博舍

我国人工智能产业发展面临的三大问题 人工智能有哪些问题困扰着我们中国发展的问题

我国人工智能产业发展面临的三大问题

2019年,人工智能数据、算法、算力生态条件日益成熟,我国人工智能产业发展迎来一轮战略机遇,智能芯片、智能无人机、智能网联汽车、智能机器人等细分产业,以及医疗健康、金融、供应链、交通、制造、家居、轨道交通等重点应用领域发展势头良好。展望2020年,全国各级地方将根据自身实际情况申报和落地人工智能创新应用先导区,国内人工智能产业投融资将更关注易落地的底层技术公司。

2020年形势判断

从产业链建设看,人工智能数据、算法、算力生态条件日益成熟。算法、数据和计算力是推动人工智能技术进步和产业发展的“三驾马车”。

一是在算法方面,2019年,基于视觉、触觉传感的迁移学习、变分自动编码器(VAE)和生成对抗网络(GAN)是无监督学习中新涌现的算法类型。预计2020年,上述新兴学习算法将在主流机器学习算法模型库中得到更高效的实现,Caffe框架、CNTK框架等分别针对不同新兴人工智能算法模型进行收集整合,可以大幅度提高算法开发的场景适用性。

二是在数据方面,2019年,我国5G、物联网、汽车电子等多种新兴技术产业的快速发展,数据总量呈现海量聚集爆发式增长。预计2020年,我国5G通信网络部署加速,接入物联网的设备将增加至500亿台,数据的增长速度越来越快,世界领先的互联网公司大数据量将达到上千PB,传统行业龙头型企业数据量将达到PB级,个人产生数据达到TB级。

三是在算力方面,2019年以来,我国人工智能的算力仍以GPU芯片为主要硬件承载,但随着技术的不断迭代,预计2020年,ASIC、FPGA等计算单元类别将成为支撑我国人工智能技术发展的底层硬件能力。

从政策推动来看,全国各级地方将根据自身实际情况申报和落地人工智能创新应用先导区。2019年,我国31个省份中已有19个省份发布了人工智能规划,其中有16个制定了具体的产业规模发展目标,以北上广深为代表的城市积极地制定了行之有效的政策,对人工智能产业的落地和发展产生了较大的推动作用,成为中国人工智能行业的重要实践者和领头羊。

尤其是2019年下半年以来,上海市和深圳市获批成为我国首批人工智能创新应用先导区,为我国人工智能产业应用发展带来新契机。预计2020年,国内更多城市(群)将聚焦智能芯片、智能无人机、智能网联汽车、智能机器人等优势产业,面向医疗健康、金融、供应链、交通、制造、家居、轨道交通等重点应用领域,积极申报和搭建符合自身优势和发展特点的人工智能深度应用场景,以“先导区”工作为抓手,促进人工智能产业与实体经济深度融合。

从投融资情况看,我国人工智能产业投资市场将关注易落地的底层技术公司。在过去5年间,我国人工智能领域投资曾出现快速增长。2015年,人工智能产业投融资规模达到450亿元。到2019年,仅上半年国内人工智能领域就获得投融资超过478亿元。近四年来,人工智能领域投融资集中在企业服务、机器人、医疗健康、行业解决方案、基础组件、金融等落地前景较好领域。预计2020年,新零售、无人驾驶、医疗和教育等易落地的人工智能应用场景将更加受到资本关注。

同时,由于中国在人工智能底层技术方面仍落后于美国,随着人工智能在中国的进一步发展,底层技术的投资热度将持续增长,那些拥有顶级科学家团队、雄厚科技基因的底层技术创业公司将获得资本市场的持续资金注入。

三大问题

我国人工智能领域的基础创新投入严重不足。

从企业研发创新看,中国人工智能企业的创新研发支出仍远远落后于美国、欧洲和日本。2018—2019年,美国人工智能领域企业投入的科技研发费用占据了全球科技支出的61%,我国人工智能领域企业研发支出虽然快速增加,增速达到34%,但实际占据的全球科技支出份额明显小于美国。

从人工智能知识产权保有量看,我国各类实体拥有的人工智能专利总量超过3万件,位居世界第一,但中国相关企业拥有的人工智能相关专利多为门槛较低的实用新型专利,发明专利仅占专利申请总量的23%。同时,根据世界知识产权组织的数据,我国企业拥有的95%的人工智能设计专利和61%的人工智能实用新型专利将会在5年后失效,相比之下,美国85.6%的人工智能专利技术在5年后仍在支付维护费用。2020年,我国需要在人工智能基础研究与创新,打造核心关键技术长板、加强知识产权保护方面加大投入力度。

我国人工智能产业的算力算法核心基础相对薄弱。我国人工智能发展在数据规模和算法集成应用上都走在世界前列,但在人工智能基础算力方面,能提供国产化算力支持的企业还不多。

在人工智能的算力支持方面,IBM、HPE、戴尔等国际巨头稳居全球服务器市场前三位,浪潮、联想、新华三、华为等国内企业市场份额有限;国内人工智能芯片厂商需要大量依靠高通、英伟达、AMD、赛灵思、美满电子、EMC、安华高、联发科等国际巨头供货,中科寒武纪等国内企业发展刚刚起步。

在人工智能算法方面,主流框架与数据集领域国内外企业龙头企业包括谷歌、脸书、亚马逊、微软等,深度学习主流框架TensorFlow、Caffe等均为美国企业或机构掌握,百度、第四范式、旷视科技等国内企业的算法框架和数据集尚未得到业界的广泛认可和应用。2020年,我国需要进一步部署加强人工智能基础设施建设,并重视国内人工智能算法框架的创新推广。

