智库观点丨张志华:现代人工智能的本质、技术和途径
人工智能是指系统或智能体试图模拟或拥有人类的行为、思维和智能,虽然有不同途径期望通向人工智能,但这里我们只关注数学和工程相结合的技术路线。简单地说,现代人工智能技术就是通过机器学习及由其驱动而发展起来的计算机视觉、自然语言处理和语音识别技术来实现多模态数据融合的现实交互。人工智能的本质是处理匹配、决策和生成等任务。这又和机器学习的三大学习范式——有监督学习、强化学习和无监督学习相呼应。数学上,现代人工智能技术则可以理解为利用数据驱动的方法求解具有组合结构的复杂高维问题。这也意味着计算机科学和统计学是现代人工智能的两个重要学科支柱。“什么是智能”是人工智能的根本性问题。回答这个问题,需要考虑“人与理性”以及“思想与行为”两个维度的四种组合:类人行为、理性行为、类人思考、理性思考。
类人思考和理性思考意味着智能体具有思考和自省能力,这超越了人工智能作为技术的范畴。类人行为和理性行为分别代表了当今人工智能的两种主要分类:弱人工智能和强人工智能。“图灵测试”被广泛用于测试系统是否具有智能特性,然而这只是对智能的一种定性描述。迄今为止还没有一种对智能的定量数学定义。
人工智能经历了热情高涨和期望无限的早期(1952-1969),通用搜索机制所导致的回落期(1966-1973),以专家系统为代表的基于规则学习的崛起期(1969-1986),神经网络联结主义的回归期(1986-1995),统计机器学习的复兴期(1995-至今),以及大数据驱动的深度学习突破期(2006-至今)。因此,可以把现代人工智能理解为数据科学的高级形式。
人工智能的发展历程本质上就是试图寻找有效求解具有组合结构问题的方法的过程。在早期阶段,由于考虑的问题规模较小,且关注的任务相对单一,通常可以采用暴力搜索方法。然而随着问题规模变得越来越大以及任务变得越来越复杂,使用通用搜索机制求解问题变得不可行。因此,考虑利用数据或者规则的内在结构设计高级算法来求解。然而任何算法寻找精确解的适用性总是有其边界的,这迫使我们在效率和性能之间寻求折衷的方法——寻找近似解或次优解。引入不确定性和“探索和使用”机制产生了求解问题的突破性思路,数据驱动的统计方法由此被广泛应用。一方面数据的积累规模越来越大,且利用预训练和蒸馏等技术使得获取所需数据变得更加容易,另一方面从数据中挖掘信息和推理结论的算法技术也在不断改进和提升。人工智能的求解任务从匹配到决策以至生成,使得序贯动态决策和多模态数据生成都成为可能。
机器学习起源于计算机科学,但它和统计学也一脉相承,都是试图从数据或经验中学习以提升系统的能力或性能。机器学习是现代人工智能获得成功的一个最有效途径。特别地,深度学习和强化学习构成现代人工智能技术的两翼。深度学习利用层级化、局部化和正则化等思想提供了一种强大的数据表示方式或者函数逼近模型,且它的计算便于并行执行。深度学习给计算机视觉、自然语言处理、语音识别、棋牌游戏以及自然科学一些领域带来了颠覆性的突破,并为实现多模态数据生成提供了可行方法。强化学习则利用反馈、对抗和试错等机制提供了一种求解问题的方法论或者算法设计的数学表示,为我们实现在线决策提供了潜在思路。深度学习和强化学习相得益彰,融合两者的“深度强化学习”可以有效地克服求解具有组合结构的高维问题所面临的维数诅咒挑战,为我们实现现代人工智能提供了强大的技术方法。因果学习是实现人工智能的另一种潜在途径。它提供了表示对象之间逻辑关系的概率方法,因此在可解释性方面扮演着重要的角色,但是它面临着大规模数据的可扩展性问题。在深度学习和强化学习基础上,结合因果学习和统计物理模型,为设计新一代大语言模型赋予更多遐想。
人工智能发展方兴未艾,算法、应用和基础构成其研究的三个层面。首先,提出和开发新模型、新技术、新算法。其次,寻找人工智能技术更广泛的应用,定制具体领域场景的人工智能系统。第三,关注人工智能模型所蕴含的理论基础,旨在设计尽可能高效地利用资源、信息和计算能力的算法,或者判断什么情况下设计出信息和计算有效的算法是不可能的。我们通常从样本有效性和计算有效性两个方面来研究上述问题。样本有效推理是统计学的一个经典主题,而计算有效算法是计算机科学研究的核心课题。正如我们现在看到的,两者的交汇产生了有趣和令人惊奇的效果。如果孤立地研究它们,将无法了解这些效果。因此,这种更现代的观点对于理解和分析人工智能基础至关重要,同时也可能会给我们带来新的数学问题。
