博舍

人工智能未来的挑战与发展 人工智能面临的困难有哪些呢作文

人工智能未来的挑战与发展

原标题:人工智能未来的挑战与发展

当前,在全球人工智能发展的浪潮中,中国在人工智能领域取得了令人瞩目的成绩。在新一轮生产力革命人工智能带动了人类分工深化的历史趋势,应认清其中的机遇与挑战。

挑战

1、对中国来说,在基础科学、关键技术研发上一旦受制于人,面临生产力重新落后的危险。

人工智能目前处于发展中阶段,几乎每一类发展中事物的共性都是缺乏探索经验。人工智能会影响就业结构,这是由于它对人类工作的替代性。从某些程度上,它能够促使劳动者提高自身素质,适应新的就业大环境。但是人工智能发展如果太过迅猛,很可能会导致劳动者在猝不及防的状况下失业。

2、对全球来说,机器智能一旦在某些方面超过人类,带来不可测、不可控的风险。

人工智能面临技术失控问题,这个早就是社会热点了。任何科学技术的发展最大的威胁就是超出人类的控制,如果人工智能具备独立思考的能力,形成属于自己的文明,反客为主,那不仅与人工智能发展理念相悖,人类的未来也将不再乐观。人工智能对人类的潜在威胁,被科学家广泛议论,目前仍待商榷。

3、人工智能作为一个处于发展中的新兴技术,到目前为止还不够成熟。例如,我们目前所能看到的大部分系统还停留在规则的引擎阶段,人工智能最大的优势在于深度学习,需要大量的案例和经验来对人工智能系统进行训练,这就需要相关的人才,但就当前来看,精通软件的工程师不了解保险行业日新月异的规则,而企业又缺少精通人工智能的软件工程师。

4、在各大领域,诸如智能顾问、产品精准营销等人工智能技术,都需要海量的用户数据。而对于新成立的初创企业来说,其所拥有的数据远远不够应用层面所需要的量。此外,由于数据一直以来都被认为是核心机密,共享性较弱,即便是从已经有多年业务历史的传统公司层面看,依旧存在着割裂性的问题,几乎没有哪家公司拥有完整的用户数据。

发展

人工智能已经发展了很长时间,它在未来的发展问题是该学科有关研究人员讨论的重点,从现阶段的发展情况来说,未来人工智能可能会朝着以下几个方向发展。

1、更好地为人类服务

人工智能本质上是模拟人的意识、思维的信息过程。虽然未来的机器人能够像人类一样思考,但总体而言,并不能完全与人类的思维保持一致,人工智能主要还是为人类服务为主,主动将意向客户分类,后方便我们去跟进。在这种情况下,人类需要树立终身学习的思想,不断充实自己,以免过分依赖于人工智能。

2、与人类平等

一旦人工智能具有人类的基本特征,它们拥有自己的感情,人类就不能将其作为自己的所属物,肆意地要求人工智能为自己提供各种服务,与人类相比,人工智能的学习能力非常强,人类受到各种因素的影响,存在着许多消极心理,比如懒惰、依赖性强,在这种情况下,人类比较容易被人工智能淘汰,人类在发展过程中需要付出更多的努力,不断挖掘自身的潜力,才能够维持与人工智能的平等地位。

3、毁灭人类

任何科学技术的发展都具有一定的风险,人工智能发展过程中可能会出现无法预测的质变,导致人工智能拥有与人类完全一致的思维方式,超过人类的智慧,易出现违反人类道德但与逻辑相符的情况。这必然会对人类的发展带来严重的危机。除此之外,还有一种可能,即人类依赖于人工智能的便利,产生严重的依赖心理,最终导致许多基本的生产能力丧失,导致人类毁灭。返回搜狐,查看更多

责任编辑:

人工智能在医疗行业应用面临的五大挑战

认清在医疗保健中实施人工智能(AI)所面临的挑战,可以帮助医疗保健提供者制定适当的策略并以无风险的方式快速实施创新的解决方案。

人工智能正在以多种方式改变医疗保健。医疗保健组织正在实施用于机器人手术、护理帮助、准确诊断和精密药物的AI。实际上,毕马威会计师事务所(KPMG)进行的一项调查显示,有53%的高管认为医疗保健在采用AI方面处于领先地位。