以算法战、深度伪造为代表的人工智能技术滥用给经济社会带来严重负面影响。算法战指的是将人工智能算法、机器学习等技术全面应用于对敌作战中的情报收集、武器装备、战场勘测、指挥协同、决策制定等环节,核心目标是利用人工智能技术提升军事作战能力;深度伪造(Deepfakes)是“DeepMachineLearning”(深度学习)和“Fake”(造假)的英文组合词,是一种基于深度学习的人物图像合成技术,随着人工智能算法开源不断推进,深度伪造技术门槛正在不断降低,非专业人员已经可以利用简单开源代码快速制作出以假乱真的视频和图像。

2019年以来,基于人工智能的算法战和深度伪造的正在扩大军事影响、形成网络暴力、破坏政治选举、扰乱外交关系等方面被滥用,并给社会和国家带来极大风险。上述对人工智能技术的滥用给我国家安全、产业安全、社会经济安全带来巨大风险,需提前预防可能风险,并寻求国际支持。

对策建议

以算力为核心加强人工智能基础能力建设。首先要大力推进人工智能算法库、解决方案库、数据集及公共服务平台建设,强化人工智能发展基础。其次加强面向人工智能发展应用的5G网络、边缘计算硬件新兴信息基础设施建设。最后要对各行业企业自动化、智能化改造的产出、效果进行科学有效测算,指导企业找准技术研发投入的切入点,利用好人工智能技术实现经济社会高质量发展。

体系化梳理我国人工智能产业供应链现状。我们既要关注重要整机产品以及大厂商、大企业,也要覆盖量大面广的细分领域及增长势头良好的隐形冠军。

推动国内人工智能企业加快开拓国内外应用市场并提升出海抗风险能力。我国需要加强国内应用市场推广,挖掘多种类型的应用场景,培育各种规模的竞争主体,进一步提升新技术的应用水平和应用层级。同时,引导对外应用市场开拓,支持企业开拓海外市场,对出海企业在经营合规管控、知识产权管理、专利诉讼等方面的具体问题给予窗口指导。最后,提升企业自身的抗风险抗打击能力,鼓励新兴领域的独角兽企业尽快做大做强,形成较大规模体量和较强技术竞争力。

在国际社会上提出发展“负责任的人工智能”。首先应加紧研究并提出中国版的人工智能伦理守则或框架,形成人工智能伦理风险评估指标体系或风险管理指南,为人工智能企业提供风险识别、评估及应对的系统指引。其次应加强与联合国、欧盟及其成员国、G20等国际组织的合作,参与搭建多层次国际人工智能治理机制,提出发展“负责任的人工智能”供全球各国讨论,在全球人工智能伦理框架的制定议程中发挥建设性作用。

来源:赛迪研究院

 

更多资讯,请扫描下方二维码,关注中国微米纳米技术学会微信公众号

中国人工智能发展主要存在哪些制约因素,有哪些好的建议

发展存在诸多制约因素

1.中国缺乏对人工智能发展的长远规划和布局。美国已将人工智能作为国家战略,先后颁布了《为人工智能的未来做好准备》、《国家人工智能研究与发展战略规划》、《人工智能、自动化与经济报告》等文件,明确了人工智能发展规划。中国政府也在积极营造良好的政策环境。虽然中国在制造业、互联网+、科技创新等战略规划中都提及了人工智能,但还没有专门针对人工智能的国家战略规划,人工智能的发展路径、时间表、路线图等还不清晰。目前在人工智能发展中,中国仍主要依靠科研机构和企业的自身力量,国家层面对人工智能长期投入、基础技术攻关及相关标准规范研究等还没有明确的规划和布局,不利于人工智能的全面推进。

2.中国人工智能技术和人才储备与美国存在巨大差距。美国企业在人工智能方面的研究和布局远早于中国,如微软1991年成立研究院开展人工智能研究,对重要领域的研究已超过25年;谷歌已成功推出开源机器学习平台,无人驾驶汽车测试里程已超过200万公里。反观国内,百度的人工智能研究始于2013年成立的深度学习研究院,阿里的人工智能布局尚局限在对大数据和云计算业务的支撑,腾讯也主要服务于内部互联网业务。美国科技巨头在前瞻性、源头性技术方面的布局和积累,极大地吸引了全世界专注前沿科技的精英。领英平台的数据显示,美国人工智能人才中拥有10年以上经验的比例接近50%,而中国不到25%。

3.中国人工智能市场集中在应用层面,深度学习能力不足。由于中国人工智能起步较晚、人才储备不足,研究和应用方向多集中在应用层面,对机器学习等基础技术重视不够。据统计,中国人工智能主要集中在语音和视觉识别技术方面,分别占比60%和12.5%;专注开发应用的公司较多,兼顾机器学习算法的公司只占29%;研究算法的公司业务也集中在计算机视觉和自然语言处理,致力于机器学习算法的只占9%,专注深度学习的公司更是凤毛麟角。这种市场和业务的集中,尤其是忽略基础技术或依靠少数企业发展基础技术,会引发后劲不足及依赖国外技术、平台、开发工具等问题,不利于人工智能的全面发展。

加速中国人工智能发展的建议

1.制定国家战略和路线图,加强顶层规划设计。将发展人工智能作为国家重大战略,把握机遇,明确人工智能科技投入的国家目标,协调各相关机构根据其职责、能力等确定发展重点,规划发展路线。促进不同研究领域企业的协调合作,在传统企业发展中引入人工智能技术,同时鼓励传统企业以多种形式对人工智能的研究提供资金支持,促进人工智能在各个行业的广泛应用。有效挖掘人工智能技术潜力,支撑行业长期稳健的发展,推动人工智能发展国家经济的同时服务社会发展。

2.提倡数据和研究成果共享,加速科技成果孵化。提倡高校与企业、高科技公司与传统企业、跨行业企业和机构之间的数据共享,使中国大数据的天然优势能够为人工智能行业所利用。加强人工智能科研与产业的结合,克服“企业数据和院校算法脱节”的产业发展瓶颈,引导科研人员兼顾应用场景和研究成果可行性,并采取措施保证科研成果孵化成产品的通道畅通,开通绿色通道,加快孵化速度,弥补中美之间从科研到产品的发展差距。

3.重视基础技术和创新研究,加快核心人才培养。重视和加强前瞻性基础研究,鼓励多学科交叉创新研究,对感知技术、深度学习等基础技术研发给予政策和资金引导,大力扶持致力于机器学习算法和深度学习应用的企业,开发自主平台和工具。规范人工智能的学科设置和职业培训,针对人工智能基础技术和应用的需求,加大对从事基础技术和创新研发核心人才的培养力度,确保人才储备充足。鼓励采用产学研联动模式,从高校和科研机构向企业输送优秀人才和基础技术成果。

人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:中国AI人工智能发展史,大致分为三个发展阶段http://www.duozhishidai.com/article-8524-1.html人工智能的四大发展趋势,未来十年改变世界http://www.duozhishidai.com/article-7007-1.html人工智能的发展历程,是这样的http://www.duozhishidai.com/article-3571-1.html

多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站

人工智能在教育领域中的应用面临哪些问题和挑战

再比如说,可以了解你的学习能力的情况,可以对你的学习负担提供各种监测,当然这个是要遵循伦理,研究伦理的前提下,可以通过对你的数据和你的表情的分析知道你处在疲劳状态,处在轻生状态,这个在研究里面已经在做了,当然这个前提要尊重个人隐私、伦理的前提下,监测学生的上课状态。如果你过分疲劳,对学习效率很低的。

再比如说可以通过人工智能和虚拟现实结合,提供增强性的虚拟探究环境,供学习者进行探究,进行发现,比如再通过一个虚拟环境,可以回到两千年前去发掘那个时代的历史以及历史演化的过程,智能加虚拟现实结合。等等,人工智能可以在学习环境、学习过程上提供非常多的很好的支持。

第三,人工智能可以对学习过程的评价起到非常重要的作用。他可以分析出你在学习过程中对哪些知识掌握的情况,每个知识点上学科能力的情况,你的核心素养的情况,以及你的体质健康发展情况、心理健康发展情况,可以使得我们的教育评价从单一的学科知识的评价到全面的综合性的评价,可以使得我们的评价从以前只是期末一次考试变成过程性的评价,可以嵌入到你的学习过程中,对学习者进行一些评价,而且评价不仅仅是评价你的知识,还可以评价你的问题解决能力方面。

另外,这种评价可以使得老师的工作大幅度减轻。以前我们只是由人工来做各种各样的评分、观察,需要很大的工作量,现在人工智能可以由计算机进行自动测评,比如英语口语测试,现在已经产业化了,都已经实用化了,很多中考、高考的英语考试都是用实际的系统。

另外,英语作文的批改,现在基本上实用化了,在实验室里面,我们的问答题、论述题、作文题,这些主观题的批改,也已经取得了实质性的进步。今后这方面会取得实质性的突破。取得实质性突破以后,我们老师改作业,统计分数,这些工作就会大幅度降低。人工智能会在教育评价上发挥非常重要的作用。

另外,人工智能对教师的工作可以起到非常重要的作用,起到教师助理的作用。比如,智能出题、智能批改、智能阅卷、智能化的辅导,各种评价报告的自动生成,以及针对学生因人而异的给学生提供各种反馈,像现在我们老师面对一个班,可能面对40个-50个学生,他很难,以前很难做到每个学生都给个性化的反馈,因为他的时间精力不允许,他也不可能了解每个孩子的具体情况,但是现在基于人工智能的技术,我们完全可以了解到孩子在学习过程中存在的各种问题,在人工智能的帮助下,可以根据不同的问题,每个学生提供个性化的反馈,实现对学生个性化的支持,做到既具有规模化,又做到个性化,这是我们中国教育现代化2035所追求的目标。

中国教育现代化2035提出,我们要推进兼容个性化和规模化并重的教育。这个时候人工智能可以大幅度提高老师对学生个性化支持的一种能力,降低教师工作过程中的负担。

第五,人工智能还可以在我们的教育决策、教育管理,以及教育公共服务方面,起到非常重要的作用。比如,人工智能可以使得我们的教育公共服务,从面向群体到面向个体,比如政府,要提供教育公共服务,以前只能面对群体来提供,现在有了人工智能以后可以了解学生个性化的需求,通过网络提供个性化的教育公共服务,相比北京市,北京市有一个中学教师开放性辅导计划,这个计划就是我们在支持,在运行。

它的核心工作就是动员了10788个骨干教师常态性的在网上给学生提供一对一的答疑服务,以及直播课的服务,以及问题解答的服务,以及微课共享的服务。在这个过程中,每个学生在学校里面都有个性化的需要,这种个性化的需要以前是政府不解决的,而现在有了大数据,有了人工智能,有了互联网以后,可以使得政府可以购买教师的在线服务,给学生提供个性化内容的服务,使得我们教育公共服务更个性化。