10年前深度学习在计算机视觉中以及近期强化学习在大语言模型中取得的成功都是算法和工程完美结合的巅峰之作。一个好的算法需要好的工程实现才能发挥其最大的效果。大模型的搭建、超参数的选取、数据的增广、以及精调、蒸馏和预训练等既是工程技术也是艺术,是算法的必要补充,也是驱动新算法提出的源泉。计算图和自动微分技术的提出让人工智能的开发和研究变得相对容易。机器学习系统已成为了一门重要的领域。
人工智能和数据科学都是概率论在数据中的应用,前者更注重人机交互的智能属性,而后者则更注重问题解释的科学属性。人工智能是计算机科学的应用,数据科学是统计学的拓展。机器学习是计算机科学和统计学的交汇,是探索人工智能和数据科学的核心方法。因此,发展人工智能归根结底取决于计算机科学和统计学的学科发展和人才培养的底蕴。
发展人工智能技术需要高度的想象力、创造力和执行力,需要务实、理性、严谨的求是态度。人工智能的未来属于青年。因此,我们需要创造一个良好的环境和机制,潜心培养一批批有才华的年轻人,并创造机会让他们能脱颖而出。特别地,以做项目完成指标为导向和以做论文为研究驱动的博士生培养模式已经不能很好地服务科技的创新。我们同样需要有以培养下一代人才为纯粹要务的模式——即帮助学生构建较为完整、先进的学科知识体系和储备丰富的研究工具和手段,树立他们独立、平等和合作的科学精神,鼓励他们去自由探索最有挑战的领域和项目。唯有这样,我国人工智能或科技未来可期。
后记
2018年4月我在北大申请设立机器学习博士生项目作为计算机科学和统计学之间的纽带,未被认同,没能成功,颇为遗憾。本文写作的动机是鼓励我的学生们对现代人工智能技术应抱有极大的学习热情,但更重要是告诉他们统计学发展正当其时、大有作为,当务之要则是构建前沿的知识体系,掌握尽可能多的数学工具,要么研究人工智能无法逾越的基础问题,要么研究设计和分析人工智能技术的方法。
致谢
感谢周舒畅博士和我之前的学生王树森、赵申剑,由于和他们在大语言模型研发方面的交流让我对业界需求有比较清晰了解。感谢JohnHopcroft教授,每次和他交谈总是受益良多,他关于人才培养的理念让我振聋发聩、诚惶诚恐。张志华2023年3月31日
作者简介
张志华
北京大学数学科学学院统计学教授,大数据分析与应用技术国家工程实验室机器学习中心主任。主要从事机器学习、应用统计和数值计算的交叉学科的研究。研究范围涉及理论、模型、算法和应用等多个层面,研究方向主要包括机器学习与模式识别、统计建模与计算、数值代数与优化、分布式计算构架等。
转载本网文章请注明出处
人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
人工智能导论第一次作业(人工智能有哪些研究途径与方法它们的关系如何人工智能有哪些研究内容人工智能领域有哪些分支领域和研究方向现在人工智能有哪些学派它们的认知观是什么)
人工智能有哪些研究途径与方法?它们的关系如何?(1)研究途径与方法
“心理模拟、符号推演”心理学派、逻辑学派和符号主义的基于“心理模拟和符号推演”的人工智能研究。就是从人脑的宏观心理层面入手,以智能行为的心理模型为依据,将问题或知识表示成某种逻辑网络,采用符号推演的方法,模拟人脑的逻辑思维过程,实现人工智能。
“生理模拟、神经计算”“生理模拟、神经计算”就是从人脑的生理层面,即微观结构和工作机理入手,以智能行为的生理模型为依据,采用数值计算的方法,模拟脑神经网络的工作过程,实现人工智能。具体来讲,就是用人工神经网络作为信息和知识的载体,用称为神经计算的数值计算方法来实现网络的学习记忆联想识别和推理等功能。
“行为模拟、控制进化”“行为模拟、控制进化”是一种基于“感知—行为”模型的研究途径和方法,我们称其为行为模拟法。基于行为模拟法的人工智能研究,被称为行为主义、进化主义、控制理论学派。
“群体模拟、仿生计算”“群体模拟、仿生计算”就是模拟生物群落的群体智能行为,从而实现人工智能。其特点为可以直接付诸应用而解决工程问题和实际问题。
“博采广鉴、自然计算”“博采广鉴、自然计算”就是模仿或者借鉴自然界中某种机理而设计计算机模型,这种计算机模型一般具有自适应、自组织、自学习、自寻优能力的算法。
“着眼数据、统计建模”“着眼数据、统计建模”就是着眼于事物或问题的外在表现和关系,收集、采集、整理相关信息并做成样本数据,然后基于样本数据用统计学、概率论和其他数学理论和方法建立数学模型,并采用适当的算法和策略进行计算,以期从事物外在表现的样本数据中推测事物的内在模式或规律,并用之解决相关实际问题。
(2)关系
以上人工智能研究的六种方法和途径,它们各有所长,也有各自的局限性。所以,这些研究途径和方法并不能相互取代,而是并存和互补的关系。
人工智能有哪些研究内容?难题求解自动规划、调度与配置机器博弈机器翻译与机器写作机器定理证明自动程序设计智能控制智能管理智能决策智能通信智能预测智能仿真智能设计与制造智能车辆与智能交通智能诊断与治疗智能生物信息处理智能教育智能人—机接口模式识别智能机器人数据挖掘与知识发现计算机辅助创新计算机文艺创作人工智能领域有哪些分支领域和研究方向?a).从研究内容来看,人工智能可以分为搜索与求解、知识与推理、学习与发现等十大分支领域(它们构成了人工智能学科的总体架构)。
b).从研究途径和智能层次来看,人工智能可分为符号智能、计算智能、统计智能和交互智能等四大分支领域。
c).从所模拟的脑智能或脑功能来看,AI中有机器学习、机器感知、机器联想、机器推理、机器行为等分支领域。
d).从系统角度看,AI中有智能计算机系统和智能应用系统两大类。
e).从应用角度看,AI中有难题求解等数十个分支领域和研究方向。
f).从信息处理角度看,人工智能的研究涉及确定—确切性信息处理、不确定—确切性信息处理、确定—不确切性信息处理和不确定—不确切性信息处理等四个主题。
现在人工智能有哪些学派?它们的认知观是什么?目前人工智能的主要学派有下面三家:
(1) 符号主义,又称为逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
(2) 连接主义,又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。
(3) 行为主义,又称为进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
认识观
符号主义认为人工智能源于数理逻辑连接主义认为人工智能源于仿生学行为主义认为人工智能源于控制论5.未来人和机器的关系是什么?
在机器人行为准则被严格贯彻的情况下,机器人可以参与到人们的生活和工作中去,人和及其人可以和谐共存也可以成为朋友甚至是家人。
6.智能时代青少年人工智能伦理教育有必要吗?为什么?
我认为智能时代青少年人工智能伦理教育十分有必要。
从2017年起,伴随互联网和大数据信息技术的社会普及,“人工智能+教育”已成为当前国内教育领域的前端热门话题。编程作为人工智能教育的基础语言成为教育领域的焦点。越来越多的学校和企业采取联合教研的方式合作,利用双方优势助推人工智能教育的普及。国务院《新一代人工智能发展规划》指出,人工智能成为国际竞争的新焦点。人工智能是引领未来的战略性技术,人工智能将深刻改变人类生产生活方式和思维模式,人工智能的迅速发展将深刻改变人类社会生活、改变世界。 人工智能要从娃娃抓起,推动国民科学创新素质。信息数字化社会中,人工智无处不在,融入到教育、交通、金融等改革发展的万花筒中。两会时间里,人工智能被写进2018年政府工作报告,引起社会各界尤其是教育领域的高度关注。“人工智能时代刚刚来临,人工智能发展方面人才缺口大,同时国内中小学校的STEAM科学教育课程也亟待加强,这是促进素质教育的有力突破口。”中国教育科学研究院副研究员郁波说。教育部发布的《关于“十三五”期间全面深入推进教育信息化工作的指导意见》提出,鼓励中小学探索STEAM教育、创客教育等新教育模式,使学生具有较强的信息意识与创新意识,养成数字化学习习惯。“人工智能是改变人类未来生活方式的重要手段,是未来颠覆人类发展生活的大方向。”,对国内中小学教育,人工智能和教育相结合势在必行,“让人工智能融入中小学课堂,推助国民科学创新素质,为国家的人工智能发展培育种子力量,这是一种社会责任。