尽管在采用AI方面处于领先地位,但并非所有医疗保健组织都已实施AI。部署AI解决方案时面临的挑战仍使一些医疗保健组织无法充分利用AI技术。在这种情况下,医疗保健企业有必要了解医疗保健及其解决方案中的AI挑战。

解决医疗保健中的人工智能挑战

要解决医疗保健中AI实施方面的挑战,必须意识到这些挑战。一旦卫生组织意识到了挑战,便可以更好地找到克服挑战的方法。

医疗保健中的5种人工智能实施挑战

收集数据

人工智能系统需要大量数据。并且收集的数据必须来自可靠的来源。从不可靠的来源收集数据可能会对AI解决方案的输出产生不利影响。

因此,为了获得准确的输出,医院必须从可靠的来源收集培训数据。他们可以从患者的历史和当前病历中找到可靠的数据,因为医疗保健中的每个患者都是他们自身的来源。医疗保健组织还需要为机器学习算法准备准确的数据集。但是数据准备方面的挑战通常很难克服。

因此,毫不奇怪的是,有96%的组织因为成功实现AI而遇到数据相关的问题阻碍。为了准备精确的数据集,医院需要尽早确定所需的结果并相应地准备数据。医疗保健组织还需要确保数据与构建过程一致。他们可以通过清除数据以使丢失的值最小化并消除不相关的数据来使其数据兼容。

保持合规

每个患者都是可靠的数据来源。但是,如果这些来源拒绝提供其数据来构建AI系统怎么办?没有人希望他们的数据被用于非法目的。为了避免这种情况并在患者之间建立信任,政府和领先的医疗保健组织制定了每家医院都必须遵守的法规。

例如,通过了《医疗保健信息携带和责任法案》(HIPAA),以强制执行机密处理患者数据的标准。另一个例子是《经济和临床健康卫生信息技术法案》(HITECH),该法案旨在标准化当今数字时代中电子健康记录(EHR)的维护。这种监管行为使患者可以随意共享其数据,这些数据可用于训练AI系统。

医疗保健组织还需要确保收集的数据受到保护,以增强隐私和安全性。但是,在当今世界,我们经常听到有关网络安全漏洞的消息,保护数据安全并非易事。这也是医疗保健组织可以利用区块链的地方。

AI和区块链的融合可以共同革新许多行业,医疗保健是这些行业之一。区块链将确保安全传输和存储患者数据,以增强隐私和安全性。它还将为患者提供透明性,以便他们可以查看其数据的存储位置和使用方式。

识别应用

大多数企业可以借助一些机器来进行操作。但是,与大多数企业不同,医疗保健组织需要多种工具进行诊断和治疗。

例如,存在用于诊断和治疗不同医疗状况的各种类型的设备,例如呼吸机、扫描仪、X射线机和ECG机。对于医疗保健组织而言,为物联网确定合适的应用可能变得很复杂。医院必须了解不同机器的复杂性,才能确定正确的应用。他们还需要向供应商咨询如何轻松、快速地将AI解决方案与特定机器集成。

卫生组织需要明智地选择AI供应商。选择AI供应商之前,需要考虑多种因素。通用或垂直解决方案,、与目标的一致性以及成本效益等因素会在很大程度上影响AI供应商的选择。识别合适的用例并根据需要选择正确的供应商将有助于医院构建可轻松与现有设备和工作流程集成的AI解决方案。

消除黑匣子

AI系统主要是模拟人类大脑的运作方式。因此,就像我们的大脑一样,它们接收输入并达到输出。但是,我们不知道人工智能系统是如何得出结论的。我们所知道的就是最终的输出。而且,如果不了解AI系统是如何得出结论的,那么对其进行改进就变得很困难。

AI系统的这一挑战被称为黑匣子问题。解决该问题对于几乎每个行业都是必不可少的,但对于医疗保健而言,至关重要。那是因为它会对医疗保健行业产生不利影响。盲目地信任AI解决方案可能会使患者的生命处于危险之中。

例如,根据STAT审查的IBM内部文件,IBM的Watson建议对癌症患者使用不安全的治疗程序。遵守错误的建议操作程序可能会使癌症患者的生命面临危险。因此,医疗行业必须消除AI的黑盒子。

但是,如何消除AI的黑盒子?答案是“通过使用可解释的AI”。可解释的AI通过使这些系统具有透明度来帮助研究人员了解AI系统的输出。它通过事后方法的帮助带来了透明度,该方法围绕四个关键要素而开发,即目标、驱动因素、可解释的族和估计量。