第二,我们有了学习过程中的各种数据,以及我们办学过程之中的数据,可以使得我们的决策不再只是基于我们个体经验,而是有个体的经验加上科学的数据结合,人机结合的决策,可以使得我们的管理,我们现代教育的治理更加科学、更加精准,也更加符合我们现在民众利益主体,参与度越来越高的诉求,可以大幅度提升政府的现代教育治理的功能。

第三,还可以促进教育对各种环境的集成管控,可以实现把一些隐患的问题,在事情还没有发生之前就可以事先进行预测、进行管控。比如,刚才举的例子,校园外的一些不法分子,完全可以通过数据甄别出来,可以在一些事情上没有被发生之前就可以预测。再比如说校园的各种公共设施,如果出现了小的漏洞,小的漏洞完全可以及时通过人工智能技术集成联通以后,集成远程控制,及时发现。不是等小事情酿成大事情再进行补救,从事后补救变成事前监管,事前预警。实际上人工智能在这五个方面都可以发挥很多很多的作用。

主持人刚刚余教授听您在人工智能教育领域方面的应用非常广泛。但是可能很多人跟我有一样担心,人工智能现在在教学领域能发挥这么大的作用,未来会不会真的把老师取代了?和教师之间会存在一种什么样的关系?是合作还是相辅相承?

余胜泉

教师永远不会被取代。因为我们教师是促进人的成长,有两个职能,一个是教书的职能,一个是育人的职能。今后如果只是知识性的讲授,知识性的传授的工作,会越来越多的被人工智能所提高效率,但是完全取代是不可能的。因为人需要人和人之间的沟通,面对面的沟通,这种情感的沟通,和我们面对屏幕的沟通还是有差异的。

人永远不会取代。但是我们很多的讲课的效率,会大幅度提升。另外,教师除了教书以外还有育人,还有解决学生成长过程中的各种问题,这种问题的解决,需要人工智能来增强。教师在教育教学中非常重要的。我觉得教师和人工智能的关系,是一个相互赋能、相互增强的关系。

相互赋能是什么意思?教师的智慧会越来越多的转化为规则性的东西,使得人工智能具有教师的能力,把老师的个体智慧或者集体智慧转化为人工智能的能力,把人工变成了智能。

另外,人工智能也会赋能教师,教师利用人工智能可以提高,可以使得我们教师提高工作效率,而且能够做到以前做不到的事情,是一个相互赋能、相互增强的关系。人工智能首先是教学效率提高,比如说以前讲测考练,原来需要10个小时完成的事情,可能一两个小时就完成了,针对学生个性化辅导,作业批改。

现在老师一个人带三个班,每天都要改一百多份作业,这一百多份要认真改的话,要两三个小时,工作量非常大。如果今后人工智能发展了,完全可以让人工智能实现批改,实现批改以后可以给出你各种分析报告,每个孩子出现问题是什么地方,给他什么样的改进措施,都给你自动生成。你拿这个报告,可能比老师自己改效率还高,比你自己改还更好地了解孩子。通过这种方式给提高老师的工作效率,把原来需要花很多时间和精力的事情取代掉了。老师有更多的时间,更多的精力关注孩子的成长。心理、身心健康。

另外一方面,人工智能可以增强教师,就是可以使得我们老师做到以前做不到的事情。比如,举一个非常简单的例子,我们有个团队在做一个研究项目叫“AI好老师”,我们孩子在成长过程中,经常遇到各种各样的问题,比如说小的问题,打架、不守纪律、网络成瘾、过分崇拜明星、早恋等等这些问题,这些问题背后都是有教育学、社会学、心理学、生理学的一系列的原因,但是这些原因是很深的,一般的老师很难说把各种知识都很了解,我们很多老师、很多家长面对孩子出现这些问题的时候,总是简单地打骂或者简单的斥责,这样对孩子于事无补。

这个时候,像我们就做了一个项目叫AI好老师,我们建立了0-18岁儿童成长过程中常见的典型的问题知识库,以及每个问题背后的教育学、心理学、社会学、生理学这方面的原因,以及一些如何干预,对这些问题如何进行干预的优秀教师的案例,我们收集了优秀教师处理这些问题的案例,这样就会形成智能的系统。

只要和那个系统说,我的孩子早恋了,他会问你几个表现,如果你确认之后,他说这可能是早恋,他分析早恋的原因是什么,社会学、心理学的原因是什么,再给出某一个很好的老师处理过这个事情他是怎么和孩子沟通的,他可以把符合教育教学规律的案例,让老师学习。这样可以提高我们老师的育人的能力,提高家长和孩子相处的和谐程度,促进学生身心健康的发展。

再比如体质健康,现在儿童成长过程中的身体体质这些方面的发展越来越重要。除了知识以外,身心健康其实更重要,我们完全可以通过一些智能手环、智能肺活量的工具、智能跳绳工具,以及运动器材,会通过5G加上传感器以后,可以自动采集学生运动过程中的各种数据,把这些数据通过5G传送到云平台以后,就可以限定学生的心率、血氧、运动脉搏各种各样运动参数的常模数据库,有了这个数据库以后,可以对学生的运动知识、运动技能、营养情况、身体发育等这些方面的情况进行进一步的分析,分析可以发现学生在体质健康上存在哪些问题,或者哪一种体质类型,可以给出有针对性的运动处方的方案,也可以发现学生在运动中有哪些优势,从而增强他的优势。

