博舍

人工智能的历史、现状和未来 人工智能实现了没有

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

强人工智能为什么造不出来

人工智能(ArtificialIntelligence),英文缩写为AI,是计算机科学的一个分支,目的是研究,开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。(来自百度百科)

  人工智能有尽头吗?我想应该是有的,那就是强人工智能。有这样一则笑话:一人问:人类的最后一项发明可能会是什么?答曰:自动发明机......强人工智能的出现可以说是人工智能学科的一个质变,如果未来能够发明一种可以制造人工智能的人工智能,那么人工智能科学可能就会到尽头了。

  在1950年,阿兰·图灵就提出机器能否思考的问题,他认为,如果一台计算机对问题的回答和人的回答没有区别,那么就可以认为这台计算机是一台会思考的机器。这个实验称为图灵测试。图灵也提出过一种强人工智能的观点,那就是孩童机(ChlidMachine),首先创建一个具有少量智能的Agent,称为空白表单(blacksheet),然后使它接受知识,从小的、低层次的智能开始的思想与启发式思考者随后提出的思想是一致的,那么,一个孩童就像一个装满了空白表单的笔记本,但他也是存储知识的一种机制。

  有一种人脑模拟的智能表示,早在1949年,当时数字计算机时代还没有来临,威廉·格雷·沃尔特就已经设计出了早期的机器人,称其为MachinaSpecilatrix,主要原理是用模拟的电子电路模拟大脑的工作过程,也就是说,如果把某种导电材料按照大脑中神经元的连接方式连接,能否得到意识?或者一个智能的存在?联结主义者认为,至少就智能而言,构成材料是无关紧要的,只要它能准确复制人脑中所发生的事情。但是它的问题是,人脑中的神经元高达八百亿之多!而且这些神经元之间用极其精妙的连接组成了一套高度复杂的网络系统,而且每个神经元,单元组具有灵敏的自动化模式,受到各种已知或未知的生物因素的调控,不仅如此,人类的认知模式也存在着内在强烈附在关联的,并且人类本身之间都可能不一样,总之,即便是目前的超级计算机也无法模仿整个的人脑,除非等到下一代计算机有惊人的计算力的话,这种方案是不可行的。

  目前出现了一种深度学习方法,按照定义,深度学习是“使用具备深层隐藏层,不同连接结构的神经网络来进行学习”,这种定义是一种强人工智能的定义。但问题是,目前大多数的目前大多数的深度学习网络没能突破“特征检测”这个范畴,现在的深度学习其实只是模拟了人类复杂神经系统中的感觉系统,离具备决策功能的大脑还差得远。当前没有人能够确切知道如何破局,但一个可能的方向是,组建基于“神经网络”的神经网络,说起来简单,做起来难,如何训练单个神经网络?这个要继续向人类如何学习知识来取经了。

  总结:强人工智能还很远,人类想靠当前的计算机技术是无法创造真正的人工智能的,并且从本身的性质来说,它是不会带来直接的经济效益的,而且失败的可能性也很高,2013年,斯坦福大学人工智能实验室的肯尼思·索尔兹伯团队制作了一个可以买咖啡的机器人,它能够识别透明的玻璃门,找到开门的门把手,找到电梯,并乘坐下楼去咖啡店买咖啡,最后这个机器人用了40分钟的时间把咖啡带到了办公室,远比一个人花10分钟买咖啡的效率低,但这只是一个开始,随着未来计算机技术的发展,以及新的人工智能思想的提出,目前所遇到的障碍很有可能会被解决掉。

当人工智能有了情感,人类未来该如何自处

《情感经济:人工智能、颠覆性变革与人类未来》,[美]罗兰·T.拉斯特、黄明蕙著,彭相珍译,中译出版社2022年1月版。

文学作品和电影,往往将奇点视为威胁和恐怖事件。例如,在斯坦利·库布里克的电影《2001:太空漫游》中,计算机HAL(IBM公司缩略名称字母前移一位,即H-I、A-B、L-M),不仅具有机械智能和思维智能,它还具有足够的情感智能来愚弄和操纵宇航员(并杀死了大部分宇航员)。最终,HAL基于自己的利益,损害了它本应服务的人类的利益。

电影《2001:太空漫游》(1968)剧照。

但在斯蒂芬·斯皮尔伯格的优秀电影《人工智能》中,人工智能表现为更积极的形象,库布里克也是该片的主要合作者(直到他英年早逝)。在这部电影中,大部分主角都是拥有发达情感智能的机器人。在电影的最后,人工智能外星人已经占据了主导地位,但他们对老一代的机器人,表现出了相当程度的关心、关注和同情。电影《她》也从一种有利于人类的角度描绘了人工智能。人工智能“操作系统”(斯嘉丽·约翰逊配音),对她的人类主人表现出极大的同情心。经典科幻电影《银翼杀手》也从正面描写了人工智能机器人,并描绘了具备深刻情感智慧的最先进的机器人。

因此,我们也看到,人类对人工智能的情感能力的观感是矛盾的。在最坏的情况下,人工智能将利用其情感智能来操纵人类,以达到自己的目的。在最好的情况下,人工智能将利用其情感智能,与人类产生共鸣并帮助人类。我们将在下文中探讨这两种可能性。

电影《人工智能》(2001)剧照。

收入和财富不平等会进一步恶化吗?

一旦人工智能发展到了高度的情感智能,它将全方位压倒人类智能。这将自然而然地导致一个后果,即人类的劳动变得不够理想,因为人工智能几乎在所有方面都表现得比人类智能更好。这就意味着人类的劳动将丧失价值,且所有的工作将由人工智能接管。如果经济中的所有价值,几乎都来自人工智能,那么价值将几乎来自资本,而不是劳动。其结果是,经济将由相对少数的资本家掌控。这反过来又会进一步加剧收入和财富的严重不平等。在这种情况下,大多数人类将如何谋生,尚无答案。

人类真的能控制人工智能吗?

许多思想家声称人工智能永远也不能自主完成任务,因为它必须由人类编程。因此,人类将永远控制着人工智能。但事实真的如此吗?我们不妨简单地回想一下当前最常见的人工智能形式,即深度学习神经网络。这种人工智能已经被视为一个“黑盒子”,因为人类很难对其如何产出结果进行解释,即为什么它们能给出特定的解决方案。为此,计算机科学当前的一个重要研究领域就是,如何让深度学习对其客户(人类)而言,变得“可解释”。但一个显然的趋势是,随着人工智能变得越来越复杂,也越来越难被人类理解,导致人类感觉其逐渐失控。

最终,这个问题将变得越来越严重,而不是随着发展逐渐淡化。当人工智能变得足够聪明时,它就有可能做到自我编程。毕竟,计算机的自我编程作用已经存在,并将随着时间的推移而变得越来越普遍。换句话说,人类对人工智能的控制力正在迅速减弱,而随着控制力的丧失,人类如何确保人工智能继续按照既定的要求,致力于实现人类设定的目标,而非它自己的目标,也将成为一个问题。

牛津大学哲学家尼克·博斯特罗姆和麻省理工学院物理学家马克斯·泰格马克,都提醒人类应该注意这种人类失去对机器的控制的问题。他们都指出,人工智能可能会演变成一种智能或多种智能,无论哪种结果,都可能威胁到人类的控制力,甚至威胁到人类的生存能力。正如作家凯文·凯利(KevinKelly)所指出的那样,人工智能设备的联网可能造就异常强大的超级人工智能。

人类享受悠闲生活的设想

关于奇点,人们设想的最幸福场景是,人工智能负责完成社会的所有工作,而人类则可以自由地过着悠闲的生活,追求艺术、玩电子游戏、看3D电视,或沉浸在虚拟现实中。人类也会拥有几乎无限的社交时间(无论是面对面交流还是线上互动),或许未来全人类的生活都会变得类似现代的沙特阿拉伯王国公民的生活。在那里,几乎所有的工作,都由外国人完成,而沙特公民(至少是男性)则享有相当高程度的财富和自由。

电影《人工智能》(2001)剧照。

然而,如果我们从现实的角度来研究这种人类享受闲暇的情景,就会看出这种可能性将很难被实现。因为控制资本的相对少数人,将控制社会的大部分财富,而与对社会没有价值贡献的其他人分享财富,显然不符合前者自身的利益。或许会有少数杰出的人类技术专家能够赚取大量的金钱,但即使是这样的可能性也不太现实,因为人工智能将在三个智能层面碾压人类,并能够比最优秀的人类更好地完成各项工作。

有人可能会辩驳,最终剩下的少数占据主导地位的资本家,或许会是利他主义者,并愿意把自己的财富分配给其他没有赚钱能力的人类,但我们在现实世界中,并没有看到很多证明此类举动可能存在的证据。事实上,在收入最不平等的国家(如印度)中,出现此类善举的概率比世界上最平等的国家(如丹麦)要少得多。

人类的増强和改造

库兹维尔认为,既然相较于超级人工智能而言,人类在经济上不会有竞争力,那么唯一有吸引力的发展道路,就是人类利用人工智能来增强自己,甚至是彻底改变自己。人类利用人工智能实现增强自己,已经存在很长时间了。

首先,是身体的增强。例如,有人可能会使用一条人工腿,来替代被截肢的腿。听力不好的人可以戴助听器,视力不好的人可以戴眼镜。

接下来,是思维增强。人工智能可以通过很多方式来增强人类的思维智能。在很多方面,人工智能已经比人类更聪明了,这些能力可能会被用于人类能做的事情。例如,人类可能会给自己增加一个记忆芯片或计算模块,现在已经有各种各样的方法,能够连接人脑和计算机。最近,科学家已经成功地将人脑与互联网连接起来,可以让人类直接与一个巨大的信息网络连接。

最终,我们还将看到情感的增强。黄明蕙教授曾开玩笑说,她有时候希望拉斯特有一个“同理心芯片”,可以在和她交流的时候运用。而拉斯特则希望黄明蕙教授在开这个玩笑的时候,就能使用这个同理心芯片,然后她就会知道,这样的玩笑听起来不公平且伤人。我们离制作出这样的同理心芯片还相当遥远,但必定会越来越努力地利用人工智能,让人类变得更好。

电影《银翼杀手:2022黑暗浩劫》(2017)剧照。

另一种可能性是,人类有可能完全脱离身体的躯壳。如果整个人类的大脑,都能够被映射和理解(目前,我们只能在体型微小的动物身上运用这种技术),那么理论上一个人的所有知识和记忆,都可以被上传到电脑,甚至转移到机器人的躯体里。这样的技术,被称为“数字季生”气因此,仅在理论上而言,只要计算机能够运行,这样的人类就可以永生。

作为一种已经存在的技术,人类增强几乎必然会随着时间的推移,而变得更加广泛和复杂,从只能够增强机械智能,发展到思维智能和情感智能的增强。

但我们也有理由相信,人类的增强和改造将无法在奇点中存活,且我们的理由非常合乎逻辑。假设我们现在有一个增强型的人类,表现为人类智能+人工智能。毫无疑问,增强的人类将优于未增强的人类,因为其人工智能部分可增加价值。现在,我们再从人工智能的角度来看,人类智能+人工智能可能同样优于单纯的人工智能,只要人类智能部分能贡献一些人工智能不具备的东西。

但问题在于,在奇点概念中,人工智能将在各个方面优于人类智能,换句话说,人工智能可以利用人工智能,生产出一个“更好”的人工智能版本(我们将其称为HI)。那么,人工智能生产的人类智能+人工智能,将比人类增强版的人类智能+人工智能更好。也就是说,人工智能将失去与人类合作的动力。结论是,在人类可以控制人工智能的范围内,人类智能+人工智能(HI+AI)的版本是可行的,但基于优胜劣汰的自然进化理论,更有效的人工智能更有可能存活下来,最后将导致不与人类智能合作成为对人工智能最有效的策略。

末日场景

博斯特罗姆认为,如果出现了人工智能“超级智能”,末日情景是最有可能出现的结果。他指出,在超级智能的人工智能实体中,未必存在仁爱等人类品质。这表明人类作为物种的存在将有处于巨大危险。例如,假设人工智能与人类之间的智力差异,大致类似于人类与蚊子之间的智力差异。如果人类认为彻底消灭蚊子不是什么大事儿,那么人工智能在将人类视为蟆蚁,并彻底灭绝人类的时候,能不能做到三思而后行?

物种进化的下一阶段?

当然,我们也拥有一个合理地应对高级人工智能的出现的积极方式,就是将其视为人类进化的下一个阶段。就像人类从“低等的”、不那么聪明的猿类进化而来那样,一个高级的人工智能,将以人类为基础进化出来。前面讨论的电影《人工智能》就预示了这种可能性。在那部电影中,人类已经灭绝,地球完全由人工智能管理。我们能否接受这种情况可能取决于我们与人工智能的联系,以及我们是否认为新兴的超级人工智能比人类“更好”。但是,要人类接受这样的想法可能存在相当大的阻力,这也意味着,人类接受超级人工智能,可能会变得越来越困难。

电影《人工智能:灭绝危机》(2018)剧照。

当人工智能变得足够聪明的时候,它可以在机械、思维和情感这三个领域,都优于人类的智能。这就是广为人知的奇点场景。我们的观点是,这种情况的发生,可能还需要几十年的时间,但它最终将是不可避免的。市面上已经有不少流行的电影,让我们初步领略了奇点到来之后的可能场景。

和所有大规模的技术变革一样,奇点导致的后果存在无数的可能性,从乌托邦式的(人工智能负责工作,人类负责享受),到灾难性的(人工智能彻底淘汰人类)。但在这两个极端场景的中间,存在一个相辅相成的领域,即人类有可能利用人工智能来增强自己的能力,就像今天我们经常使用机械辅助工具那样。不幸的是,我们得出的结论是,帮助人类可能不符合人工智能自身的利益。相比之下,奇点将使目前的社会由思维经济向情感经济的过渡,变得平淡无奇、无足轻重。

本文选自《情感经济:人工智能、颠覆性变革与人类未来》,较原文有删节修改。已获得出版社授权刊发。

作者丨[美]罗兰·T.拉斯特、黄明蕙

摘编丨安也

编辑丨张进

导语校对丨赵琳

人工智能发展现状及应用

导读:

人工智能(ArtificialIntelligence),英文缩写为AI。人工智能被认为是第四次科技革命的核心驱动力,目前许多领域都在探索AI技术的应用,可谓方兴未艾。那么什么是人工智能,它经历了怎样的发展历程,现阶段发展状况如何,它有哪些应用。本篇文章就为大家做个简单分享。同时也会为大家详细介绍一下百度的AI技术体系。

 

本文主要内容:

1.人工智能概念

①智能

②人工智能

2.人工智能的发展

①人工智能的发展历程

②AI是中国的机遇

3.AI与百度

①百度AI的发展历程

②百度AI的技术体系

③百度AI的场景化应用

 

 

1.人工智能概念

1.1智能

谈到人工智能,需要首先理解“智能”一词的具体含义。智能是指人类才具有的一些技能。人在进行各种活动的过程中,从感觉到记忆再到思维产生了智慧,智慧产生了人类本身的行为和语言,行为和语言统称为能力;智慧和能力结合在一起就是人工智能中的智能一词。

比如,人类的语言表达能力就是一种智能(语言智能);人类进行复杂数学运算的能力也是一种智能(数字逻辑智能);人类的交往能力也是一种智能(人际智能),人们对音调、旋律、节奏、音色的感知能力,也是一种智能(音乐智能)。他们都属于智能的范畴。

1.2人工智能

把智能的概念与人的逻辑理解相结合,并应用到机器中,让机器能更好的模拟人的相关职能,这就是人工智能。人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。

人工智能概念,最早可以追溯到上世纪90年代初,这个时候需要提到一位科学家:图灵。

艾伦·麦席森·图灵(英语:AlanMathisonTuring,1912年6月23日—1954年6月7日),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。

图灵最早定义了什么是人工智能,怎样去界定一个机器(或一个设备)是否具备智能。他最早提出了图灵测试(即:一个人在不接触对方的情况下,经过某种特殊的方式和对方进行一系列的问答,如果在某些时间之内,他无法根据这些问题判断对方是人还是计算机,那么我们就认为这台机器具备智能化的思维)。直到2000年左右,才真正有计算机通过了图灵测试,才实现了一个突破。在2014年图灵测试大会上,出现了一个通过图灵测试的机器(或者称为智能聊天的机器人)。这两年人工智能的高速发展,也印证了最早的图灵测试,这也让我们反向看到了图灵在人工智能定义方面做出的突出贡献。

现今,在做图灵测试时,判断这个设备是否具备人工智能,更多的还是从模拟人的角度来考量。但在当前科技背景下,人工智能需要涵盖更广的内容,它不仅仅要模拟人本身的职能,还需要具备一些扩展、替代甚至延伸的职能。

举个例子,在医疗领域,需要经常在实验室进行病毒化验,人处这样的实验环境下会比较危险,经常会出现一些事故,如果能够用机器替代人来做这些实验,这些事故就可以避免。此时,这台机器就不仅仅是在模拟人,而是在替代人,机器本身就具备了替代人的能力。

当前,很多人在担忧:人工智能的发展会不会对人类造成威胁。其实,目前人工智能还处于早期的阶段(或者称之为婴幼儿阶段),我们还处于弱人工智能时代。

当然,随着时间的推移,将来我们可能会把弱人工智能时代推进到强人工智能,甚至再往前推进到超人工智能和智能爆炸时代。但至少目前,我们离这样的时代还有非常远的距离,要实现这样的目标,需要非常多的时间积累,可能要通过几代人甚至十几代人的努力。所以大家不要有过多的担心,人工智能现在更多的还是用于服务人类,用来提高人们的工作效率。

上图引自MIT大学一位教授。

针对人工智能所覆盖的领域,这位教授提出一个观点:“我们要尽可能避免做这些容易“进水”的工作,以免被日后所淘汰掉”。

这张图水平面以下的工作,如存储,计算、甚至象棋活动等,已经被海平面淹没。在海平面边缘的工作,如翻译、驾驶、视觉和音频等,很有可能在未来的一段时间,随着技术的进步也会被淹没。再来看图上高海拔地区的工作,如艺术创新、科学研究,文学创作等,让人工智能替代人类去做这些工作,在现阶段是比较困难的。要让人工智能实现像人一样具备主观能动性,还需要比较长的时间。我们在选择工作,或者在做技术探索的时候,应该从更高的层面布局,而把那些可以被人工智能替代的工作交给计算机去做,这样我们就可以从一些重复性、冗余性的工作中抽离出来,去专门从事创造性的工作(比如艺术创作等)。

2.人工智能的发展2.1人工智能的发展历程

我们回顾一下人工智能发展的历程。

人工智能并不是特别新鲜的词,在计算机出现后不久,大家就已经开始探索人工智能的发展了。

1943到1956年这段时间,为人工智能的诞生期,期间有很多人尝试用计算机进行智能化的应用,当然此时不能称为人工智能,只是有类似的概念。

人工智能的分水岭是1956年达特茅斯会议,在本次会议上正式提出了AI这个词。

1956到1974年这段时间,是人工智能发展的黄金时代,是人工智能的第1个高速发展期,通常把这段时间称之为人工智能大发现时代。

1974到1980年这6年的时间里,进入了人工智能发展的第1个低谷,在这个低谷期,出现了非常多的问题,比如计算上的问题、存储上的问题、数据量的问题,这些问题限制了人工智能的发展。

1980到1987年这段时间是人工智能的第2个繁荣期。期间诞生了大量的算法,推动了神经网络的高速发展,同时出现了许多专业的科研人员,发表了许多创造性的论文。

1987到1993年这段时间是人工智能的第2个低谷期,期间有个词叫“AI之冬”。有大量的资本从AI领域撤出,整个AI科研遇到了非常大的财政问题,这是导致”AI之冬”的主要原因。

1993年之后,人工智能又进入到高速发展期,期间出现了许多经典案例,比如1997年IBM公司的深蓝案例,2001年IBM的沃森案例,2016年谷歌AlphaGo案例。这些案例是人工智能在应用层面的体现。

上图概括了人工智能的发展历程。

可以看到,从1956年达特茅斯会议AI这个词诞生,一直发展到现在,人工智能共经历了60多年的跌宕起伏,并不是仅在2016、2017这两年间才出现了人工智能这个概念。

从宏观上看,AI的发展历程经历了三次比较大的起伏。

第1次起伏是从1943年到1956年,首次出现了神经网络这个词,把人工智能推到一个高峰,期间出现了许多大发现。而第1次低谷使人工智能进入到了反思的阶段,人们开始探讨人工智能的应用。

第2次起伏是在上世纪80年代,期间BP算法的出现,神经网络新概念的普及,推动了人工智能又进入第2次高峰和发展。然而从1987年到1993年又进入到了了第2次低谷,这主要因为一些财政原因导致。

第3次起伏从2006年开始,由辛顿提出了深度学习的概念,把神经网络往前推动了一大步,也把人工智能推到了高速发展阶段,尤其是近几年在非结构化领域取得了许多突破(例如在语音与视觉方面),给人工智能进入商业化应用带来许多的基础性技术沉淀。

人工智能为什么会在前面的发展过程里遇到了那么多的坎坷?为什么在最近这几年会进入一个高速发展期?

我们归结了近几年人工智能高速发展的三点原因:

①算力飞跃

人工智能(尤其是深度学习),对底层计算能力的要求非常高。早期的计算受到了极大限制,从CPU发展到了GPU,使得算力几乎能达到几倍甚至十几倍量级的增长。再从GPU到TPU,计算速度能达到15~30倍的增长,使得在算力层面不断取得突破。此外,大量云资源的出现将我们计算的成本压到了最低,我们在处理海量计算的同时,也可以享受比较低的成本。再者,芯片技术的发展,使得端处理能力持续提高,这些都帮助我们在算力层面取得了很大的突破。

②数据井喷

从PC互联网时代到移动互联网时代,再到可穿戴设备的应用,都产生了大量的数据。这两年,每年产生的数据量可以达到50%左右的增长。2017年到2018年,这段时间内基本上每个月产生的数据量可以达到几十个亿的量级,数据量已经非常高。物联网的连接,能帮助我们把更多的数据采集回来,帮助我们在数据层面做更多的积累,这是数据井喷带来的积极影响。

③算法突破

近几年来,从机器学习到深度学习,算法不断取得突破。使得我们可以处理更多的大规模、无监督、多层次等复杂业务。

算法、算力、数据是人工智能的三要素,算力是骨骼,数据是血液和食物,算法就是大脑,三者不断取得突破,才能促进人工智能高速发展。

2.3AI是中国的机遇

人工智能技术的发展也促进了很多产业的发展。中国目前有非常好的历史机遇,不仅仅是在技术上有大量的积累,同时,国家也为人工智能的发展提供了非常好的政策环境。此外,市场空间、资金支持、人才储备,也都为人工智能的发展提供了非常好的条件。

通过上图可以看到,人工智能的研发人才目前还比较短缺。图上数据来源于领英在2017年所做的全球AI人才报告。以2017年的数据来看,全球人工智能专业的人才数量超过190万,在这190万人才中,美国处于第一梯队,有85万+;而中国在人工智能领域的人才积累比较少,从数据上来看,目前国内人工智能方面的专业技术人才可能只有5万+,当然这是2017年的数据,现在可能会有一些增长,但是量级也没有达到我们想象的那么大。

所以从国内目前来看,这约5-10万的AI技术人才,对比AI产业的高速发展需求,两者之间有巨大矛盾。那怎样更好的用这些人才作为突破,把人工智能方面的技术人才储备提高到百万级别。这正是整个百度(包括百度的教育合作与共建,包括百度所有对外输出的体系,包括我们今天所做的课程)所努力的方向,我们期望通过百度的技术赋能,真正的帮助人工智能取得更好的人才积累,真正培养一些在未来对人工智能行业有巨大贡献的专业人才,这是百度现在的定位目标。

AI浪潮已然到来,行业人工智能时代已经到来。目前,人工智能已经大量应用在2c和2b领域,怎么让人工智能跟具体行业有更好的接触,产生更多的积累,是我们正在重点探索的方向。

比如百度的搜索引擎,已经融入了很多AI元素。模糊匹配、拍照识图、深度挖掘检索等都应用到了大量的人工智能技术。

再如推荐系统,他会基于个人的一些喜好和历史阅读习惯来给用户做一些内容的推荐和匹配,这是很典型的结合大数据做的精准应用,实际上也属于人工智能的范畴。

再如人脸识别技术、语音技术、智慧交通和无人驾驶等,都是AI技术与行业应用的融合,并且这些技术正在不断取得突破。百度现在L4级别的无人驾驶车已经初步实现了一些小规模的量产,未来会有更多的人将真正的体会到无人驾驶给生活带来的便利。

3.AI与百度

3.1百度AI的发展历程

上图为百度在人工智能领域的发展轨迹,早在2009年,百度就开始尝试探索人工智能相关技术,直到2019年,百度用了近十年的时间布局人工智能。

2009年尝试性布局人工智能,2013年发布IDL,2014年成立硅谷实验室以及百度研究院,2015年首次发布DuerOS,2016年发布百度大脑1.0版本,同年,百度的自动驾驶技术进入试运营状态,2017年是百度人工智能技术高速发展的一年,不仅成立了深度学习国家实验室,同时也成立了硅谷第二实验室以及西雅图实验室,并且Apollo平台开始运行并对外推广,在2018年到2019年,DuerOS和Apollo平台发展到3.0版本,百度大脑发展到5.0版本。经过近十年的发展和积累,百度的人工智能技术目前处于相对领先的位置。

百度在人工智能领域领域取得的进展有目共睹,比如,百度成立了首个国家级AI实验室;2016年被美国《财富》杂志评选为深度学习领域四大巨头之一;百度的刷脸支付、强化学习、自动驾驶等技术入选MIT2017年全球十大突破性技术;在AI领域,百度的中国专利申请超过2000项。

3.2百度AI的技术体系

百度的技术体系非常全面,覆盖了计算体系、大数据技术体系以及人工智能技术体系等,在机器学习、深度学习、区块链、知识图谱、自然语言处理、量子计算等领域均有雄厚的技术积累。这些技术可以按内容划分成三个板块,第一是A板块(即AI技术板块),第二是B板块(即大数据板块),第三是C板块(即云计算板块)。这就是百度在2016年提出的ABC概念。从一开始的1.0版本,发展到如今的3.0版本,代表着百度在人工智能领域的整体布局。在人工智能领域的布局中,百度的探索不仅停留在最核心的技术上,也同时将核心技术与更多的领域相结合,如边缘计算、物联网(InternetofThings,IoT)和区块链等,得到了如ABC+区块链、ABC+DuerOS、ABC+Apollo等对外输出模式,向各行各业提供解决方案。

在A板块中,将百度大脑分成了不同的层次。最底层是算法层,包含机器学习和深度学习算法,使用百度的PaddlePaddle深度学习框架提供算法层的基础支撑;算法层之上为感知层,感知层可分为对声音的感知和对光的感知,其中,对声音的感知主要是语音技术板块,对光的感知主要是图像技术、视频技术、AR/VR等技术板块;在感知层之上是认知层,认知层更多的是处理人类听到和看到的内容,对其进行深度理解,深度理解需要自然语言处理(NLP/NLU)、知识图谱等技术作为支撑,同时也需要积累大量用户画像数据,这些技术能帮助人们快速的理解和分析人类听到和看到的内容,并对内容进行有效的反馈,这是认知层面的技术;在认知层之上是平台层,平台层将底层的内容进行融合、封装,对外提供开放、完整的AI技术,并引入大量的生态合作伙伴,共同探讨人工智能产业的布局。

百度人工智能整体技术体系,最底层是深度学习框架飞桨PaddlePaddle,作为底层计算框架,飞桨PaddlePaddle支撑着上层场景化能力与平台中的全部板块。在场景化能力与平台中,包含了诸多场景大板块,每个大板块下又细分为多个技术板块,比如语音板块包含了语音合成以及语音唤醒等技术板块;计算机视觉技术中的OCR技术,包括传统通用OCR识别,以及垂直领域OCR的识别,可以对30多个OCR识别领域进行精准识别,比如票据识别、证件识别以及文字识别等;在人脸/人体识别板块,同时也会引入图像审核以及图像识别方面的技术;在视频板块,有视频比对技术,视频分类和标注技术,以及视频审核技术;在自然语言处理板块,有机器翻译技术;知识图谱板块,有AR/VR技术。这些板块构成了人工智能体系的技术蓝图。

近两年来,人工智能技术在各行各业中的应用不断加深,实践证明,单一的技术在落地时会受到诸多限制,所以现在人工智能在落地时可能不仅仅用到某一个单独的技术板块,而是需要先把这些板块进行融合,然后再进行实际应用,比如在拍照翻译的应用场景下,既需要用到OCR技术,同时也用到NLP技术。因此在实际应用中,需要综合各个板块的技术,把不同的技术体系和技术内容有机地融合起来,再去解决行业中面临的痛点。

 

3.3百度AI的场景化应用

2014年到2015年期间,在计算机视觉领域的部分场景下,计算机视觉识别准确率已经超过了人眼识别。而利用深度学习技术的计算机听觉识别,在2017年左右也已经超过人耳听力极限。

人工智能业务场景化不仅依赖底层的硬件资源,也需要超大规模的标注数据,这是监督学习的特点,所以在人工智能早期研究中,有评论说“有多少人工就有多少智能”,这句话在特定角度来看是具有一定意义的。在监督学习中,训练模型需要庞大的标注数据,再结合GPU强大的数据处理能力去训练特定模型,也就是从算法的层面去做更多的工作,在训练模型的过程中需要发挥人的主观能动性,更好的解决在行业应用中出现的一些痛点,构建出行业专属的模型。

比如,将人体分析技术应用到实际行业场景中时,需要结合人脸识别技术和人体识别技术。可以通过基础手势识别,识别一个人在开车时有没有系安全带、是不是在打电话等。

利用人体分析技术,可以做到行为识别,首先设定特定区域,然后对区域内的人员行为进行识别,比如人群过密、区域越界、人员逆行、徘徊以及吸烟等,在特定场景下,行为识别能够帮助用户避免安全隐患。

自然语言处理有很多相关技术,比如说词法分析、词向量表示、语义相似度、短文本相似度、情感相似度分析等。这些技术用在不同的应用场景下。

在公检法系统应用中,为了避免出现非常严重的问题,如同案不同判,具体解决方案是当诉讼呈递给法官时,根据当前诉讼内容在公检法系统中寻找历史上类似的案件,参考历史类似案件的判决,给法官提供判案依据。

在媒体领域应用中,对基础的财经类新闻,可以由机器进行新闻文章的编写,即机器写作。这些技术都是基于NLP在相应领域做的智能化应用,可以让编辑或记者从重复性的工作中解脱出来。

人工智能从广义上来看,也包括大数据及云计算相关技术,这些技术也都涵盖在百度AI技术体系中。在大数据领域,主要包括数据采集、数据存储、数据分析以及数据可视化等,利用这些技术,我们在进行模型训练的时候,对数据进行科学的管理可以帮助我们提高模型训练效率。

百度AI技术体系也提供算力层面的支持,通过GPU服务器以及FPGA服务器提供的算力,更好的解决应用层面的问题。

百度AI就是这样一个从基础层,到感知层、认知层的完整体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

回顾

本篇文章,我们和大家分享了人工智能的相关概念,人工智能的发展历程,从中也可以看出AI是我们的历史机遇。同时本文也为大家详细介绍了百度的AI技术体系,经过10余年的努力,百度AI已经形成从基础层,到感知层、认知层的完整技术体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