用来解释AI输出的最常见方法之一是反向传播方法。反向传播是用于前馈神经网络的监督训练的一种广泛使用的AI算法。这种可解释的AI方法的实施将确保患者和医生对AI结论的信任。

教育员工和患者

利用AI解决方案可以带来很多好处,但是使用它们很复杂。对AI的潜力以及如何利用AI的意识不足会导致组织中的技能缺口。医疗保健组织需要通过对员工进行有关AI系统及其功能的教育来弥合技能差距。医院和个人专家可以组织不同部门的培训课程,以培训员工如何使用AI系统。

在要治疗的患者准备好接受基于AI的治疗之前,医疗保健中的AI实施很难成功。因此,患者还必须意识到AI的潜力,以便他们可以信任基于AI的治疗。例如,机器人手术可带来许多好处,例如住院时间更短、疼痛减轻、疤痕最少以及失血量降低。

但是,由于缺乏意识和信任,患者可能会担心被AI机器人对其进行操作。医疗机构应提高人们对机器人手术的益处的认识。他们还可以对患者进行AI机器人手术程序教育,然后再对其进行操作。对患者和员工进行有关AI解决方案的教育将确保增加他们对AI系统的信任。

每个卫生组织都希望部署AI系统。成功实施AI解决方案始于制定正确的战略。但是如何创建呢?这需要要解决上述医疗保健中的AI挑战。

对这些挑战和解决方案的了解将帮助医疗保健组织针对其特定应用制定适当的策略。当成功实施AI的实例成为人们关注的焦点时,医院将更有动力部署和扩展其AI解决方案。

人工智能给军事安全带来的机遇与挑战

1.2提升军事情报分析效率

随着信息技术的发展,人类正在迎来一个“数据爆炸”的时代。目前地球上两年所产生的数据比之前积累的所有数据都要多。瀚如烟海的数据给情报人员带来了极大的困难和挑战,仅凭增加人力不仅耗费大量钱财,问题也得不到根本解决。与此同时,伴随大数据技术和并行计算的发展,人工智能在情报领域日益展现出非凡能力。目前,美军已经敏锐地捕捉到了人工智能在军事情报领域的巨大应用潜力,成立了“算法战跨职能小组”。该小组的首要职能就是利用机器视觉、深度学习等人工智能技术在情报领域开展目标识别和数据分析,提取有效情报,将海量的数据转换为有价值的情报信息,为打击ISIS等恐怖组织提供有力的技术支撑。机器算法的快速、准确、无疲劳等特点使其在大数据分析领域大展身手,展现出远超人类的能力。因此,美国防部联合人工智能中心主任沙纳汉中将就直言不讳地表示,算法就是“世界上最优秀、训练最有素的数据分析师”。

1.3提升军事网络攻防能力

网络空间已经成为继陆、海、空、天之外的“第五维空间”,是国家利益拓展的新边疆、战略博弈的新领域、军事斗争的新战场。习近平主席在中央网络安全和信息化领导小组第一次会议上指出,“没有网络安全就没有国家安全”。网络攻防是军事安全领域中的重要一环,基于人工智能技术的自动漏洞挖掘可以显著提升军事系统的网络防御能力。目前,网络防御领域存在两大问题:一是网络技术人才短缺;二是当前的网络防御系统面对未知漏洞表现不佳。人工智能的新发展为提升网络防御水平提供了新途径,主要体现在网络系统漏洞自动化检测和自主监视系统等方面。以深度学习为代表的机器学习技术有望使得网络防御系统不仅能从以往的漏洞中学习,而且能在监视数据中不断提升对未知威胁的应对能力。有研究表明,人工智能可以从大量网络数据中筛选出可疑信息,以此增强网络防御能力。比如“蒸馏网络”公司(DistilNetworks)就利用机器学习算法来防御人类难以察觉的高级持续性威胁(APT)网络攻击。目前,美国亚利桑那州立大学的科学家已经研发出了一种能够识别“零日漏洞”的机器学习算法,并能够追踪其在黑客界的流动轨迹。麻省理工学院(MIT)“计算机科学和人工智能”实验室的研究人员也启动了PatternEx研究项目,意在构建一个机器学习系统,预期每天能检查36亿行日志文件,监测85%的网络攻击,并在投入使用时进行自动学习和采取防御措施。美国国防部高级研究计划局正计划将人工智能用于网络防御,重点发展的功能包括在投入使用之前自动检测软件代码漏洞以及通过机器学习探测网络活动中的异常情况等。