我举这些例子就是想说明,我们很多教育中理想中希望老师能做到的事情,但是由于传统的时间精力以及能力的问题,我们做不到,现在人工智能可以增强我们教师,使得我们教师能够做到这些事情。人工智能和教师是相互赋能、相互增强的关系。

但是,虽然人工智能不会取代老师,但是会使用人工智能的教师会取代不使用人工智能的教师,我们教师还要主动适应互联网、大数据、人工智能时代新的技术的变化、新的技术的变革,不断进一步的学习,善于使用,关注最新的进展,希望老师能够努力把这些东西融入到他的日常教学中,从而提高自己的教学效率。

主持人

刚刚您说了很多人工智能和教师之间的互相赋能、互相增强的关系,随着人工智能的普及或者应用,对教师的压力是不是挺大的?教师之前可能只要备好课、教好学生,关心学生成长,现在要学习更多的人工智能方面的知识。人工智能在人才培养方面,我们是不是现在也是一个非常重要的环节?

余胜泉

人工智能的知识学习有一个渐进的过程,人工智能核心就是智力的自动化,像机械是我们体力的延长一样,人工智能是我们脑力的延长,可以使得我们人能够处理以前无法处理的复杂事情,实际上是提高我们老师的效率,适当的学习这些知识。像我们生活中,比如天天拿着手机录语音,那个复杂吗?不复杂。但是,背后的技术是很复杂的。

但是对于应用来说并不复杂。我们老师对人工智能的学习不要太担心。但是,你刚才提了一个很重要的问题,人工智能人才的培养。确实,人工智能人才的培养是我们国家和整个社会迈向智能时代的一个非常关键的地方。

我觉得,一是面向大众来说,我们要培养了解人工智能,未来会对我们的社会产生哪些影响,了解人工智能在现实生活中有哪些应用,这样理解这个社会的变化,主动拥抱这些变化,这是对非专业的人士。对一些专业人才,我觉得可能我们国家,一个是要加强人工智能的职业教育,在职业教育大力普及人工智能的一些技术,人工智能工程方面的工作。

比如要向使得人工智能的发展,今后数据处理是很重要的能力,数据收集、数据标记、数据关联、数据工程。第二,今后机器学习、机器训练,了解典型的各种机器学习的原理,以及它的训练的技巧、训练的方法。

另外,了解人工智能和各行各业,对各行各业特定的领域知识库的应用,以及应用系统的配置管理,我们要在职业教育里面大力加强人工智能专业的发展,让他能够很好地支持、管理以及推进人工智能在各行各业的应用,使他有序化。

另外,人工智能还要加强研究性人才的培养,大学里面研究性人才的培养。因为人工智能不是一天练成的,是一个信息科技在一个时间段内持续性发展的一个过程,智能爆发。智能爆发的背后是有成千上万研究者的智慧转化为我们生活中可以实际应用的系统,这个时候我觉得,在人工智能领域里面,高校的职责,一个是把我们信息科技,计算机相关专业办好,这是人工智能的基础。

另外,希望有一些有实力的高校多办人工智能的专业,尤其是研究性高校,这是推进技术往前进步的核心动力,需要有精英参与。另外,这个过程中,我们特别要避免计算机教学,或者人工智能教学、人工智能研究,以唯论文为核心,论文很重要,光有论文解决不了问题,一定要以解决实际问题,形成开源的系统。

像国外,计算机科学,很多大学做的那些开源的系统,对这个行业的发展,对这个研究的发展起着非常大的推动作用,但是在我们国家,这种有影响的,寥寥无几,而且不受认可,做一个几百万人用的开源系统可能还不如人家写一篇SCI论文,这是不健康的,因为这些东西最后使得我们纯理论化,对于整个行业、整个产业发展是不利的。

所以我们特别希望在计算机科学的教育,以人工智能的教育,要强调多结合实践,当然不是不发表文章,文章还是要,需要解决重大实际过程中去发文章,而不是为发文章而发文章,要解决重大实践问题,做出能够得到广泛使用,能够推动这个行业往前迈一步的应用系统,这样的话,才使得我们的研究和产业发展能够一步一步往前走。

我现在看到我们在北京市的一些中小学,他们已经开设人工智能课程了。现在在中小学开设人工智能课程,会不会太早了?

我也看到了,现在有很多学校开一些人工智能的课。还有一些企业专门编了中小学的人工智能课程。当然我觉得,在中小学,适当普及人工智能的常识是对的,但是有一些过于急功近利不值得倡导。我看过一套人工智能的教材,从三年级就开始开人工智能,很多词汇术语可能都不清楚,现在给他讲很复杂的知识,这是不合适的。因为这些知识,这个时候去学,同样一个东西理解,可能两三个星期才能明白这个词说什么意思,但是等到成年以后,可能只花两三个小时就能明白这个事情。

所以我不鼓励太多复杂的知识进入到中小学,但是适当的让小孩子理解人工智能对现实社会的变化的影响,了解人脸识别,可以做什么,了解各行各业里面应用的现象,就像我们了解汽车、飞机可以飞的道理。比如同样一个力,我们小学生也要学力的概念,但是只要知道力是相互作用的就可以了,但是到了大学就要了解力和力之间复杂的关系,甚至还要了解宏观的力和微观的力是完全不同的性质。

同样是讲人工智能,你对低年级的时候应该以浅显、形象了解为主,到了那些知识复杂算法还是应该到大学,到研究生阶段再去教比较合适。适当地让学生有一些体验性的活动,以结合信息技术课,寓教于乐,结合信息技术课,尤其是在小学,我不赞成系统开人工智能的课,但是可以让学生有感性的认识、感性的体验性的可以的。

但是概念体系和编程能力,并不见得要那么系统化。但是适当到了初中和高中的时候,结合信息技术课,因为本身信息技术课是有的,结合信息技术课适当渗透人工智能的知识,这是可以的,这是合适的。否则容易超前教学。现在什么东西都要往中小学渗透,中小学的负担太重了。

实际人的心智是有个发展的过程,当心智发展不全的时候,学一个东西花很长时间,抽象思维水平到了一定程度以后,花几个小时就学会了。要提高他到了成年以后的学习能力,小的时候要适当地给他留白,留空。让他不受过重的学习负担的压力。因为过分的学习负担的压力会造成学生学习的厌倦、倦怠,以及泯灭他的好奇心、求知欲,一旦一个孩子成长过程中,没有了好奇心、没有了求知欲,养成了功利性读书的习惯,对于他一辈子的成长都会起着巨大的障碍作用。

真正的杰出的人才都是具有很强的自学能力,很强的自律意识,很强的好奇心、求知欲在这里驱动,是内在驱动的,而不是外在驱动的。外在驱动,环境变化,有外在的驱动力弱了以后,基本就停滞不前,现在过分的学习负担过重,会对小孩子的好奇心、求知欲会起到压制作用,长期来说不好。

主持人

感谢余教授提出的中肯的意见。我们知道余教授所在的北师大未来教育高精尖创新中心是2015年成立的,到现在四年时间了,你们肯定也在致力于人工智能在教育方面的落地和研究,您觉得,通过这四年的努力和研究,有没有发现我们国家人工智能现在在我们教育领域当中会不会存在着一些问题或者挑战?

余胜泉

目前人工智能在实际应用过程中,还存在一些问题,我觉得代表性的可能体现在,一个是目前产业界对人工智能应用的场景过多的关注讲测考练,知识性的教学太多,都在用人工智能提高知识教学的效率,比如都在适应性学习,做题库,经典推荐,当然有一定作用,但是这个是对原来我们教学优势的一种强化,有时候强化的极致以后反而成了一些问题。

用人工智能进行应试教育方面做得比较多。我们其实特别希望人工智能不光是要做应试教育这方面内容,更多的需要人工智能在学生身心健康发展方面,学生体质健康发展方面,降低学生负担方面,帮助我们教育做科学决策方面,发挥更大的作用。应用场景一定要多元化、多样化。

比如我看到过一个美国的公司做的产品,给盲人做了一个智能手环,拿手在书上划,就能把书上的文字变成语音,让盲人也能听到,这种应用非常有价值,我们国家都是在搞知识性教育,原来学生做五道题,再给你做五道题,纯讲测考练的,这样就有点违背我们的教育教学的规律。这是第一个问题。

第二个问题,我觉得,目前人工智能还存在数据的问题。就是人工智能真正要发挥作用,需要有各种各样的学习数据,而且这个数据要贯通形成,有更多的数据才有更多的智能。形象地说,人工智能像汽车,数据就像汽油,没有数据,汽车就跑不起来。这种数据目前还存在着,一个是数据的孤岛,数据隔离的现象,每个系统都有各自的数据,数据没有融会贯通。

第二,数据使用的规范也存在问题。学习过程中的数据,涉及到孩子的隐私,目前隐私伦理在教育数据利用方面还缺乏清晰的规范,我觉得应该有这种清晰的教育数据利用的伦理和规范,尊重儿童身心健康以及个人隐私的前提下,合理利用数据。当然也不是说完全不用,完全不用会扼杀这个产业。一是数据贯通,一个是要遵循数据的伦理和规范。

第三个问题,人工智能还存在着技术上本身还有很大的发展。目前真正大规模使用的,像英语口语考试、英语的学习,以及英语作文的批改,这些方面做得相对成熟一些,智能教学,仪器教学装备有了一些。但是很多我们理想上问题的解决,还有待人工智能技术的进一步的成熟。这种成熟关键在于,一是要把人工智能产业界的技术人员和我们教育体系里面的人员结合在一起,形成交叉融合。

如果纯技术驱动,不懂教育规律,有时候就用技术强化我们教育中的很多违背规律的做法。实际上要在正确的教育思想、教育理念、教育规律下发挥技术所应该发挥的作用,一定要在遵循教育规律下不断地推进我们的技术成熟。这对于人工智能的发展也会起到非常重要的作用。

另外,人工智能还要避免两个极端思想。一种极端思想就是认为人工智能能做一切,什么问题都能解决。唯人工智能论。今后人工智能会取代老师,人工智能会取代学校,这都是比较简单的过分乐观的,像我们接触过原来一些企业界的,未来互联网会消灭学校,走了20多年,学校还很好,不可能的。

人工智能不会取代学校,也不会取代老师,不要过于乐观。另外,也要防止那些过于悲观。有些认为人工智能一点用没有,花架子之类的,也要防止这种过于的悲观。这两个之间要有些平衡,要防止这两个极端的事情。

另外,人工智能在用于一些关键性业务的时候,高利害业务的时候,可能还需要各种保障机制,像前段时间,印度就出了一个事情,印度的高考,由于它的高考阅卷系统出现故障,造成很多孩子都不及格,印度那段时间自杀了十几个,自杀了好多孩子,因为印度的高考是高利害的,和我们二三十年前一考定终身差不多,这也给我们启示。高利害的这些应用一定要慎重。比如说我让人工智能来阅卷,这个阅卷是高利害的,决定一个人的很大利益的。

