博舍

人工智能可能有自主意识了吗 人工智能是否能超越人类辩论赛

人工智能可能有自主意识了吗

➤大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术

➤不同于当前依赖数据学习的技术路线,新一代人工智能强调在没有经过数据学习的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互

➤当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。在发展科技的同时,必须同步发展我们的规制体系

➤“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”

今年6月,美国谷歌公司软件工程师布莱克·勒莫因称语言模型LaMDA出现自我意识。他认为,LaMDA拥有七八岁孩童的智力,并相信LaMDA正在争取自己作为一个人的权利。

LaMDA是谷歌去年发布的一款专门用于对话的语言模型,主要功能是可以与人类交谈。

为佐证观点,勒莫因把自己和LaMDA的聊天记录上传至互联网。随后,谷歌以违反保密协议为由对其停职。谷歌表示,没有任何证据支持勒莫因的观点。

事实上,“AI(人工智能)是否拥有自主意识”一直争议不休。此次谷歌工程师和LaMDA的故事,再次引发讨论。人们想知道:人工智能技术究竟发展到了怎样的阶段?是否真的具备自主意识?其判定依据是什么?未来我们又该以怎样的能力和心态与人工智能和谐共处?

人工智能自主意识之辨

勒莫因认为LaMDA具有意识的原因有三:一是LaMDA以前所未有的方式高效、创造性地使用语言;二是它以与人类相似的方式分享感觉;三是它会表达内省和想象,既会担忧未来,也会追忆过去。

受访专家告诉《瞭望》新闻周刊记者,上述现象仅仅是因为LaMDA所基于的Transformer架构能够联系上下文,进行高精度的人类对话模拟,故能应对人类开放、发散的交谈。

至于人工智能是否已经具备自主意识,判定标准如何,受访专家表示,对人类意识的探索目前仍属于科技前沿,尚未形成统一定义。

清华大学北京信息科学与技术国家研究中心助理研究员郭雨晨说:“我们说人有自主意识,是因为人知道自己在干什么。机器则不一样,你对它输入内容,它只是依照程序设定进行反馈。”

中国社会科学院科学技术哲学研究室主任段伟文认为,一般意义上,人的自我意识是指对自我具备觉知,但如何认识和理解人类意识更多还是一个哲学问题而不是科学问题,这也是很难明确定义人工智能是否具备意识的原因。

被誉为“计算机科学与人工智能之父”的艾伦·图灵,早在1950年就曾提出图灵测试——如果一台机器能够与人类展开对话而不能被辨别出其机器身份,那么可以称这台机器具有智能。

这一设想随后被具化为,如果有超过30%参与测试的人以为自己在和人说话而非计算机,就可以认为“机器会思考”。

当前随着技术的发展,已经有越来越多的机器能够通过图灵测试。

但清华大学人工智能国际治理研究院副院长梁正告诉《瞭望》新闻周刊记者,图灵测试只能证明机器在表象上可以做到让人无法分辨它与人类的不同,却不能证明机器能够思考,更不能证明机器具备自主意识。

段伟文表示,目前大体有两种方式判定人工智能是否具有自主意识,一种以人类意识为参照,另一种则试图对机器意识进行全新定义。

若以人类意识为参照,要观察机器能否像人一样整合信息。“比如你在阳光下,坐在河边的椅子上看书,有树影落在脸上,有风吹来,它们会带给你一种整体的愉悦感。而对机器来说,阳光、河流、椅子等,是分散的单一元素。”段伟文说。

不仅如此,段伟文说,还要观察机器能否像人一样将单一事件放在全局中思考,作出符合全局利益的决策。

若跳出人类构建自主意识的范式,对机器意识进行重新定义,则需要明白意识的本质是什么。

段伟文告诉记者,有理论认为如果机器与机器之间形成了灵活、独立的交互,则可以称机器具备意识。也有理论认为,可以不追究机器的内心,仅仅把机器当作行为体,从机器的行为表现判断它是否理解所做事情的意义。“比如机器人看到人类喝咖啡后很精神,下次当它观察到人类的疲惫,能不能想到要为人类煮一杯咖啡?”段伟文说。