1.4为军事训练和培训提供新方式

人工智能为军事训练和培训也提供了新方式。在作战训练领域,人工智能技术与虚拟现实技术相结合能够极大提升模拟软件的逼真度和灵活性,为针对特定战场环境开展大规模仿真训练提供高效手段,真正实现“像训练一样战斗,像战斗一样训练”。首先,通过收集卫星图像、街景数据、甚至是无人机拍摄的三维图像,虚拟现实程序能够在人工智能的帮助下快速、准确地生成以全球任何一处场景为对象的综合训练环境(STE),帮助士兵进行更有针对性的预先演练,提升士兵执行特定任务的能力。其次,人工智能赋能军事训练模拟软件在不降低真实度的情况下快速生成训练环境、设计交战对手,摆脱了以往军事训练耗费大量人力物力布置训练场景的传统模式。再次,人工智能具备的自主性使得模拟军事训练不会以可预测模式进行,士兵必须使用各种设备和不同策略在复杂多样的环境中战斗,有利于提升士兵和指挥官在作战中的应变能力。最后,人工智能通过在模拟对战中与人类反复交手从而迭代学习,系统借助大量复盘模拟可以不断完善应对方法,为参谋人员提供参考借鉴。这一过程类似于与AlphaGo进行围棋对战。换言之,人工智能不仅可以扮演模拟军事训练中人类的强大对手,还可以在每次胜利时向人类传授一种针对这次战役或行动的新策略。除此之外,人工智能在军事训练的其他领域也有着广泛应用。目前,一个名为“神探夏洛克”(SHERLOCK)的智能辅导系统已经被用于美国空军的培训中。这个系统能够为美国空军技术人员提供如何操作电子系统对飞行器进行诊断的培训。同时,南加州大学的信息科学学院已经研制出了一个基于替身的训练程序,能够为派驻海外的军人提供跨文化交流训练。

1.5给军事理论和作战样式创新带来新的启发

诚如恩格斯所言:“一旦技术上的进步可以用于军事目的,他们便立刻几乎强制地,而且往往是违背指挥官的意志而引起作战方式上的改变甚至变革。”技术进步作用于军事领域必然引起作战方式的改变甚至变革,这是恩格斯100多年前就向人们揭示的军事技术发展规律,人工智能技术当然也不例外。总体来看,以人工智能技术为支撑的智能化武器装备较传统武器装备具有突防能力强、持续作战时间长、战术机动性好、训练周期短以及综合成本低等显著优势。智能化无人系统可采用小型化甚至微型化设计,使用复合材料和隐身技术,以隐蔽方式或集群方式接近目标,让敌人难以察觉或无法防范。无人武器系统还可以突破人类生理局限,装备的性能指标和运转时长只需考虑制造材料、各类机械电子设备的承受极限和动力能源的携带量,不但使得系统在机动、承压方面能力得到革命性提升,并且能够实现远距离侦察打击和在目标区域的长时间存在。同样重要的是,与传统武器系统操控训练周期一般长达数年不同,无人系统操控员仅需数月或一年左右的训练即可远程操控“捕食者”“死神”等无人武器参加实战,更多作战人员不必直接踏上战场,有望大大降低战死率和随之而来的社会舆论压力。基于人工智能技术军事化应用的上述特点,近年来美军提出了以算法较量为核心的算法战、无人武器系统蜂群式作战、具有高度自适应性的“马赛克战”等一系列新作战样式。可以预见的是,随着人工智能技术的进一步发展,智能化条件下的军事理论和作战样式创新不会停止。

总而言之,人工智能可以帮助军事力量更加精准高效地运转,同时降低人类面临的生命危险。人工智能在无人作战、情报搜集与处理、军事训练、网络攻防、智能化指挥控制决策等军事领域的广泛运用具有“改变游戏规则”的颠覆性潜力,有望重塑战争形态,改写战争规则,推动智能化战争的加速到来。中央军委科技委主任刘国治中将等专家认为,人工智能必将加速军事变革进程,对部队体制编制、作战样式、装备体系和战斗力生成模式等带来根本性变化,甚至会引发一场深刻的军事革命。

人工智能给军事安全带来的风险和挑战

人工智能作为一种科学技术,同样具备“双刃剑”属性。人工智能一方面为人类社会发展进步和维护军事安全提供了新的动力和机遇,另一方面也带来了一系列威胁与挑战。综而观之,人工智能给军事安全带来的威胁和挑战主要有以下几个方面。

2.1人工智能军事应用带来的非预期事故

人工智能的军事应用存在诸多不确定性,容易带来非预期事故的发生。这主要由以下两点原因所致:一是由于人工智能内部的脆弱性问题(internalvulnerbility)。当前,人工智能还停留在弱人工智能阶段,而弱人工智能系统的特点在于它们接受了非常专门的任务训练,例如下棋和识别图像。战争可以说是最复杂的人类活动之一,巨量且不规律的物体运动仿佛为战场环境蒙上了一层“迷雾”,难以看清和预测战争全貌。在这种情况下,系统的应用环境无时无刻都在发生变化,人工智能系统可能将难以适应。因此,当前弱人工智能存在的根本脆弱性(brittleness)很容易损害系统的可靠性。交战双方部署的人工智能系统交互产生复杂联系,这种复杂性远远超出一个或多个弱人工智能系统的分析能力,进一步加剧了系统的脆弱性,发生事故和出错的概率将大大增加。此外,人工智能算法目前还是一个“黑箱”,可解释性不足,人类很难预测它的最终结果,也容易带来很多非预期事故。二是外部的攻击利用问题(externalexploitation)。研究人员已证明,图像识别算法容易受到像素级“毒”数据的影响,从而导致分类问题。针对开源数据训练的算法尤其容易受到这一挑战,因为对手试图对训练数据进行“投毒”,而其他国家又可能将这些“中毒”数据用于军事领域的算法练。目前对抗性数据问题(adversarialdata)已经成为一个非常严峻的挑战。此外,黑客攻击还可能导致在安全网络上训练的算法被利用。当训练数据受到污染和“投毒”,就很可能产生与设计者意图不符的人工智能应用系统,导致算法偏见乃至更多非预期事故的发生。最后,人机协同也是一个很大的难题。无论是强化学习、深度学习,还是专家系统都不足以完全准确地反映人类的直觉、情感等认知能力。人工智能的军事运用是“人—机—环境”综合协同的过程,机器存在可解释性差、学习性弱、缺乏常识等短板,或将放大发生非预期事故乃至战争的风险。

2.2人工智能军备竞赛的风险

与核武器类似,由于人工智能可能对国家安全领域带来革命性影响,世界各国将会考虑制定非常规政策。目前,世界各国(尤其是中、美、俄等军事大国)都认识到人工智能是强化未来国防的关键技术,正在加大人工智能领域的研发力度,并竭力推进人工智能的军事应用,力图把握新一轮军事技术革命的主动权,全球人工智能军备竞赛态势初露端倪。具体而言,美国将人工智能视为第三次抵消战略的核心,建立“算法战跨职能小组”,筹划基于人工智能的算法战。2018年7月,美国防部设立专门的人工智能机构——联合人工智能中心(JAIC),大力推动军事人工智能应用。2019年2月12日,美国防部正式出台美军人工智能战略,并将联合人工智能中心作为推进该战略落地的核心机构。美国2021财年国防授权法案草案中也特别强调对人工智能、5G、高超声速等关键技术进行投资,建议对人工智能投资8.41亿美元,对“自主性”(autonomy)投资17亿美元。这些举措都体现出美国积极推动人工智能军事化、在人工智能领域谋求新式霸权的意图。俄罗斯在这一领域也不甘落后。2017年1月,普京要求建立“自主机器复合体”(AutonomousRoboticComplexs)为军队服务。中国政府则于2017年7月20日出台《新一代人工智能发展规划》,正式将发展人工智能上升到国家战略高度。军事领域也在通过“军民融合”战略加快“军事智能化发展”步伐,“促进人工智能技术军民双向转化,强化新一代人工智能技术对指挥决策、军事推演、国防装备等的有力支撑,推动各类人工智能技术快速嵌入国防创新领域”。

鉴于人工智能强大而泛在的技术本质以及军事领域对于强大技术的强烈需求,人工智能走向军事应用是难以阻挡的趋势,当前各国竞相推动人工智能军事化和发展人工智能武器便是其现实体现。大国间在人工智能领域的军备竞赛将会危及全球战略稳定,对国家安全带来严重威胁,埃隆·马斯克关于人工智能军备竞赛可能引发第三次世界大战的预言并非危言耸听。如同所有军备竞赛一样,人工智能领域的军备竞赛本质上都是无政府状态下安全困境的体现,如果缺乏信任和有效的军备控制措施,这将成为一场“危险的游戏”,直到一方把另一方拖垮或双方共同卷入战争,上演一场智能时代的“零和博弈”。

2.3扩展威胁军事安全的行为体范围和行为手段

传统上,威胁军事安全的主要行为体是主权国家的军队,但随着网络和人工智能技术的发展,这一行为体范围正在拓展。以网络攻击为例,根据攻防平衡理论,重大军事技术的出现将对攻防平衡产生重大影响,而有的军事技术天然偏向于进攻方。当前,人工智能技术的发展对提升网络攻击能力同样提供了极大机遇。可以预见,人工智能与深度学习的结合有望使得“高级持续威胁”系统成为现实。在这种设想下,网络攻击方能够利用APT系统24小时不间断地主动搜寻防御方的系统漏洞,“耐心”等待对方犯错的那一刻。随着人工智能逐步应用,将有越来越多的物理实体可以成为网络攻击的对象。例如,不法分子可经由网络侵入军用自动驾驶系统,通过篡改代码、植入病毒等方式使得军用无人车失去控制,最终车毁人亡。又比如通过入侵智能军用机器人,控制其攻击己方的人员或装备。同时,人工智能与网络技术结合可能进一步降低网络攻击的门槛。当智能化网络攻击系统研制成功,只要拥有足够多的资金便能有效提升自己的网络攻击能力,而不需要太高的技术要求。因此,未来恐怖分子利用人工智能进行网络攻击或攻击自主系统的算法、网络等,继而诱发军事系统产生故障(如军用无人车、无人机撞击己方人员),或者直接损坏军事物联网实体设备等,都会对军事安全产生很大威胁。

此外,人工智能的发展应用还将催生新的威胁军事安全的方式和手段。人工智能表现出诸多与以往技术不一样的特点,也自然会带来威胁军事安全的新手段,深度伪造(deepfakes)就是其中的典型代表,该技术为煽动敌对国家间的军事冲突提供了新途径。例如,A国雇佣代理黑客使用人工智能技术制作“深度伪造”视频或音频材料,虚构B国密谋针对C国采取先发制人打击,并将这段“深度伪造”材料故意向C国情报部门秘密透露,引发C国的战略误判,迫使其采取对抗手段。B国面对这种情况也将不得不采取措施予以应对,一场由A国借助人工智能技术策划的针对B、C两国的恶意情报欺诈就完成了。当前,“深度伪造”技术的发展速度远超相关的检测识别技术,“开发深度伪造技术的人要比检测它的人多100到1000倍”,这给各国安全部门抵御人工智能增强下的信息欺诈和舆论诱导制造了很多困难。此外,运用人工智能系统的军队也给自身带来了新的弱点,“算法投毒”、对抗性攻击、误导和诱骗机器算法目标等都给军事安全带来了全新挑战。

2.4人工智能产生的跨域安全风险

人工智能在核、网络、太空等领域的跨域军事应用也将给军事安全带来诸多风险。例如,人工智能运用于核武器系统将增加大国核战风险。一方面,人工智能应用于核武器系统可能会强化“先发制人”的核打击动机。核武器是大国战略威慑的基石,人工智能增强下的网络攻击将对核武器的可靠性构成新的威胁,在战时有可能极大削弱国家威慑力、破坏战略稳定。因此,尽管目前人工智能增强下的网络攻击能力的有效性并不确定,危机中仍将大大降低对手间的风险承受能力,增加双方“先发制人”的动机。信息对称是智能化条件下大国间进行良性竞争的基础和保障,但现实情况往往是,在竞争激烈的战略环境中,各国更倾向于以最坏设想来揣测他国意图并以此为假设进行斗争准备,尤其当面对人工智能赋能下的愈加强大的针对核武器系统的网络攻击能力,“先下手为强”确乎成为国家寻求自保的有效手段。另一方面,人工智能技术在核武器系统领域的应用还将压缩决策时间。人工智能增强下的网络攻击几乎发生在瞬间,一旦使核武器系统瘫痪,国家安全将失去重要屏障,给予决策者判断是否使用核武器的压力将激增。尤其在一个国家保持“基于预警发射”(lauch-on-warning)的情况下,核武器系统遭到人工智能增强下的网络攻击时几乎无法进行目标探测并且发出警报,更不可能在短时间内进行攻击溯源和判定责任归属,决策时间压缩和态势判断困难会使决策者承受巨大压力,极有可能造成战略误判,给世界带来灾难。

人工智能与网络的结合会极大提升国家行为体和非国家行为体的网络能力,同时也会催生出一系列新的问题。首先,人工智能技术的网络应用将提升国家行为体的网络攻击能力,可能会加剧网络领域的冲突。如前所述,基于人工智能的APT攻击可使得网络攻击变得更加便利,溯源问题也变得更加困难。与此同时,人工智能的网络应用可能会创造新的缺陷。目前人工智能的主要支撑技术是机器学习,而机器学习需要数据集来训练算法。一旦对方通过网络手段注入“毒数据”(如假数据),则会使得原先的人工智能系统非正常运行,可能带来灾难性后果。其次,由于人工智能算法的机器交互速度远超人类的反应速度,因此一旦将人工智能用于军事领域的网络作战,还有可能带来“闪战”风险,即人类还没来得及完全理解网络空间的战争就已经发生。此外,人工智能在太空领域的应用可能对全球战略稳定和军事安全带来破坏性影响。在人工智能的加持下,传统的反卫星手段将变得更加精准、更具破坏性、更难追溯,从而加大“先发制人”的动机,寻求先发优势。这容易破坏航天国家的军事安全和全球战略稳定,因为攻击卫星尤其是预警卫星往往被视为发动核打击的前兆。

结语

总体国家安全观强调,发展是安全的基础和目的,安全是发展的条件和保障,二者要同步推进,不可偏废。既要善于运用发展成果夯实国家安全的实力基础,又要善于塑造有利于经济社会发展的安全环境,以发展促安全、以安全保发展。因此,维护人工智能时代的军事安全并不代表放弃人工智能的发展,反而要大力推动其应用,使其成为维护军事安全的重要手段和支撑,并注重化解风险。如今,我国正处在由大向强发展的关键时期,人工智能有望成为驱动新一轮工业革命和军事革命的核心技术。因此,我们需要抢抓此次重大历史机遇,积极推动人工智能的研发和军事应用,推动军事智能化建设稳步发展,为建设世界一流军队增添科技支撑。

在当今时代,没有谁是一座孤岛,人工智能对于军事安全领域的影响是全球性的,因此推动人工智能领域的国际安全治理、构建人类命运共同体就显得尤为重要。由于人工智能的迅猛发展,目前对于智能武器尤其是致命性自主武器系统的相关法律法规还并不完善,各国在如何应对这些问题方面也没有明确的方法、举措和共识,但这些问题确关人类社会的未来前景和国际体系稳定。为了维护我国的军事安全以及整体的国家安全利益,应当推动人工智能技术治理尤其是安全领域的全球治理,在人工智能的军事应用边界(如是否应当将其用于核武器指挥系统)、致命性自主武器系统军备控制等领域开展共同磋商,在打击运用人工智能进行恐怖犯罪等领域进行合作,构建人工智能时代的安全共同体和人类命运共同体,维护国家军事安全和人类和平福祉。

免责声明:本文转自信息安全与通信保密杂志社,原作者文力浩,龙坤。文章内容系原作者个人观点,本公众号转载仅为分享、传达不同观点,如有任何异议,欢迎联系我们!

推荐阅读

2021年上半年世界前沿科技发展态势

2021年上半年世界前沿科技发展态势——信息领域

2021年上半年世界前沿科技发展态势——生物领域

2021年上半年世界前沿科技发展态势——能源领域

2021年上半年世界前沿科技发展态势——新材料领域

2021年上半年世界前沿科技发展态势——先进制造领域

2021年上半年世界前沿科技发展态势——航空领域

2021年上半年世界前沿科技发展态势——航天领域

2021年上半年世界前沿科技发展态势——海洋领域

转自丨信息安全与通信保密杂志社

作者丨文力浩,龙坤

编辑丨郑实

研究所简介

国际技术经济研究所(IITE)成立于1985年11月,是隶属于国务院发展研究中心的非营利性研究机构,主要职能是研究我国经济、科技社会发展中的重大政策性、战略性、前瞻性问题,跟踪和分析世界科技、经济发展态势,为中央和有关部委提供决策咨询服务。“全球技术地图”为国际技术经济研究所官方微信账号,致力于向公众传递前沿技术资讯和科技创新洞见。

地址:北京市海淀区小南庄20号楼A座

电话:010-82635522

微信:iite_er返回搜狐,查看更多

人工智能+医学影像领域,中国正在面临哪些困难

“AI+医学影像”是一种被多位业内人士认为最有可能率先实现商业化的医学影像技术。

什么是AI+医学影像?

AI+医学影像,是将人工智能技术具体应用在医学影像的诊断上,在国外主要分为两部分:一是图像识别,应用于感知环节,其主要目的是将影像这类非机构化数据进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,是AI应用的最核心环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握“诊断”的能力。

图像智能识别可以降低医生的工作量,这是业界已经达成共识的,但是在综合诊疗上人工智能是否能给予医生很好的建议和意见?

那么,中国的AI+医学影像为什么特殊?

那么,中国的AI+医学影像为什么特殊?

无论是治疗皮肤病还是癌症,图像可能只是一个参数,而治疗疾病需要多个参数,这便是医生最大的疑虑。而从投资人角度来说,光看图像也不足以让其做出判断。投资人更希望至少能解决一个小的问题,能做出一个临床辅助诊断。

中国虽然医疗数据量特别庞大,但根据IDCDigital的预测,其中80%的数据均是非结构化数据。

医学影像数据实际上是报告+影像。单单分析影像本身还不够,更重要的是对影像本身所对应的诊断报告也加以分析。而中国的影像诊断报告呈现出因医生而异的显著特点,由于影像诊断医生的个人习惯,执业医院,教育背景,导师影响等因素导致了不同地区不同医院的影像报告不同标准的情况。

所以将AI具体应用在医学影像诊断上,除了通行的图像识别和深度学习之外,还有一个前提:

即如何将80%的非结构化数据转化为结构化数据。

在这个基础上,具有无线想象空间的医疗数据才具有落地的实现价值。

满足以上三个条件才意味着能够将人工智能具体应用到医学影像的诊断上。而人工智能能否成功,条件只有一个,那就是海量数据,即便在经济高速发展的今天,没有海量的数据就没有戏。

也就是说,目前能够做出一个成熟的辅助解决方案,又有数据积累的公司才能希望做好所谓的医学影像智能诊断。据了解,目前国内影像领域的AI绝大多数还集中在单纯的图像识别上,缺乏医学数据的积累和对影像报告的分析。而能够做出一个辅助诊断方案的,只有包括医众影像在内的少数几家公司。

人工智能的“革故鼎新”

人工智能的“革故鼎新”

在整个医学影像中,医学大数据一定会影像先行,利用云计算的方法增加连接性,利用深度学习的方法挖掘大数据的价值,利用发数据的方法在更多的维度中挖掘原来浅关联或弱关联的关系,利用三者的关联大大提高医疗诊疗效率,并达到精准医疗。

在实践中发现,优质、大量的数据的积累;高性能计算环境;优化的深度学习方法;三者资源配齐就会构建不断提高的状态的模型,而这正是人工智能的魅力所在。IBM能够从历史数据中学习和总结,快速判读影像中的病症特征,辅助医生进行病症分析,提高诊治效率和准确性。

不仅如此,针对基层医疗资源不足的现状,人工智能能够解决基层医疗资源缺乏的核心在于给基层医疗机构“赋能”,用人工智能给基层医生“院士级看病的本事”。

医疗领域AI智能影像识别的三大难点

医疗领域AI智能影像识别的三大难点

1、数据获取:数据是深度学习算法所需的核心资源,仅掌握算法而缺乏数据无法获得较好的训练效果。现阶段,我国的医疗影像仍处于从传统胶片向电子数据过渡的阶段,大量影像资料尚未数字化,且医院之间的数据共享和互通程度较低,获取大规模的数据对业内公司是一个考验;

2、数据标注:在获取数据的基础上,深度学习结合先验知识对模型进行训练,训练集需要事先标注。由于大多数标注依赖人工识别,因此数据标注将耗费较大量人力和时间,在医疗影像领域获取具有高可靠性的标注数据也成为挑战之一;

3、“AI+医疗”跨学科人才积累:在较为专业的诊疗领域,应用及平台开发者不仅要研究人工智能算法,更要对医疗影像识别建立深入了解,人工智能+医疗的复合背景人才构成核心竞争力之一。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