这个时候我建议应该采用多种原理的技术,因为人工智能同样实现这个东西,可能有不同原理,不同原理的技术,比如我找三个产品来同样做这件事情。如果这三个产品都能够有一致性,这就比较稳定。如果有差异,这个产品好,那个产品差,有分歧的时候,这时候人工介入。这是比较科学的。在高利害的应用领域里面,还需要人机结合的思维方式。这种方式非常重要。

主持人

谢谢。今天非常感谢余教授和大家一起分享人工智能在我们教育领域目前的应用。包括我们未来还需要解决哪些问题,受益匪浅。非常感谢您。感谢大家收看我们今天的节目,下期见。

|来源:人民网

|美编:甄宏莉返回搜狐,查看更多

人工智能的安全问题不容忽视

现在有很多技术可以欺骗人工智能,也有很多人工智能技术被用来欺骗人。在人工智能(AI)时代,安全问题不容忽视。

近几年,人工智能技术在很多领域都取得了初步的成功,无论是图像分类、视频监控领域的目标跟踪,还是自动驾驶、人脸识别、围棋等方面,都取得了非常好的进展。那么,人工智能技术到底安全不安全?事实上,目前的人工智能技术还存在很多问题。

人工智能并不安全

现在有很多技术可以欺骗人工智能,如在图片上加入一些对抗干扰。所谓对抗干扰,就是针对智能判别式模型的缺陷,设计算法精心构造与正常样本差异极小、能使模型错误识别的样本。如图1所示,本来是一幅手枪的图片,如果加入一些对抗干扰,识别结果就会产生错误,模型会识别为不是枪。在人的前面挂一块具有特定图案的牌子,就能使人在视频监控系统中“隐身”(见图2)。在自动驾驶场景下,如果对限速标识牌加一些扰动,就可以误导自动驾驶系统识别成“Stop”(见图3),显然这在交通上会引起很大的安全隐患。另一方面,人工智能的一些技术现在正在被滥用来欺骗人。例如,利用人工智能生成虚假内容,包括换脸视频、虚假新闻、虚假人脸、虚拟社交账户等。

图1被暴恐检测系统识别成正常图片

图2在智能监控下隐身

图3误导自动驾驶系统

不只在图片和视频领域,在语音识别领域也存在这样的安全隐患。例如,在语音中任意加入非常微小的干扰,语音识别系统也可能会把这段语音识别错。同样,在文本识别领域,只需要改变一个字母就可以使文本内容被错误分类。

除了对抗攻击这种攻击类型外,还有一种叫后门攻击的攻击类型。后门攻击是指向智能识别系统的训练数据安插后门,使其对特定信号敏感,并诱导其产生攻击者指定的错误行为。例如,我们在对机器进行训练时,在某一类的某些样本中插入一个后门模式,如给人的图像加上特定的眼镜作为后门,用一些训练上的技巧让机器人学习到眼镜与某个判断结果(如特定的一个名人)的关联。训练结束后,这个模型针对这样一个人还是能够做出正确的识别,但如果输入另一个人的图片,让他戴上特定的眼镜,他就会被识别成前面那个人。训练的时候,模型里留了一个后门,这同样也是安全隐患。

除了对抗样本、后门外,如果AI技术被滥用,还可能会形成一些新的安全隐患。例如,生成假的内容,但这不全都是人工智能生成的,也有人为生成的。此前,《深圳特区报》报道了深圳最美女孩给残疾乞丐喂饭,感动路人,人民网、新华社各大媒体都有报道。后来,人们深入挖掘,发现这个新闻是人为制造的。现在社交网络上有很多这样的例子,很多所谓的新闻其实是不真实的。一方面,人工智能可以发挥重要作用,可以检测新闻的真假;另一方面,人工智能也可以用来生成虚假内容,用智能算法生成一个根本不存在的人脸。

用人工智能技术生成虚假视频,尤其是使用视频换脸生成某个特定人的视频,有可能对社会稳定甚至国家安全造成威胁。例如,模仿领导人讲话可能就会欺骗社会大众。因此,生成技术是否需要一些鉴别手段或者相应的管理规范,这也是亟须探讨的。例如,生成虚假人脸,建立虚假的社交账户,让它与很多真实的人建立关联关系,甚至形成一些自动对话,看起来好像是一个真实人的账号,实际上完全是虚拟生成的。这样的情况该如何管理还需要我们进一步探索和研究。

人工智能安全隐患的技术剖析

针对AI的安全隐患,要找到防御的方法,首先要了解产生安全隐患的技术。以对抗样本生成为例,其主要分为2类:一类是白盒场景下对抗样本生成;另一类为黑盒场景下对抗样本生成。白盒场景的模型参数完全已知,可以访问模型中所有的参数,这个情况下攻击就会变得相对容易一些,只需要评估信息变化的方向对模型输出的影响,找到灵敏度最高的方向,相应地做出一些扰动干扰,就可以完成对模型的攻击。黑盒场景下攻击则相对较难,大部分实际情况下都是黑盒场景,我们依然可以对模型远程访问,输入样本,拿到检测结果,但无法获得模型里的参数。

现阶段的黑盒攻击可大致分为3类。第一类是基于迁移性的攻击方法,攻击者可以利用目标模型的输入信息和输出信息,训练出一个替换模型模拟目标模型的决策边界,并在替换模型中利用白盒攻击方法生成对抗样本,最后利用对抗样本的迁移性完成对目标模型的攻击。第二类是基于梯度估计的攻击方法,攻击者可以利用有限差分以及自然进化策略等方式来估计梯度信息,同时结合白盒攻击方法生成对抗样本。在自然进化策略中,攻击者可以以多个随机分布的单位向量作为搜索方向,并在这些搜索方向下最大化对抗目标的期望值。第三类是基于决策边界的攻击方法,通过启发式搜索策略搜索决策边界,再沿决策边界不断搜索距离原样本更近的对抗样本。

有攻击就有防御,针对对抗样本的检测,目前主要有3种手段。第一种,通过训练二分类器去分类样本是否受到干扰,但通用性会比较差。通常而言,训练一个分类器只能针对某一种特定的攻击算法,但在通常情况下并不知道别人使用哪一种攻击算法。第二种,训练去噪器。所谓的对抗干扰基本上都是样本中加入噪声,通过去噪对样本进行还原,从而实现防御。第三种,用对抗的手段提升模型的鲁棒性,在模型训练中加入对抗样本,模型面对对抗样本时会具有更强的鲁棒性,提高识别的成功率,但训练的复杂度较高。整体而言,这些方法都不很理想,我们亟须研究通用性强、效率高的对抗样本的防御方法。

针对换脸视频的生成,目前主流技术是基于自动编码器进行人脸图像重建。在模型训练阶段,所有的人脸图像使用同一个编码器,这个编码器的目标是学习捕捉人脸的关键特征。对于人脸重构,每个人的脸都有一个单独的解码器,这个解码器用于学习不同人的脸所具有的独特特征。利用训练后的编码器与解码器即可进行虚假人脸生成。

针对换脸视频的鉴别,目前主流技术是基于视觉瑕疵进行鉴别,这个假设是换脸视频具有不真实的情况。因此,可以对眨眼频率、头部姿态估计、光照估计、几何估计等提取特征,利用这些特征去判断人脸的图片或者视频的真假。

对抗攻防已取得一定研究成果

目前,我们在人工智能安全技术上加大了投入,围绕人工智能安全领域的问题开展了一些研究。

第一个工作是针对视频识别模型上的黑盒对抗攻击。在该工作中,我们利用对抗扰动的迁移性,将图像预训练模型中得到的扰动作为视频帧的初始扰动,并在此基础上利用自然进化策略对这些初始扰动噪声进行纠正。当我们得到针对视频域特殊纠正后的梯度信息后,采用投影梯度下降来对输入视频进行更新。该方法可以在黑盒场景下,对主流视频识别模型进行攻击,这也是全球在视频模型黑盒攻击上的第一个工作。我们实现的结果是在目标攻击情况下,需要3万至8万次查询就可以达到93%的攻击成功率,非目标攻击只需要数百个查询就可以完成对主流模型的攻击。目标攻击是指不仅让这个模型识别错,还要指定它把这个东西识别成什么,如把A的照片识别成B。非目标攻击是指只要识别错就可以了,识别成谁则不重要,如A的照片只要不识别成A就可以。

第二个工作是基于时空稀疏的视频对抗攻击。由于视频数据的维度很高,导致攻击算法的复杂度往往较高。对此,我们提出了基于时空稀疏的视频数据对抗攻击方法。时空稀疏是指在生成对抗扰动时,仅对特定帧的特定区域生成扰动,以此降低对抗扰动的搜索空间,提高攻击效率。在该工作中,为了实现时空稀疏,我们根据启发式规则衡量每个帧的重要性,选择视频帧的子集进行扰动;同时,在空间上我们选择指定帧的写入区域,如针对前景运动的人做一些干扰。以此实现高效的视频黑盒攻击。

第三个工作是针对视频识别模型进行后门攻击。针对后门攻击,之前的研究都集中于图像领域,且都是生成固定的棋盘格式的后门,这种方法在视频上的攻击成功率极低。对此,我们提出了一种针对视频数据的后门攻击方法。在该工作中,我们首先对视频数据进行后门生成,并将后门图案安插在视频中不显眼的角落,同时我们对原始视频其他内容施加一些对抗干扰,使得我们识别的模型更加侧重利用后门,以此得到污染数据,并用污染的数据替换原始数据集里对应的数据,实现后门攻击。该工作在公开数据集上取得了比较好的攻击结果,在很多类别上平均攻击成功率可以实现80%左右,远高于现有的基于图像数据的后门攻击方法。

技术对人工智能治理至关重要

未来,技术将在人工智能安全问题检测以及相应规则落实上发挥重要的作用。在保障模型安全方面,通过发展对抗攻防理论设计更加鲁棒的智能模型,确保智能系统在复杂环境下的安全运行,形成人工智能安全评估和管控能力。在隐私保护上,发展联邦学习及差分隐私等理论与技术,规范智能系统分析和使用数据的行为,保障数据所有者的隐私。针对智能系统决策的可解释性问题,发展机器学习可解释性理论与技术,提升智能算法决策流程的人类可理解性,建立可审查、可回溯、可推演的透明监管机制。在决策公平方面,可以利用统计学理论与技术,消除算法与数据中的歧视性偏差,构建无偏见的人工智能系统。最后,为了保证人工智能技术不被滥用,可以通过发展大数据计算与模式识别等理论与技术,预防、检测、监管智能技术被滥用的情况,创造有益于人类福祉的人工智能应用生态。

姜育刚,复旦大学教授、博士生导师,计算机科学技术学院院长、软件学院院长、上海视频技术与系统工程研究中心主任。

文/姜育刚

本文来自《张江科技评论》

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