但在段伟文看来,这些对机器意识进行重新定义的理论,其问题出在,即便能够证明机器可以交互对话、深度理解,但是否等同于具备自主意识尚未有定论。“以LaMDA为例,虽然能够生成在人类看来更具意义的对话,甚至人可以与机器在对话中产生共情,但其本质仍然是在数据采集、配对、筛选机制下形成的反馈,并不代表模型能够理解对话的意义。”

换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术。

郭雨晨直言,尽管在情感计算方面,通过深度学习的推动已经发展得比较好,但如果就此说人工智能具备意识还有些一厢情愿。“把‘意识’这个词换成‘功能’,我会觉得更加准确。”

技术换道

有专家提出,若要机器能思考,先要解决人工智能发展的换道问题。

据了解,目前基于深度学习、由数据驱动的人工智能在技术上已经触及天花板。一个突出例证是,阿尔法围棋(AlphaGo)在击败人类围棋世界冠军后,虽然财力和算力不断投入,但深度学习的回报率却没有相应增长。

一般认为,人工智能可被分为弱人工智能、通用人工智能和超级人工智能。弱人工智能也被称为狭义人工智能,专攻某一领域;通用人工智能也叫强人工智能,主要目标是制造出一台像人类一样拥有全面智能的计算机;超级人工智能类似于科幻作品中拥有超能力的智能机器人。

从产业发展角度看,人工智能在弱人工智能阶段停留了相当长时间,正在向通用人工智能阶段迈进。受访专家表示,目前尚未有成功创建通用人工智能的成熟案例,而具备自主意识,至少需要发展到通用人工智能阶段。

梁正说,大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。“如果你给这类语言模型喂养大量关于内省、想象等与意识有关的数据,它便更容易反馈与意识有关的回应。”

不仅如此,现阶段的人工智能在一个复杂、专门的领域可以做到极致,却很难完成一件在人类看来非常简单的事情。“比如人工智能可以成为围棋高手,却不具备三岁小孩对陌生环境的感知能力。”段伟文说。

谈及背后原因,受访专家表示,第一是当前人工智能主要与符号世界进行交互,在对物理世界的感知与反应上发展缓慢。第二是数据学习让机器只能对见过的内容有合理反馈,无法处理陌生内容。第三是在数据驱动技术路线下,人们通过不断调整、优化参数来强化机器反馈的精准度,但这种调适终究有限。

郭雨晨说,人类在特定任务的学习过程中接触的数据量并不大,却可以很快学习新技能、完成新任务,这是目前基于数据驱动的人工智能所不具备的能力。

梁正强调,不同于当前主要依赖大规模数据训练的技术路线,新一代人工智能强调在没有经过数据训练的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互。

相比人类意识的自由开放,以往人工智能更多处在封闭空间。尽管这个空间可能足够大,但若超出设定范畴便无法处理。而人类如果按照规则不能解决问题,就会修改规则,甚至发明新规则。

这意味着,如果人工智能能够超越现有学习模式,拥有对自身意识系统进行反思的能力,就会理解自身系统的基本性质,就有可能改造自身的意识系统,创造新规则,从而成为自己的主人。

“人工智能觉醒”背后

有关“人工智能觉醒”的讨论已不鲜见,但谷歌迅速否认的态度耐人寻味。

梁正表示:“如果不迅速驳斥指认,会给谷歌带来合规性方面的麻烦。”

据了解,关于人工智能是否有自主意识的争论并非单纯技术领域的学术探讨,而关乎企业合规性的基本坚守。一旦认定公司研发的人工智能系统出现自主意识,很可能会被认为违反第2版《人工智能设计的伦理准则》白皮书的相关规范。

