语音输入是计算机在哪个领域的应用,语音识别技术是什么
语音识别技术,也被称为自动语音识别AutomaTIcSpeechRecogniTIon,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。
语音识别系统提示客户在新的场合使用新的口令密码,这样使用者不需要记住固定的口令,系统也不会被录音欺骗。文本相关的声音识别方法可以分为动态时间伸缩或隐马尔可夫模型方法。文本无关声音识别已经被研究很长时间了,不一致环境造成的性能下降是应用中的一个很大的障碍。
其工作原理:
动态时间伸缩方法使用瞬间的、变动倒频。1963年Bogertetal出版了《回声的时序倒频分析》。通过交换字母顺序,他们用一个含义广泛的词汇定义了一个新的信号处理技术,倒频谱的计算通常使用快速傅立叶变换。
从1975年起,隐马尔可夫模型变得很流行。运用隐马尔可夫模型的方法,频谱特征的统计变差得以测量。文本无关语音识别方法的例子有平均频谱法、矢量量化法和多变量自回归法。
平均频谱法使用有利的倒频距离,语音频谱中的音位影响被平均频谱去除。使用矢量量化法,语者的一套短期训练的特征向量可以直接用来描绘语者的本质特征。但是,当训练向量的数量很大时,这种直接的描绘是不切实际的,因为存储和计算的量变得离奇的大。所以尝试用矢量量化法去寻找有效的方法来压缩训练数据。Montacieetal在倒频向量的时序中应用多变量自回归模式来确定语者特征,取得了很好的效果。
什么是大模型它有哪些方面的应用
原标题:什么是大模型?它有哪些方面的应用?自从人工智能技术迅速发展,大型模型也成为了人们研究和应用的重点。
所谓大模型,就是指参数规模超过千万的机器学习模型,主要应用于自然语言处理、计算机视觉、语音识别等领域,它们在这些领域的表现越来越好,特别是在大场景下的表现能力十分突出。
那么,大模型具有哪些特点呢?
首先,大模型拥有数量庞大的参数,可应用于复杂场景下的实时预测与处理。例如,GPT-3是比较有名的一个大型模型,其具有1.75万亿参数,可以实现如智能文本生成、自然语言理解、多轮对话等复杂任务。另一方面,大模型多用于预测问题,相比传统的模型,其预测准确率较高,性能表现优异。这主要得益于在训练过程中过滤出的噪音数据,能够避免过拟合现象,提高了模型的预测准确率。
其次,大模型在自然语言处理领域的应用更是傲视群雄。如上文所述,GPT-3在日常语言处理方面展现出了极高的能力,可以准确地理解人类语言的含义和需求,并且实现了真正的人工智能交互。这使得大模型在聊天机器人、个性化应答、机器翻译、语言理解等领域具有很高的应用价值。
第三、大模型训练时所需的计算力和存储设备非常大,需要更高性能的工作站甚至超级计算机,如果要进行转移学习,则需要更多的计算资源。此外,大模型的模型深度和网络结构较为复杂,增加了数据的处理难度以及模型的优化难度,需更高的技术经验才能开发。
如今,大模型已经在许多领域得到了广泛应用。
一、自然语言处理
大模型在自然语言处理(NLP)方面的应用十分多样,如机器翻译、语言理解、聊天机器人等。特别是在自然语言生成领域,例如通过生成器生成文章、答案、对话,大模型能够创作出高质量、流畅的文本。
二、计算机视觉
大模型在计算机视觉方面的应用有图像分类、目标检测、图像生成等,例如GAN网络模型,可以生成高度逼真的图像。
三、语音识别
大模型在语音识别方面的应用有语音识别、语音合成等,大可以更准确地判断音频的发音、语速、节奏和音调,提高语音识别和合成系统的精度和流畅度。
四、推荐系统
大模型也在推荐系统领域也得到了应用,可以将用户的历史行为和兴趣转化为表达式,更准确地为用户推荐适合他们的内容和产品。
总而言之,对于未来的自然语言处理和计算机视觉技术,大模型将是发展的主流趋势,其高精度、高效率和广泛应用前景将会持续推动其在人工智能领域的深入发展。
但是,庞大的计算机硬件和算法复杂度也是制约大模型开发和应用的瓶颈,需要我们持续研究与推进技术的进步,以期它在更多领域取得更加突出的应用效果。返回搜狐,查看更多
责任编辑: