博舍

支撑人工智能的数据管理与分析技术专刊前言 人工智能管理系统

支撑人工智能的数据管理与分析技术专刊前言

近年来,支撑人工智能的数据管理与分析技术正成为大数据和人工智能领域研究的热点问题之一.利用和发展数据管理与分析理论技术,为提升人工智能系统全生命周期的效率和有效性提供基础性支撑,必将进一步促进基于大数据的人工智能技术发展与其在更大范围的推广应用.本专刊聚焦在数据管理与人工智能融合发展的过程中,数据库技术对人工智能的优化支撑作用,包括两方面:(1)传统数据管理分析的理论技术对人工智能的数据和计算过程的优化;(2)传统数据管理系统设计理念对开发通用且易用型人工智能平台的促进作用.因此,需要利用和发展现有数据库理论,构建形成新的技术和系统经验.专刊重点立足于数据库核心技术,探讨数据管理与分析技术对人工智能研究发展推动作用,特别是数据管理分析的理论技术对人工智能在数据和计算密集环节的优化,以及数据管理系统设计理念与开发经验对构建通用型人工智能平台的促进作用,重点关注数据管理与分析技术对人工智能在数据存储、算法优化、模型管理、模型服务、系统构建等方面的支撑作用.

本专刊公开征文,共收到投稿36篇.论文均通过了形式审查,内容涉及支撑人工智能的数据管理、分析、系统与应用.特约编辑先后邀请了60多位专家参与审稿工作,每篇投稿至少邀请2位专家进行评审.稿件经初审、复审、NDBC2020会议宣读和终审共4个阶段,历时6个月,最终有17篇论文入选本专刊.根据主题,这些论文可以分为5组.

(1)支撑人工智能的数据管理技术

《支撑机器学习的数据管理技术综述》从数据管理的视角对机器学习训练过程进行解构和建模,从数据选择、数据存储、数据存取、自动优化和系统实现等方面,综述并提出支持机器学习数据管理的若干关键技术挑战.

《数据库内AI模型优化》提出一种“预筛选+验证”对AI模型推理进行优化的框架,分析探讨了决策树等多个机器学习模型的优化技术,并通过扩展SQL支持了决策树训练与推理,所提出的方法能够对“借助决策树模型推理结果对数据进行筛选”的应用场景起到较好的加速效果.

《图嵌入算法的分布式优化与实现》提出一种通用的分布式图嵌入框架,将图嵌入算法中的采样流程和训练流程进行解耦,并设计了一种基于参数服务器的模型切分嵌入策略,从而大幅减少分布式计算中的通信开销.

《时序图节点嵌入策略的研究》提出了一种对时序图节点进行自适应嵌入表达的方法ATGEB.结合信息在时序图中的传播特征,提出一种自适应方式对其活跃时刻进行聚类,并设计了双向多叉树索引结构和节点采样策略,在时序图中节点间时序可达性检测以及节点分类等问题上取得很好的实验效果.

《面向企业数据孤岛的联邦排序学习》提出了一种面向企业数据孤岛的联邦排序学习框架,并设计了交叉分割的联邦学习策略、基于略图的隐私保护技术和联邦半监督学习方法,进而验证了所提方法的有效性.

《多区间速度约束下的时序数据清洗方法》提出了多区间速度约束下的时间序列数据修复方法,并采用动态规划方法来求解最优修复路径,进而验证所提出方法的可行性和有效性,特别是其可提升人工智能结果质量.

(2)支撑人工智能的数据分析技术

《基于Motif聚集系数与时序划分的高阶链接预测方法》提出了一种基于Motif聚集系数与时序划分的高阶链接预测模型,通过同时结合网络中高阶结构的聚集特征与网络结构演变信息,提升预测效果与性能.

《面向时空图建模的图小波卷积神经网络模型》提出了一种新的时空图建模图小波卷积神经网络模型,通过结合图小波卷积层和扩展因果卷积层捕获时空图节点间属性特征的相关性,并设计了利用自适应邻接矩阵从数据中动态学习隐层空间依赖关系的有效方法.

《捕获局部语义结构和实例辨别的无监督哈希》提出了一种基于语义结构保持和实例分辨力的深度无监督哈希学习框架.其对语义结构进行学习的同时也指导哈希编码学习,并被验证可有效提升哈希编码的辨识力.

《用于表格事实检测的图神经网络模型》提出用于表格事实检测的图神经网络模型,利用表格的结构特征结合图注意力网络和图卷积神经网络,设计了以表格的行为单位的Row-GVM和以表格的单元格为单位的Cell-GVM,进而证明所提方法的高效性.

(3)支撑人工智能的数据库系统

《PandaDB:一种异构数据智能融合管理系统》提出了基于智能属性图模型的分布式数据融合管理系统PandaDB,该系统实现了结构化/非结构化数据的高效存储管理,并提供了灵活的AI算子扩展机制,具备对多元异构数据内在信息的即席查询能力.

《KGDB:统一模型和语言的知识图谱数据库管理系统》研发了统一模型和语言的知识图谱数据库管理系统KGDB,提出统一的存储方案,解决了无类型三元组的存储问题,并实现了两种不同知识图谱查询语言的互操作,进而验证该系统比gStore和Neo4j节省30%的存储空间,查询速度最高可提高2个数量级.

《基于Seq2Seq模型的SparQL查询预测》研究如何利用已有的信息进行知识图谱的查询预测,从而进行数据的预加载与缓存,提高系统的响应效率,提出了将SparQL查询提取为序列形式的方法,使用Seq2Seq模型对其进行数据分析和预测,并使用真实的数据集对方法进行测试,实验表明所提出的方案具有良好的效果.

(4)支撑人工智能的数据应用

《LFKT:学习与遗忘融合的深度知识追踪模型》针对学生遗忘行为对其知识掌握程度的影响,提出了融合学习与遗忘的深度知识追踪模型LFKT.通过结合4个影响知识遗忘因素,采用深度神经网络可实时追踪由学生遗忘造成的知识水平变化过程.

《多尺度时序依赖的校园公共区域人流量预测》提出了一种基于深度学习的多尺度时序卷积网络MSCNN以对校园公共区域人流量进行预测.通过在真实校园环境测试,所提出模型的预测效果优于其他已有的校园区域人流量数据预测方法,特别在捕获多尺度时序模式方面更具优势.

(5)赋能人工智能的数据库技术

《基于人工智能方法的数据库智能诊断》研究了OLTP数据库在实际运行时可能遇到的异常,分析了这些异常和一系列监控指标之间的影响关系,提出了一种智能的数据库异常诊断框架AutoMonitor,包括数据库异常监测、异常指标提取和根因分析这3个模块,并部署在PostgreSQL数据库,实验结果表明该框架对于异常诊断具有较高的精确度,并且不会对系统性能造成太大的影响.

《GPU数据库核心技术综述》综述了以GPU计算为核心的数据库系统(GDBMS)发展历程,深入剖析GDBMS的四大核心组件:查询编译器、查询处理器、查询优化器和存储管理器,并展望了其与人工智能、时空数据分析、数据可视化、商务智能等领域的交互应用.

本专刊主要面向数据库、数据挖掘、大数据、机器学习、信息检索等多领域的研究人员和工程人员,反映了我国学者在支撑人工智能的数据管理、分析、系统与应用领域最新的研究进展.感谢《软件学报》编委会和数据库专委会对专刊工作的指导和帮助,感谢专刊全体评审专家及时、耐心、细致的评审工作,感谢踊跃投稿的所有作者.希望本专刊能够对支撑人工智能的数据管理、分析与系统相关领域的研究工作有所促进.

人工智能对现代企业管理的挑战与应对研究

张彬彬  龙口矿业集团海湾大酒店

摘要:人工智能是当下非常火热的词汇,是众多行业或者领域都爱热议的话题。随着算法的改进和云计算的发展,传统的人工智能技术得到了极大的发展,也就是当下人工智能如此火爆的重要原因。总的来说,人工智能的发展确实给我们的生活带来了非常明显的变化,改变着传统的生活方式。同样的,对于企业来说,随着人工智能的逐步渗透,企业的经营管理也将面临着较大的变化和挑战,也会迎来自身的转型和发展。鉴于此,我们将在概述人工智能和企业管理内涵的基础上,基于人工智能在现代企业管理中的运用的分析,详细阐述人工智能对于现代企业管理的挑战,以期能够促进企业在经营管理中能够更好的面对和利用人工智能技术。

关键词:人工智能;企业管理;挑战

一、引言

对于企业的经营管理来说,可以说是具有相当历史经验积累和理论研究积淀的工作之一,也可以说是领域之一。众多年来,企业的经营管理从纯粹的“人治”到“制度先行”的模式,一步一步的变化和发展,在企业的生存和发展过程中起到了最为重要的作用。但是人工智能的发展及其在各个领域的渗透,使得企业的经营管理面临着前所未有的变化,这种变化一方面是其全新的模式带来的不适,另一方面也是其带来的挑战。在众多的企业中,少数企业很早就已经意识到了这样的变化和挑战,也很好的基于企业自身的实际情况而做出了相应的应对措施,但是还是有大部分的企业在人工智能面前显得“无所适从”,没有做好适应趋势发展和应对挑战的充分准备。我们希望我们的研究和探索能够促进企业更好的面对和应对这样的挑战。

二、人工智能及企业管理概述

(一)人工智能概述

人工智能,就是我们平常所听所见的“AI”,顾名思义就是通过计算机科学的理论和方式让电脑或者程序能够模仿人类的行为方式,以期其能够在一定程度上代替人类的劳动。人工智能属于计算机科学,但是却不仅仅是计算机科学,其往往还包含了社会学、心理学、数学等等,甚至还还会涉及到具体应用领域的专业理论知识和技能,以及相关领域的人类经验积累。由此看来,人工智能在理论知识层面具有相当的综合性和复杂性,不会属于某一个学科领域。

对于人工智能来说,其并不是一个新的领域或者概念,其实人工智能很早就已经下理论界出现,并且得到了一些较为初级的发展。近年来,由于算法的进步以及大数据和云计算的快速发展,才使得人工智能得以“重生”,在众多的领域越发的显示出具有划时代的意义和价值,也才有了当下非常火爆的“人工智能”。

(二)企业管理概述

企业管理是企业发展过程中的必要过程和手段,也是企业保持健康发展的重要基础。总的来说,企业管理就是企业要将自身的生产经营、业务拓展等等活动通过计划、组织、实施、监督、总结等等方式的总和,是企业自身具有综合性和统筹性的管理过程和运营过程。企业管理更加是一个较老的话题,自大有了企业以来,企业管理就是必不可少的研究对象。经过多年的发展,企业管理也经过不断的实践和总结,得到了不断的优化和提升。其中,现代企业管理是符合当下众多企业的管理现状和理念升级的。企业管理的目标是实现经济效益最大化,意在通过更好的进行资源配置而实现企业各种资源使用效率的不断提升,进而促进企业的长期可持续健康发展。

三、人工智能在现代企业管理中的运用分析

(一)打破信息孤岛的智能系统

在人工智能之前的信息化时代,系统化是企业管理发展的重要方向。因此,在企业管理的众多方面都逐步的建立起的系统或者平台,诸如财务系统、OA办公系统等等。相比信息化之前,信息化已经极大的促进了企业内部各个部门或者环节之间的信息流通,也使得各个环节由于系统化和流程化的加持而更加的高效和高质。但是随着而来的缺失各个环节和部门之间的信息被禁锢在自己的系统里面,形成了众多的信息孤岛。这些信息孤岛对于企业的管理决策来说也是极其不利的因素。人工智能的到来,使得企业在众多的系统之上能够架设一个统领的系统或者平台,也就能够很好的解决了信息孤岛的问题。同时,在信息化时代,企业部署众多的系统往往需要实实在在的购进和部署相关的硬件设施,这对于一些中小企业来说在成本上会产生巨大的压力。但是在人工智能时代,由于云计算的飞速发展,企业的众多管理系统部署并不一定需要购买相关的基础硬件,而是可以通过云计算的方式来解决。其实,这也是能够实现上文提到的建立解决信息孤岛的统一平台或者系统的重要原因之一。

(二)人工智能辅助企业管理决策

结合上文所提到的信息孤岛,传统企业在进行管理决策的时候,往往会面临着众多类型或者环节的数据难以形成有效的统一和整合,作为决策支撑的数据在数量和质量上都会呈现出相当的不足。对此,人工智能技术一方面能够通过搭建统一化的系统平台来打破信息孤岛,提升相关数据的统一化和全面化;另一方面,基于人工智能技术,企业能够实现智能化的数据抓取、整理和分析,甚至在一定程度上给出相应的智能决策建议,以供企业的管理者做出管理决策是进行参考。这一切都要得益于人工智能技术中的大数据分析、自然语言处理、机器学习等等核心技术,才能够实现企业管理过程中的众多高效过程。

(三)人工智能代替重复性工作

人工智能包含了诸如机器学习、自然语言处理等几大核心技术,其中的机器人技术是综合视觉处理、听觉处理、数据处理、机器学习等等众多技术的重要体现。也正是这些技术的加持,使得人工智能能够实现在众多的场景中很好的模仿人类的工作方式,以至于能够在一定程度上代替人类而更加高效高质的完成相关工作。例如企业的行政工作,其有一部分具有重复、机械的特性,人工智能技术就能够很容易通过相关技术学习到其内在的关联或者趋势,进而实现自动的模仿,代替人类进行该项工作。同样的道理,对于众多的生产企业来说,车间管理更加具有这类的特点,因此也是现阶段人工智能能够发挥巨大作用的地方。人工智能分担人类的工作,总体来说能够促进工作更加高效高质的完成,让人类的智慧更加集中于创新和创造,更加集中于思维探索层面。

四、人工智能对现代企业管理的挑战

(一)人才管理的挑战

人工智能能够在很多方面协助甚至是带来人类的工作,并且往往能够更加高效和高质的完成该工作。这就给企业的人才管理带来的极大的挑战。一个最为直接的挑战就是企业以后或许不再需要没有创造性和创造能力的员工。简单重复的工作能够有人工智能来完成,那么企业招聘来的人才就主要将精力集中与思维的创造过程中。这对于企业传统的人才观念和管理方式非常不同,会产生很大的冲击。企业以后的人才管理应该更加注重其创造性的培养和提升,而不是像当下一样仅仅集中于流程化和标准化的培养。值得一提的是,这其实不仅仅是对企业管理的挑战,也是对人才自身的挑战。只有很好的适应人工智能时代的发展趋势,才是使得人才自身更好的融入企业的管理工作,赢得企业的发展机遇。

(二)决策管理的挑战

上文已经提及,在人工智能的支撑之下,企业的管理决策会以汇集全面而实时的数据为基础,通过相关的分析方式来作为辅助。总而言之,这种决策方式是一种集中式决策机制。这主要得益于管理界的这样一种思想:我们拥有越多的信息往往能够做出更加科学正确的决策。但是随着而来的挑战就是随着更多的信息被收集整理出来,使得企业所面临着的决策环境会变得异常复杂,至少相比于之前的环境是如此的。这也就给企业管理者在切实的管理决策过程中失误了增加、变动性增大,为企业的健康稳定发展带来一定的冲击。人工智能时代的管理的不确定性急剧增大,使得众多的管理者感到管理工作十分困难和束手无策,或者有一天真的将企业管理决策完全交给人工智能的时候,企业的管理工作也就无法再称之为企业管理了,真不知道这是好还是坏!

(三)管理方式的挑战

当人工智能时代开始到来的时候,众多的研究者或者企业管理者都在探讨和研究:未来的企业管理者或者企业管理工作会不会被人工智能所取代?或者说会在多大程度上被取代?我们认为,人工智能必定会在一定程度上代替管理者的企业管理活动,或者是更加准确地说是协助,而不会完全的代替企业管理者的企业管理工作。对于企业管理来说,其带来的管理方式的挑战是巨大的。例如对于传统的企业管理来说,财务上的三大表是十分重要的基础资料之一,甚至可以说是仅有的可以相对全面的反应企业经营情况的基础资料。但是在人工智能时代,正如德勤所开发的“第四张报表”一样,通过非财务信息的数据化,通过以用户为核心,建立起来涵盖用户、产品、渠道三个维度的企业价值评估体系,为企业管理层的管理工作和相关决策提供重要的补充支撑。诸如类似的冲击和变化还有很多,都将给企业管理的方式发展带来挑战。

五、结语

人工智能的时代发展趋势不可逆转,企业唯有很好的适应和应对才能更好的保持其市场竞争力和长期可持续的发展。同时,企业要正视人工智能在人才、决策等管理方式方面带来的冲击,积极应对和应用,促进自身的稳定发展。

参考文献:

[1]程浩.人工智能的六重关系[J].企业管理,2018(1).

[2]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技旬刊,2017(10).

[3]乔泰.下一代企业:人工智能升级企业管理[J].互联网经济,2016(8).

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