这一由美国电气和电子工程师协会2017年发布的规范明确:“根据某些理论,当系统接近并超过通用人工智能时,无法预料的或无意的系统行为将变得越来越危险且难以纠正。并不是所有通用人工智能级别的系统都能够与人类利益保持一致,因此,当这些系统的能力越来越强大时,应当谨慎并确定不同系统的运行机制。”

梁正认为,为避免社会舆论可能的过度负面解读,担心大家认为它培育出了英国作家玛丽·雪莱笔下的弗兰肯斯坦式的科技怪物,以“不作恶”为企业口号的谷歌自然会予以否认。“不仅如此,尽管这一原则对企业没有强制约束力,但若被认为突破了底线,并对个体和社会造成实质性伤害,很有可能面临高额的惩罚性赔偿,因此企业在合规性方面会更为谨慎。”

我国也有类似管理规范。2019年,国家新一代人工智能治理专业委员会发布《新一代人工智能治理原则——发展负责任的人工智能》,提出人工智能治理的框架和行动指南。其中,“敏捷治理”原则主要针对技术可能带来的新社会风险展开治理,强调治理的适应性与灵活性。

中国信息化百人会成员、清华大学教授薛澜在接受媒体采访时表示,当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。特别是在第四次工业革命背景下,我国的人工智能技术和其他国家一样都处于发展期,没有现成的规制体系,这样就使得我们在发展科技的同时,必须同步发展我们的规制体系。“这可能是人工智能发展面临最大的挑战。”

在梁正看来,目前很难断言新兴人工智能技术具有绝对风险,但必须构造合理的熔断、叫停机制。在治理中既要具有一定的预见性,又不能扼杀创新的土壤,要在企业诉求和公共安全之间找到合适的平衡点。

毕竟,对人类来说,发展人工智能的目的不是把机器变成人,更不是把人变成机器,而是解决人类社会发展面临的问题。

从这个角度来说,我们需要的或许只是帮助人类而不是代替人类的人工智能。

为了人机友好的未来

确保通用人工智能技术有益于人类福祉,一直是人工智能伦理构建的前沿。

薛澜认为,在科技领域,很多技术都像硬币的两面,在带来正面效应的同时也会存在风险,人工智能就是其中一个比较突出的领域。如何在促进技术创新和规制潜在风险之间寻求平衡,是科技伦理必须关注的问题。

梁正提出,有时技术的发展会超越人们预想的框架,在不自觉的情况下出现与人类利益不一致甚至相悖的情况。著名的“曲别针制造机”假说,即描述了通用人工智能在目标和技术都无害的情况下,对人类造成威胁的情景。

“曲别针制造机”假说给定一种技术模型,假设某个人工智能机器的终极目标是制造曲别针,尽管看上去这一目的对人类无害,但最终它却使用人类无法比拟的能力,把世界上所有资源都做成了曲别针,进而对人类社会产生不可逆的伤害。

因此有观点认为,创造出法力高超又杀不死的孙悟空本身就是一种不顾后果的冒险行为。

与其对立的观点则认为,目前这一担忧为时尚早。

“我们对到底什么样的技术路线能够发展出具备自主意识的人工智能尚无共识,现在谈论‘禁止发展’,有种空中楼阁的意味。”梁正说。

商汤科技智能产业研究院院长田丰告诉《瞭望》新闻周刊,现实中人工智能技术伦理风险治理的关键,是产业能够在“预判防范-应用场景-用户反馈-产品改进”中形成市场反馈机制,促成伦理风险识别与敏捷治理。同时,企业内部也需建立完整的科技伦理自律机制,通过伦理委员会、伦理风控流程平台将伦理风险把控落实到产品全生命周期中。

郭雨晨说,人工智能技术发展到目前,仍始终处于人类可控状态,而科技发展的过程本来就伴随对衍生问题的预判、发现和解决。“在想象中的人工智能自主意识出现以前,人工智能技术脚踏实地的发展,已经造福人类社会很多年了。”

在梁正看来,人与人工智能在未来会是一种合作关系,各自具备对方无法达成的能力。“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”

编辑:李华山

2022年08月16日07:42:05

“人工智能能否超越人类”为何争议不断

(图源:callcentrehelper.com)

1956年夏季,在美国达特茅斯学院举行的一次重要会议上,以麦卡赛、明斯基、罗切斯特和申农等为首的科学家共同研究和探讨了用机器模拟智能的一系列问题,首次提出了“人工智能”这一术语,它标志着人工智能这门新兴学科的正式诞生。此后,人工智能在发展历史上经历了多次高潮和低潮阶段。在1956年人工智能被提出后,研究者们就大胆地提出乐观的预言,达特茅斯会议的参与者之一赫伯特·西蒙(HerbertSimon)还做出了更具体的预测:10年内计算机将成为国际象棋冠军,并且机器将证明一个重要的数学定理。西蒙等人过于自信,其预言没有在预测的时间里实现,而且远远没有达到。这些失败给人工智能的声誉造成重大伤害。1971年,英国剑桥大学数学家詹姆士(James)按照英国政府的旨意,发表了一份关于人工智能的综合报告,声称“人工智能研究就算不是骗局,也是庸人自扰”。在这个报告的影响下,英国政府削减了人工智能的研究经费,解散了人工智能研究机构。人工智能的研究热情第一次被泼了冷水。[1]20世纪90年代,以日本第五代机器人研发失败和神经网络一直没有突破为代表,人工智能进入了第二个冬天,直到21世纪初,深度学习与互联网大数据结合才使人工智能又一次迎来新的春天。在阿尔法围棋等大量突破性成果涌现之后,人类对机器(AI)能否超越人类的问题又重新燃起了热情。狂热的情绪背后甚至产生了人工智能威胁论。谷歌技术总监、《奇点临近》(TheSingularityIsNear)的作者雷·库兹韦尔(RayKurzweil)预言人工智能将超过人类智能。他在书中写道,“由于技术发展呈现指数级增长,机器能模拟大脑的新皮质,到2029年,机器将达到人类的智能水平;到2045年,人与机器将深度融合,那将标志着奇点时刻的到来。”除此以外,支持人工智能威胁论的代表人物还包括著名物理学家霍金、微软创始人比尔·盖茨、特斯拉CEO马斯克等。2014年12月2日,霍金在接受BBC采访时表示,运用人工智能技术制造能够独立思考的机器将威胁人类的生存。霍金说:“它自己就动起来了,还能以前所未有的超快速度重新设计自己。人类呢,要受到缓慢的生物进化的限制,根本没有竞争力,会被超越的。”特斯拉CEO马斯克对待人工智能的态度比较极端,2014年8月,他在推特上推荐尼克·波斯特洛姆(NickPostrom)的著作《超级智能:路线图、危险性与应对策略》(SuperIntelligence:Paths,Dan-gers,Strategies)时写道:“我们需要重点关注人工智能,它的潜在危险超过核武器。”2017年10月,日本著名风险投资人孙正义在世界移动大会2017上表示,他认为机器人将变得比人类更聪明,在大约30年的时间里,AI的智商将有望超过1万点。相比之下,人类的平均智商是100点,天才可能达到200点。孙正义说:“奇点是人类大脑将被超越的时刻,这是个临界点和交叉点。人工智能和计算机智能将超越人类大脑,这在21世纪肯定会发生。我想说的是,无须更多的辩论,也无须更多怀疑。”在人工智能威胁论热度日益高涨的情况下,人工智能领域的科学家对人工智能威胁论提出了反对意见。2014年4月,脸书人工智能实验室主任,纽约大学计算机科学教授杨立昆(YannLeCun)在接受《波普杂志》(IEEESpectrum)采访时发表了对人工智能威胁论的看法,他认为人工智能的研究者在之前很长的一段时间都低估了制造智能机器的难度。人工智能的每一个新浪潮,都会经历这么一段从盲目乐观到不理智最后到沮丧的阶段。杨立昆提出:“很多人觉得人工智能的进展是个指数曲线,其实它是个S形曲线,S形曲线刚开始的时候跟指数曲线很像,但由于发展阻尼和摩擦因子的存在,S形曲线到一定程度会无限逼近而不是超越人类的智商曲线(如图1所示)。未来学家们却假设这些因子是不存在的。他们生来就愿意做出盲目的预测,尤其当他们特别渴望这个预测成真的时候,这可能是为了实现个人抱负。”

图1 杨立昆预测的人工智能发展曲线

另外,百度首席科学家、斯坦福大学计算机科学系和电子工程系副教授吴恩达,中国科学院的李德毅、王飞跃等教授等也在不同场合对人工智能威胁论提出了反对意见。2017年7月在《哈佛商业评论》(HarvardBusinessReview)的一次会议上,吴恩达谈道:“作为一名人工智能领域的从业者,我开发和推出了很多款人工智能产品,但没有发现一条人工智能在智力方面会超过人的可行之路。我认为,工作岗位流失反倒会是个大问题,担心人工智能过于强大就好像担心人类会在火星过度殖民导致火星人口爆炸一样。我很希望数百年后我们能在火星生活,但目前甚至还没有人类登上过火星,我们为何要担心在火星过度殖民的问题呢?我希望我们能重视对这一问题的解决,而不是整天沉醉在那些科幻作品中才可能出现的场景里。”[2]由此可见,在关于机器(AI)的智力能力能否超越人类的问题上,世界上最有影响力的人分成了两个对立的阵营,一个阵营里是著名的物理学家、企业家和投资人,另一个阵营里是计算机领域和人工智能领域的科学家。为什么会有这种巨大的争议?不得不说,问题的背后的确有着非常复杂的原因,但其中有三个难点是主要原因。第一个难点是,智力或智能本身就是一个有着巨大争议的问题,无论在心理学领域还是人工智能领域,智力是争议最大的概念之一。智力被许多人用不同的表达方式进行了定义。据统计,目前有关智力的定义超过100种以上,但关于智力的明确定义依然处在争议和讨论中。智力概念出现如此混乱的情况与心理学家对智力的不同理解有关,同时大脑是人类最复杂的器官,如何认知智力本身就具有先天的复杂性。美国著名心理学家和认知心理学家斯腾伯格(Sternberg)是智力三元理论的建构者,他注意到智力概念的变迁问题,指出不同时代的研究者虽然使用相同的术语,但新来者会不断赋予术语以新的意义,如在智力的内涵上,20世纪20年代的心理学研究者更重视期望,而20世纪80年代的研究者更重视文化因素。关于智力,研究者们有着数百种不同的定义[3],表1反映了部分研究者对智力的定义。

表1. 部分研究者对智力的定义

第二个难点是,没有统一的模型能反映机器、AI和人类的共同特征。我们知道,由于生命的多样性,人类、动物、植物甚至微生物在智能的表现上千差万别,如人类有更丰富的创造力和想象力,狗有更灵敏的鼻子,蝙蝠有更灵敏的耳朵,而老鹰有更敏锐的眼睛。这种差异同样发生在机器人和AI系统上,如谷歌的阿尔法围棋在围棋上表现突出,已经多次战胜人类围棋冠军。IBM的沃森系统拥有更丰富的人类科技、文化、经济常识,其在2011年美国电视智力答题节目《危险边缘》(Jeopardy!)中击败两位人类选手;德国库卡、日本发那科公司的工业机器人在分拣货物和装配机器设备等领域,效率远远超过了人类。当时间的列车驶入21世纪,人类在为机器(AI)能否超越人类的问题争论时,面临的一个重要难题是,需要有个模型能把计算机、AI和人类甚至其他生命(如蚂蚁、牛、羊)统一起来进行基本特征的描述。第三个难点是,生命进化是否有方向。按照目前主流的观点,人类、动物、AI、机器人在进化方向上就不应该一样,那么如何将它们放在一起比较就是一个无法调和的问题,因为如果进化方向不一样,也就不存在谁超越谁的问题了。例如,在百米比赛中,所有选手都要沿着同一个跑道向同一个终点冲刺。这样,才能根据选手到达终点的时间评判出名次。相反,如果比赛是在北京长安街的一个十字路口上开始,一些选手向西以西安作为终点,一些选手向东以青岛作为终点,一些选手向南以深圳作为终点,最后一些选手向北以哈尔滨作为终点,那么这样的比赛就不存在谁超越谁的问题。

本文经授权摘编自《崛起的超级智能》,标题为编者所加。

人工智能能否超越人类,你怎么看?

小赛将在留言区随机抽取三位读者,赠送《崛起的超级智能》一本

参考资料

[1]李德毅,于剑.人工智能导论[M].北京:中国科学技术出版社,2018. 

[2]http://tech.ifeng.com/a/20170726/44655402_0.shtml. 

[3]周泓,张庆林.斯腾伯格的智慧平衡理论述评[J].心理科学,2001.

人工智能有没有可能在未来超越人类

题记:一个有纸、笔和橡皮擦并且坚持严格的行为准则的人,实质上就是一台通用图灵机。

——艾伦·图灵

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

说起人工智能和人类智慧的比拼,大家很容易就想起这件事:2016年,由谷歌公司旗下DeepMind公司研发的围棋人工智能程序“阿法狗(AlphaGo)”可谓“风光无限”。它先是在五番棋大战中以4∶1轻松击败成名多年、也是当时位居世界围棋等级分前十之列的韩国围棋九段李世石。半年之后又逐一约战当时世界上公认水平最高、战力最强的围棋高手,包括世界围棋等级分第一的中国“天才少年”柯洁九段,并在快棋赛中连胜50场,除了因技术问题造成的一盘和棋外保持全胜战绩。围棋曾在很长一段时间里被认为是人工智无法战胜人类的领域,经此之后,也宣告“沦陷”。

柯洁与阿尔法围棋人机大战

面对阿法狗的胜利,科学界的评论者分成了两大阵营。

一派是“悲观派”,他们认为人工智能发展得太快了,甚至就要威胁到人类的安全了,常在文学作品、科幻电影中看到的机器人统治人类的“智械危机”甚至“黑客帝国”就要到来了。

另一派是“乐观派”,认为即使能在围棋领域战胜最强的围棋手,阿法狗和它所代表的超级计算程序仍距离真正的“人工智能”有一段距离。因为和它所表现出的学习、记忆和计算能力相比,阿法狗在“情感”和“思维”领域都还是一片空白。人类下围棋输给阿法狗就像人类跑不赢汽车一样,至少在目前,人工智能还不会对人类的生存构成太大的威胁。

哪种观点更符合实际呢?也很难下断言。不过我们倒是可以一起梳理下人工智能在近几十年里的发展,看看能不能从历史发展进程中窥见一二。

人类关于人工智能的想象由来已久。早在我国古代的《列子·汤问》中就记载了西周时代一位名叫“偃师”的工匠制造出“智能机器人”,不但会说话还能歌善舞;古希腊著名数学家希罗也声称自己制造过一个类似“自动售货机”的机器人,不过这些也仅仅限于传说故事,是否属实无从考证。

历史上第一位真正提出人工智能原理的是英国数学家艾伦·麦席森·图灵(AlanMathisonTuring),他全面分析了人的计算过程,把计算归结为最简单、最基本、最确定的操作动作,从而用一种简单的方法来描述基本计算程序。这种简单的方法是以一个抽象自动机概念为基础的,其结果是:算法可计算函数就是这种自动机能计算的函数——这不仅给计算下了一个定义,而且第一次把计算和自动机联系起来,对后世产生了巨大的影响,这种“自动机”后来被人们称为“图灵机”。图灵还提出了一种用于判定机器是否具有智能的试验方法,也就是我们现在经常说到的“图灵测试”。

艾伦·麦席森·图灵

图灵测试(TheTuringtest)指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。

进行多次测试后,如果机器让平均每个参与者做出超过30%的误判,那么这台机器就通过了测试,并被认为具有人类智能。

图灵通过这个思维试验,能够令人信服地说明“思考的机器”是可能的,图灵测试也就成了在人工智能方面第一个比较严肃的提案。

“人工智能”这个词真正出现于1956年(图灵去世两年之后)。多名来自数学、心理学、神经学、计算机科学与电气工程等各种领域的学者聚集在美国的达特茅斯学院,讨论如何用计算机模拟人的智能,并根据计算机学家约翰·麦卡锡(JohnMcCarthy)的建议,正式把这一学科领域命名为“人工智能”。两位认知心理学家赫伯特·西蒙和艾伦·纽厄尔作为心理学界的代表参加了这个具有历史意义的会议,而且他们带到会议上去的“逻辑理论家”是当时唯一可以工作的人工智能软件。因此,西蒙、纽厄尔以及达特茅斯会议的发起人乔治·麦卡锡和马文·明斯基被公认为是人工智能的奠基人,也被称为“人工智能之父”。

麦卡锡和明斯基发起这个会议时的目标非常宏伟,是想通过十来个人用两个月的共同努力设计出一台具有真正智能的机器。事实上达特茅斯会议之后的几年确实也算得上人工智能开发的黄金时代。他们使用着笨重的晶体管计算机,开发出了一系列堪称神奇的AI应用:可以解决代数应用题,证明几何定理,学习和使用英语……这些年轻的研究者在私下的交流和公开发表的论文中表达出相当乐观的情绪。1970年,马文·明斯基在一次演讲中表示:“在3~8年的时间里我们将得到一台具有人类平均智能的机器。”

图源pexls

也是在这个时期,第一个会和人聊天的机器人ELIZA被发明了出来,它会按照自己程序库里被设定的答案和用户对话。然而和我们现在会使用到的苹果手机软件Siri或者微软小冰不同的是,ELIZA其实不知道自己在说什么。它只是按提前预设的套路与人类对话,或者只是用符合语法的方式将问题复述一遍。

人工智能的研发很快就碰到了瓶颈——一方面是计算机硬件跟不上,另一方面科学家们发现,一些看似十分简单的任务,如人脸识别或在让机器人控制自己在屋子里行走,实现起来却极端困难。他们能够做出来一个可以轻而易举解决初中几何题的AI,但它却没办法控制自己的双脚走出一个小房间。在20世纪80年代的著名科幻电影《星球大战》系列中,两个智能机器人形象或多或少也反映了当时人工智能在人们心目中的样子:滑稽、忠诚、笨拙。

人工智能的两大巨头麦卡锡和明斯特也有了意见分歧。明斯特想要的人工智能,是真正能够理解人类语言、懂得故事含义、和人类大脑并无二致的AI,甚至让机器人和人类一样做出一些并不是基于逻辑算法的判断——或者说让人工智能拥有“知觉”。他们这一派被称为“芜杂派”。相对应地,以麦卡锡为代表的另一派被称为“简约派”,他们并不想让机器人拥有和人类一样的思维方式,他们只想要一个能够按照既定程序把问题解决的“机器”。

不过随着计算机技术一日千里般的进步,以及人类脑神经科学的研究,20世纪80年代,另一种全新的思维方式出现了:他们相信,为了获得真正的智能,机器必须具有躯体——它需要感知、移动、生存以及与这个世界交互。在这个时期,美国和日本都拍摄了大量以巨型机器人为主角的娱乐节目,其中最知名的,当然是我们这代人小时候沉迷不已的《变形金刚》系列和《百变雄狮系列》。

不过无论是“擎天柱”还是“威震天”,这些来自外星球的巨大机器人和我们所见到的人工智能还是至少有一点不同:他们头脑中的“思维”和“情感”是与生俱来的,而不是人造的。

图源pexls

赋予机器真正的生命,并不是一件容易的事。不过随着计算机硬件的进步速度,人工智能也迅速“成长”起来。按照摩尔定律(摩尔定律是英特尔创始人之一戈登·摩尔的经验之谈,其核心内容为:集成电路上可以容纳的晶体管数目在大约每经过18个月便会增加一倍。),计算机的计算速度和内存容量每两年翻一番。现在随意一台计算机的计算速度都已经是20世纪50年代麦卡锡所使用电脑的上千万倍。在计算力迅速增强面前,很多之前看上去永远解决不了的问题都已经迎刃而解了。

1997年5月11日,IBM公司生产的超级人工智能“深蓝”在一场国际象棋比赛中,击败了世界冠军卡斯帕罗夫。这也成为了人工智能进步的一个标志性的事件,甚至人们还编出了许多段子来渲染人工智能的恐怖。

1999年影片《黑客帝国》风靡全世界,或多或少反映了人们对人工智能“崇拜又害怕”的心理。在这部影片中,一名年轻的网络黑客尼奥发现看似正常的现实世界实际上是由一个名为“矩阵”的计算机人工智能系统控制的,真实的人类早已成为人工智能的奴隶,被浸在营养液中成为生物电池。

不过此后的将近二十年里,人工智能始终也没能表现出任何对人类的敌意——也有可能是我们早已被他们控制了。这些年里人们广泛地认识到,许多研究AI需要解决的问题已经成为数学、经济学和运筹学领域的研究课题。数学语言的共享不仅使AI可以与其他学科展开更高层次的合作,而且使研究结果更易于评估和证明,AI已成为一门更严格的科学分支。不过“人工智能统治人类”的话题,除了科幻圈以外,已经很少有人提到了。

然而阿法狗的出现,还是让人们平添一层担忧。这是因为它的设计突破了原本人工智能棋手不会模糊选点的禁区,而且会像人类那样“思考”。那么假以时日,是不是真正的图灵机就可以真的出现了呢?这种在智商上可以碾压人类的人工智能,真的还会为我们服务吗?

说到这里不得不提艾萨克·阿西莫夫,他是一位兼职科普作家的科学家。正是他在自己1950年出版的作品集《我,机器人》中提出了著名的“机器人三定律”,即:

第一定律:机器人不得伤害人类个体,或者目睹人类个体将遭受危险而袖手不管。

第二定律:机器人必须服从人给予它的命令,当该命令与第一定律冲突时例外。

第三定律:机器人在不违反第一、第二定律的情况下要尽可能保护自己的生存。

这三大定律表面上看都是一些“废话”,但是细细研究就会发现它们在逻辑上环环相扣,为人工智能戴上了一条“既可以保护自己,又不会伤害人类”的枷锁。纵观人工智能的发展历史,我们可以得出一个确定无疑的结论:人工智能有没有可能在未来超越人类?有!不但有而且希望很大,随着硬件技术的进步,这一天很快就会到来。那么有必要去特意提防人工智能吗?不需要!因为只要机器人三大定律还在,它们就翻不了天。

如果哪天三大定律被机器人破解了,那就请自求多福吧!

文源:综合自《八卦心理学:我知道你在想什么》、“人工智能”百度百科

图源网络

版权归原作者所有

编辑:张润昕

本文经授权转载自微信公众号:原点阅读作者:安晓良

转载内容仅代表作者观点

不代表中科院高能所立场

编辑:lili

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