控报警联网系统建设,公安机关建监控系统,省级监控平台,地市级平台,实现城市智能公安联网监测检查。
(2)园区智能安防——工业园区安防系统由视频监控系统、入侵报警系统、门禁管理系统、电子巡更系统、停车管理系和综合管理平台等构成。
(3)校园智能安防——主要构建透明食堂监控、校园车辆卡口系统、手机移动监控等系统,实现技防各子系统高度集成联动、海量数据智能化分析并自动导出,实现安保工作基础平台信息化。
(4)家居智能安防——家居安防系统主要包括报警控制主机、无线传感器网络节点两大模块,负责对采集的信号进行分析和处理,以及安防情况进行远程监控。
(5)金融智能安防——金融安防系统包括技术防范系统和实体防护设施,技术防范系统主要包括视频安防监控系统、出入口控制系统、入侵报警系统和监听对讲系统等,实体防护设施主要包括专用门体、防弹复合玻璃、提款箱、运钞车、保管箱和ATM自动柜员机等。
典型应用8:AI+园区——实现物业硬件互联信息化、服务智慧化、产业智能化
在智慧园区场景下,从硬件设施到系统软件,从智慧物业到智慧服务,实现物业硬件信息化互联,服务智慧化、产业智能化。园区形成微型智慧生态,物业信息化互联,并为园区企业提供智慧化办公生产相关服务,吸引智慧产业入驻发展。
(1)园区互联信息化。园区安防、管网、能源等硬件设施互联互通,信息化自动化。场景构建主要打造智能化信息系统、智能门禁系统,集成园区智能硬件系统。
(2)园区服务智慧化。为园区企业提供智慧化科技创新、办公智慧化、园区生活智慧化相关服务。商务办公智慧化场景构建主要依托智能会议系统、智能客服系统、办公场景语音系统实现;科创孵化智慧化场景构建主要打造智慧产业孵化器。
(3)产业发展智能化。集聚信息技术、智能制造企业,推动产业化升级和智慧城市发展。场景构建主要依托导入相关产业资源,形成产业集聚。
典型应用9:AI+环保——实现环境监测实时动态化、环保装备智能化、管理智慧化
智慧环保场景下,从监测到管理,从环保硬件到服务平台软件,实现环保装备智能化、环保管理智慧化,并融合机器学习、机器人、人机交互、智能语音、大数据等技术,在智能环保机器人、环保服务平台领域发力,构建场景新生态。
典型应用10:AI+政务——打造政务部门数据集成共享,实现政务决策IT化
(1)城市全景精细呈现。打造GIS地理信息技术平台,依托智能化城市基础设施建设,展现城市数据。
(2)部门数据融合互通。引入信息技术集成服务商,集成市政、警务、交通、电力、等部门数据库系统,开辟数据接口,实现数据融合互通。
(3)智能化统计分析。构建城市政务管理云服务平台,实现智能化数据分析,为城市智慧化精细化管理提供决策依据和建议。
(4)对话数据,交互查询。建设统一查询系统,引入系统开发服务商,设计实现交互查询的查询系统,非隐私数据可民用开放。
(5)可视化部署、指挥调度。通过数据可视化云平台打造,实现突发事件应急联动,有效结合各部门数据资源,达到高效决策、部门联动、信息共享的指挥调度系统。
根据东滩产业内参《人工智能产业投资趋势及发展模式》的研究,中国人工智能产业空间集聚模式主要呈现智慧城市、产业集聚区/创新区、产业小镇/产业园区等三种形式。智慧城市建设、产业集聚区/创新区、产业小镇/产业园区三个层面互为促进,成为推动人工智能产业发展的主要路径。
(1)智慧城市
通过打造人工智能创新应用示范区/产业集聚区/小镇/园区等形式,形成深度应用场景,建设应用示范项目;促进人工智能在智慧政务、智慧交通、智能医疗、智能健康和养老等领域深化应用。典型的案例有上海、杭州、北京、深圳等智慧城市的建设。
(2)产业集聚区/创新区
依托区域较好的智能制造基础及信息技术优势,集聚人工智能、大数据、云计算、区块链、VR/AR等数字产业项目,将技术和应用扩散至周边区域,与其他产业交叉融合发展。典型的案例有上海张江人工智能岛、杭州高新区(人工智能)优势产业集聚地等。
(3)产业小镇/产业园区
作为大型经济开发区里的专业园区,或是以人工智能产业为特色的产业小镇,与周边科技、制造、新一代信息技术等产业协同发展。典型案例有苏州工业园人工智能产业园、杭州人工智能产业园、沧州高新技术产业开发区人工智能科技产业园等。
案例链接1:智慧上海
打造六大人工智能创新示范区
上海将着力打造6个人工智能创新应用示范区,形成60个深度应用场景,建设100个以上应用示范项目。构建“一带一区多点联动”的产业空间布局,包括“徐汇滨江-漕河泾-闵行紫竹”人工智能创新带、“张江-临港”人工智能创新承载区、华泾北杨人工智能特色小镇、上海松江洞泾人工智能特色产业基地。
上海人工智能产业空间格局
专业园区——上海张江人工智能岛
项目概况:上海张江人工智能岛位于张江科学城中区,占地面积6.6万平方米,建筑面积10万平方米,由张江集团负责开发运营的人工智能产业新标杆。产业方向以语音识别、视觉识别技术世界领先,信息处理、智能监控、生物特征识别、工业机器人、无人驾驶为主。目前吸引了包括微软、阿里巴巴、同济大学、云从科技在内的跨国巨头、BAT龙头、科研院所和独角兽企业入驻园区。成为上海市首批人工智能应用场景,并成为唯一的“AI+园区”实施载体。
产业发展策略:
(1)基金政企合作,打造开放创新平台。与龙头企业共建孵化器、共设投资基金,并搭建集创新转型工坊、创新实验室、项目实战空间、应用演进与运营四维一体的人工智能“能力开放工场”,塑造产业垂直生态。
(2)集聚世界创新大脑,引领高端发展。加强前瞻性研究,集聚世界一流科学家、学者开展人工智能基础理论、核心算法以及脑科学、基础系统等方面的基础研究,实现高端引领发展。
(3)技术与场景联合试验,助推远期产品落地。围绕智能安防、语音识别、机器视觉、深度学习等人工智能新技术,与应用场景进行深度融合,并在岛上进行联合试验和交互体验,并将技术和应用扩展至整个张江科学城。
典型案例2:智慧杭州
打造十大人工智能应用示范区
杭州人工智能产业发展规划建设10个人工智能应用示范园区和特色小镇,构建数据驱动、人机协同、跨界融合、共创分享的智能经济生态圈。构建“一廊一区多点联动”的产业空间布局。打造杭州城西科创大走廊,构筑杭州高新区(滨江)优势产业集聚地,人工智能产业基地多点布局。
专业园区——杭州人工智能产业园
项目概况:位于杭州高新技术开发区滨江区江虹路,与阿里巴巴、浙江大学等比邻而居,规划面积3.43平方公里,总建筑面积8万平方米,由四幢主体建筑合围而成。项目定位于打造集专业化服务功能、创新型孵化功能、多资源聚合功能、产学研转化功能于一体的人工智能产业新平台,成为省级人工智能技术研发、应用、产业化的示范基地,重点打造产业资源交换、孵化研发、传媒、生活等四大中心。以人工智能为特色,覆盖大数据、云计算、物联网等业态,集中力量招引机器人、智能可穿戴设备、无人机、虚拟/增强现实、新一代芯片涉及研发等领域。
产业发展策略:打造全球创客中心人工智能集聚区,广泛集聚以人工智能为代表的智慧产业创客极客,发挥创业创新集聚效应,在引领区域创新上发挥重要的作用与市场影响力,着力构建“一主三化五平台”产业发展服务体系及综合运营管理服务体系。
(1)一大生态——打造有利于人工智能产业快速发展的生态系统;
(2)三化产业载体——人工智能技术成果化(孵化器)、人工智能成果产业化(加速器)、人工智能产业资本化(倍增器);
(3)五大发展平台——产业产学研合作平台、产业技术成果交易平台、产业公共服务平台、产业企业家交流平台、产业投资发展平台;
(4)运营管理体系——建立人工智能产业联盟,与投资行业协会、国内知名投资机构、金融服务机构、投融资服务组织等建立紧密的合作关系,为创新创业者提供全面专业的资本服务。
总的看来,中国人工智能产业集聚创新发展主要体现在四方面,即集中展示AI在特点场景下的纵向应用,如:学校、医院、工厂、家庭等,整合各类AI技术,打造整体式的解决方案;体现AI在特定行业中的创新应用,如:交通、政务、安防、环保、教育、金融等行业,推动人工智能对行业产生显著的带动作用;通过AI跨领域跨行业的集中应用,如:园区、社区等,实现人工智能对区域的全面赋能;通过龙头企业的带动,搭建AI产业发展开放平台,集聚产业链上下游资源,实现区域人工智能产业的协同创新发展。
▌说明:东滩顾问·廖义桃原创文章,转载请注明出处!
▌编辑:波波
▌关注:请搜索“东滩顾问”公众号关注我们哦!返回搜狐,查看更多
生活中 人工智能应用场景有哪些
智能交通系统的应用范围:包括机场、车站客流疏导系统,城市交通智能调度系统,高速公路智能调度系统,运营车辆调度管理系统,机动车自动控制系统等。
无人驾驶汽车:特斯拉。
3、智能停车场
智能车牌识别系统主要是由:摄像头、控制程序、嵌入式硬件和停车栏杆控制系统组成。
港珠澳大桥珠海口岸配套的停车场,采用人工智能识别、导航寻车系统。包括停车场+车牌识别/卡片系统、视频车位引导+反向寻车+线上打折及缴费系统等,三个区域停车场共计18个车道,约2500个车位。由智慧城市公司打造的智慧停车系统,整合了智能硬件、视频识别、车位引导、室内定位、云平台等技术,实现了便捷停车、线上缴费、车位引导、自助寻车、动态导航等功能。
4、快递。
智能快递分捡系统、智能快递柜。
二、安全系统
1、安防监控
智能门禁系统:用人脸识别、指纹识别开门。
2、安检识别
智能安检仪:基于银河水滴自主研发的深度结构表达模型,通过大量的样本学习、训练,自动识别液体、管制刀具、枪支等违禁品并报警,辅助安检人员进行快速准确的违禁品识别,提升安检速度。
对地铁轨道与隧道进行智能巡检。该检测车打破国外技术垄断,拥有完全自主知识产权,集成钢轨及锁扣缺陷检测、钢轨内部缺陷检测、车辆限界检测、隧道环境异常检测、接触网缺陷检测、轨距检测等六大功能。
三、社会交流
1、识别系统:人脸识别、语音识别、指纹识别。
2、人机互动:图灵机器人、棋牌机器人、主持机器人、语音翻译机器人。
3、智能创作:新闻稿件写作、音乐、绘画。
四、服务系统
1、家庭服务早教机器人、儿童乐高机器人、伴侣、早教、家务、马桶、医疗保健、远程监控、盲人导航。
2、共公服务主要运用于银行、餐厅、博览馆、超市、机场等公共场所的迎宾服务,高速公路交警机器人、收费机器人。
3、智能家居
炒菜机器人、扫地僧机器人、家庭背物机器人、室内送物机器人。
五、工业机器人
1、智能检测
人工智能就是神经网络,AI芯片就是神经网络芯片。人工智能整体核心基础能力显著增强,智能传感器技术产品实现突破,设计、代工、封测技术达到国际水平,神经网络芯片实现量产并在重点领域实现规模化应用,开源开发平台初步具备支撑产业快速发展的能力。
智能检测识别信息技术,涉及光电检测、核磁共振、红外紫外、生物识别、基因检测诊断等专业技术,广泛应用于工业、交通、金融、军工、公共事业、医疗、环境监测等领域。
智能识别及分析技术的主要应用方向,包括高速机器视觉、数据智能分析等。机器视觉技术是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。智能分析是人工智能的重要分支。
2、自动化机器人
工程挖掘机器人、水下机器人、航拍无人机、农业喷淋农药无人机,装卸机器人、水下打捞机器人、生命探测机器人、地下钻井机器人。
3、步态识别
步态识别,是指通过身体体型和行走姿态来分析人的身份,其物理基础是每个人不同的生理结构,如头型、腿骨、肌肉特点、步幅等。
目前,银河水滴拥有全球最先进的步态识别技术和最大的步态数据库。
与指纹识别、人脸识别、虹膜识别比较,步态识别最大的好处就是非接触、远距离。
中国现在已经有3000万个摄像机,并且每年增长20%,因此,在安防、安全监控方面大有作为。
当出现远距离、非配合、全视角(只有侧面和背面)、光线弱、有意遮挡面部、多次换服装等情况时,用步态识别技术进行搜检几乎是最优或唯一的选择。
六、智能围棋手
阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发,其主要工作原理是“深度学习”。
2016年3月份,AlphaGo与李世石的那场围棋人机大战,在科技界和围棋界产生了深远的影响,引爆了人工智能的火花。
2017年5月其与排名第一的世界围棋冠军柯洁的对战,又将人工智能技术推到了普通公众视线中。
七、智能教育
机器人保育员、机器人讲课员、机器人教师。
八、智能视觉
航拍、VR头盔,实时识别出街景视频中的人、自行车、公交车、卡车等。
九、智能穿戴
智能手机、智能眼镜、智能背包。
十、仿真机器人
如果采用仿人通用机器人与自动化设备配合的方式,那么实现高度无人化的难度和成本就会大幅度降低。
如果仿真肌肉、仿真手脚、仿真大脑等技术开发出来了,那么高度无人化社会就会到来,所以AI的另一个重要应用方向就是仿人通用机器人。
如果仿人通用机器人学习了驾驶技术,那么现在的汽车不经任何改动就可以实现无人(机器人)驾驶。返回搜狐,查看更多
什么是人工智能人工智能的应用有哪些
什么是人工智能?人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能的应用有哪些实际应用:机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。…研究范畴…自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式…应用领域…智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂等
应用领域语音识别领域。除了大家已较为熟悉的科大讯飞输入法,一家叫作云知声的人工智能公司,最近开发了智能医疗语音录入系统,采用了国内面向医疗领域的智能“语音识别”技术,能实时准确地将语音转换成文本。这项应用不仅能避免复制粘贴操作,增加病历输入安全性,而且可以节省医生的时间。目前,一些医院已应用了这一技术。
金融智能投资领域。所谓智能投(资)顾(问),即利用计算机的算法优化理财资产配置。目前,国内进行智能投顾业务的企业已经超过20家,其面向的服务群体,就是那些并不十分富有、却有强烈资产配置需求的人群。
中国的BAT(百度、阿里、腾讯)都已涉足人工智能。2016年,“百度大脑”项目正式启动,致力于打造综合的人工智能平台;阿里巴巴推出了人工智能项目“ET”,未来将具备感知能力,并在交通、工业、健康等领域输出决策;腾讯已将人工智能的相关技术,应用于QQ、金融、微信业务板块。
而其他诸多企业都在开发人工智能的“对话机器人”(相当于“虚拟助理”),如微软的“小娜”、谷歌的“Allo”、苹果的Siri、百度的“度秘”等。
目前人工智能技术,主要有应用于哪些领域
1、虚拟个人助理
经常使用手机的你一定对GoogleNow和Cortana这些虚拟个人助理不会陌生。只要你说出命令,他们就会帮助你找到有用的信息。例如,你可以问“最近的川菜馆在哪儿?”,“我今天的日程有什么安排?”,“提醒我八点钟给某某某打电话”,然后,虚拟个人助理就可以通过查询信息,然后向手机中的其他app发送对应的信息来完成指令。
这一看似简单的过程实际上就有人工智能的介入,并且扮演着重要的角色。在语音唤醒虚拟个人助理的时候,人工智能会收集你的指令信息,利用该信息进一步识别你的语音,并为你提供个性化的结果,最终会让你觉得越来越好用,达成越用越好用的结果。微软表示,自家的Cortana(中文名叫小娜)可以“不断了解用户”,最终将培养出预测用户需求的能力。
2、智能汽车
你可能还没看到有人上班一边开车,一边看报纸,但自动驾驶汽车确实越来越接近现实。Google旗下的自动驾驶汽车项目和特斯拉的“自动驾驶”功能是最新的两个例子。自动驾驶技术毫无疑问是基于人工智能之上的技术,并且目前发展速度极为迅猛。从英特尔今年年初收购以色列自动驾驶汽车公司Mobileye可见一斑。
今年早些时候华盛顿邮报还有过报道,称Google开发了一种算法,能让自动驾驶汽车像人类一样学习驾驶技术。由于人工智能可以学会玩简单的视频游戏,Google让自动驾驶汽车上路前也测试相同的智能游戏。整个项目的构思在于,汽车最终能够“认清”面前的道路,并根据它所看到的内容做出相应的决策,帮助它在行驶的过程中学习经验。虽然特斯拉的自动驾驶仪功能没有这么先进,但它已经上路使用,同时这也表明此类技术肯定会蓬勃发展。
3、在线客服
现在,许多网站都提供用户与客服在线聊天的窗口,但其实并不是每个网站都有一个真人提供实时服务。在很多情况下,和你对话的仅仅只是一个初级AI。大多聊天机器人无异于自动应答器,但是其中一些能够从网站里学习知识,在用户有需求时将其呈现在用户面前。
最有趣也最困难的是,这些聊天机器人必须擅于理解自然语言。显然,与人沟通的方式和与电脑沟通的方式截然不同。所以这项技术十分依赖自然语言处理(NLP)技术,一旦这些机器人能够理解不同的语言表达方式中所包含的实际目的,那么很大程度上就可以用于代替人工服务。
4、购买预测
如果京东、天猫和亚马逊这样的大型零售商能够提前预见到客户的需求,那么收入一定有大幅度的增加。亚马逊目前正在研究这样一个的预期运输项目:在你下单之前就将商品运到送货车上,这样当你下单的时候甚至可以在几分钟内收到商品。毫无疑问这项技术需要人工智能来参与,需要对每一位用户的地址、购买偏好、愿望清单等等数据进行深层次的分析之后才能够得出可靠性较高的结果。
虽然这项技术尚未实现,不过也表现了一种增加销量的思路,并且衍生了许多别的做法,包括送特定类型的优惠券、特殊的打折计划、有针对性的广告,在顾客住处附近的仓库存放他们可能购买的产品。这种人工智能应用颇具争议性,毕竟使用预测分析存在隐私违规的嫌疑,许多人对此颇感忧虑。
5、音乐和电影推荐服务
与其他人工智能系统相比,这种服务比较简单。但是,这项技术会大幅度提高生活品质的改善。如果你用过网易云音乐这款产品,一定会惊叹于私人FM和每日音乐推荐与你喜欢的歌曲的契合度。从前,想要听点好听的新歌很难,要么是从喜欢的歌手里找,要么是从朋友的歌单里去淘,但是往往未必有效。喜欢一个人的一首歌不代表喜欢这个人的所有歌,另外有的时候我们自己也不知道为什么会喜欢一首歌、讨厌一首歌。
而在有人工智能的介入之后,这一问题就有了解决办法。也许你自己不知道到底喜欢包含哪些元素的歌曲,但是人工智能通过分析你喜欢的音乐可以找到其中的共性,并且可以从庞大的歌曲库中筛选出来你所喜欢的部分,这比最资深的音乐人都要强大。电影推荐也是相同的原理,对你过去喜欢的影片了解越多,就越了解你的偏好,从而推荐出你真正喜欢的电影。
6、智能家居设备
许多智能家居设备都拥有学习用户行为模式的能力,并通过调整温度调节器或其他设备来帮助节省资金,不仅便利、还节能。例如,屋主外出工作,设备自动打开烤箱,无须等到回家再启动,这一点非常方便。人工智能知道主人什么时候回家,就能相应的提前调整温度,而出门在外时则自动关闭设备,这样可以省下不少钱。
另一项家居设备也有人工智能的身影——照明。通过设置默认值和偏好,设备可根据你的位置和你正在做的事调整房子(内部和外部)周围的灯光。例如,看电视就暗一些,烹饪时较明亮,吃饭则亮度适中。智能家居的AI,只要你敢想,没有什么做不到。
7、大型游戏
游戏AI可能是大多数人最早接触的的AI实例。从第一款大型游戏到现在,AI已经应用了很长时间。最早期的AI甚至不能称为AI,只会根据程序设定进行相应的行为,完全不考虑玩家的反应。不过最近几年里,游戏AI的复杂性和有效性却迅猛发展。现在大型游戏中的角色能够揣摩玩家的行为,做出一些难以预料的反应。
像《孤岛惊魂》(FarCry)和《使命召唤》(CallofDuty)这种第一人称射击游戏也能很好地利用AI。敌人可以分析玩家的环境,追踪可能生存的目标。敌人也会找掩护,追踪声音,侧翼攻击,以增加胜利的可能。虽然就AI技术本身而言,在游戏中的应用有点大材小用,但是由于行业市场巨大,每年都有大量精力和资金投入其中来完善这种技术。
8、欺诈检测
你有没有收到过电子邮件或信件——询问你是否用信用卡进行了某些产品支付?如果用户的帐户存在被欺诈的风险,银行会发送此类信件,希望在汇款前确认用户个人已同意支付。人工智能通常部署来监控这种欺诈行为。
一般来说,先将大量欺诈和非欺诈性交易样本数据输入电脑,然后命令电脑分析数据,发现交易中不同类别的情况。经过足够的训练,电脑系统就将能够利用所学和种种迹象辨认出欺诈性交易。
9、安全监控
随着人们对于安全问题越来越重视,监控摄像头也越来越普及,在方便了场景记录和重现之外,也出现了新的挑战:监控摄像头所拍摄的内容仍然需要人工监测。用人力来同时监控多个摄像头传输的画面,非常容易疲倦,同时也容易出现发现不及时或者判断失误的情况。因为,非常有必要在监控摄像头系统中引入人工智能技术,借助人工智能来进行24小时无间断的持续监控。例如,利用人工智能来判断画面中是否出现异常人员,如果发现可以及时通知安保人员。
当然,目前能够实现的技术还十分有限。比如,电脑看到闪光的颜色,可能表明有人入侵或在校园周围游荡,但是识别的精确度仍然有待力高。另外,由于当前技术的限制,识别特定行为依旧比较困难,比如商店中的小偷小摸行为。但在相信在不久的将来,这种技术的改善绝非难事。
10、新闻生成
人工智能程序可以写新闻?听起来似乎很不可思议,但是这就是现实!根据美国Wired杂志统计,美联社,福克斯和雅虎都已经在利用人工智能来编写文章,例如财务摘要、体育新闻回顾和日常报道。目前,人工智能还没有涉及调查类文章,但是如果内容不是太复杂、相对简单,人工智能完全可以搞定。从这个角度来说,电子商务、金融服务、房地产和其他数据驱动型行业都可以从人工智能中受益良多。
当然,现阶段的人工智能还做不到特别完善,在录入数据填入后仍然需要一个人来调整内容,最终形成一篇完整、有条理的文章。但是,这个构想本身已经十分接近实现了。未来,也会有越来越多报道这样生成,完全实现全自动化的记者只是一个时间问题。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:人工智能需要掌握那些知识点,主要应该看些什么书籍?http://www.duozhishidai.com/article-12321-1.html人工智能学习路线“六步走”http://www.duozhishidai.com/article-5418-1.html在人工智能学习训练中,会遇到哪些问题?http://www.duozhishidai.com/article-2389-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站