博舍

未来,人工智能将取代放射科医生 人工智能能不能代替医生坐诊科室诊断

未来,人工智能将取代放射科医生

即将接受挑战的全球首款CT、MRI神经影像人工智能辅助诊断产品“BioMindTM”天医智。

工作人员正在调试“BioMindTM”天医智。图片来源:《新京报》

未来,在CT机旁坐诊的或许不再是白大褂医生,而是闪着电源光的人工智能。畅想一下,十年后,当你走进医院影像科,第一眼看到的会是医生还是人工智能呢?

上个月,全球首场围绕神经系统疾病影像诊断的“人机大赛”启动,国家神经系统疾病临床医学研究中心宣布备战,面向全球致力于攻克“脑病”的医生发出“英雄帖”。一个月来,参赛情况如何?

近日,记者从北京天坛医院了解到,目前已有来自全国385家医院及各类医疗机构的700余名医生报名参赛,其中6人顺利通过预赛入围决赛,本月底,他们将与AI(人工智能)展开巅峰对决。

参赛的AI选手,是由国家神经系统疾病临床医学研究中心和首都医科大学人脑保护高精尖创新中心等共同研发的全球首款CT、MRI神经影像人工智能辅助诊断产品——“BioMindTM”天医智。

1

机器诊断准确率达到什么水平“神经系统就是一个万向链接的网络,最适合开展人工智能研究,特别看好应用于脑病的临床决策支持。”王拥军是国家神经系统疾病临床医学研究中心副主任、北京天坛医院常务副院长。他介绍,“BioMindTM”通过对海量疾病信息的深度学习,诊断准确率可达到95%以上,相当于一个高年资主任医师级别的水平。

这次向全球招募神经科医生开展“人机大赛”,其目的也是要验证天医智诊断的准确性。王拥军认为,天医智应用在神经疾病预防、诊疗、预后和康复等阶段具有无可比拟的优越性,未来将在神经疾病医疗领域带来一场颠覆性的“技术革命”。

另一方面,通过大数据智慧,对人脑经验(临床顶级专家的技术和经验)的高效、深度学习,天医智有望解决“人脑”难以解决的疾病“死角”。

2

基层医院诊断能否达到大医院水准

如果“BioMindTM”天医智可靠,将来实际应用前景如何?

王拥军介绍,从全国范围来看,影像科人才资源地域性分配不均衡问题突出。以脑肿瘤为例,北京天坛医院每年手术量约为一万例,而在大部分基层医院,这个数字可能只停留在两位数。大多数患者即使在基层做了检查,还是会选择携带片子到三甲大医院来看,有的在“上流”的过程中反复多次拍片,造成资源浪费。如果基层医院能利用AI技术为诊断赋能,让基层医生在读片诊断上与大医院具备同等水准,提升诊疗效率,就能减少患者不必要的诊疗环节和经济损失,也能减轻大医院压力。

此外,在天坛医院,天医智有效挖掘信息与疾病的潜在联系的能力还可辅助医生对疾病做出更为精准的预测,如预测患者血肿后是否会大出血的准确度,可从人为判断的60%提升至90%,辅助医疗团队提前为患者可能遇到的危险提供解决方案。

3

人工智能看病能否取代医生

随着人工智能应用逐渐渗透至社会更多行业,不少人是否因此失业一直备受关注。如果人工智能“阅片”准确率已达到95%以上,是否意味着放射科医生未来不再具备竞争力?

“觉得它轻易就能取代医生的人,把医生的工作看得太简单了。”北京天坛医院神经影像学中心主任高培毅认为,AI在大数据深度学习方面的确具备巨大的优势,不过在实际诊断中,放射科医生仍具有很强的不可替代性。

“除了影像检查,一个合格的放射科医生还需要看化验单、体检单,询问家族史、个人病史,了解患者曾经接受过的药物、治疗、反应。综合以上情况后,才能做出诊断。”他表示,AI也许可以取代看片匠的角色,但不可能成为一个真正的医生。王拥军也认为,人工智能应用可以将医生们从枯燥、重复的工作中解放出来,从而腾出更多时间进行开发性工作。

此外,目前AI在神经系统影像诊断方面,仍完全依赖于数据真实性和质量的支撑,在缺乏大数据支持的疑难病、罕见病诊断领域,AI和专业医生之间仍存在差距。

据《新京报》

(人工智能)

人工智能能取代医生吗

随着人工智能技术的逐渐成熟,IBMWatson以肿瘤为重心,逐渐将服务半径伸向慢病管理、精准医疗、体外检测、精准医疗等九大医疗领域,逐步实现人工智能作为一种新型工具的价值。

思派网络创始人马旭广认为,人工智能目前还是作为医生的辅助工具,“可能今后医生就不存在了,但起码今天所有的AI都应该是帮助医生提高效率,解决医生不愿意做的,又脏又累的工作,这样的AI才有前途,才有机会。”

复星同浩基金合伙人乔继英表示,人工智能在医疗领域的应用,需要得到医生或医疗相关人员认可才能够推行。“医疗和买衣服不一样,买衣服不好可以退,医疗试错成本非常高,人工智能在医疗领域应用时的准确率,怎么具体应用都非常重要,人工智能医疗的创业公司一开始要有医疗从业人员的参与。”

人工智能的特点是能够处理大量数据和信息,这就需要足够的原始数据进行支持,但在医学很多领域缺少足够的原始数据。IBM沃森健康负责人PhilWu以沃森为例,谈到面对所谓经验上的东西沃森是支持的,沃森所提供的医疗方案背后都有实证支持。“面对疑难杂症,这点沃森解决不了,疑难杂症没有一个标准化,沃森无法实现学习。”

这样看来,短时期内医生并不用过分担心自己会被人工智能抢了“饭碗”。长远来看,医生这个行业将会因为人工智能的出现而变得竞争愈发激烈。“因为让AI学习的病例仍然需要医生来产生,一些高水准有研究性强的医生将会越来越吃香,而某些低水准的医生将会被取代。”一位AI从业者说。

著名大数据专家,阿里巴巴集团原副总裁徐子沛曾写文章表示,人工智能在医疗领域有巨大的想象空间,未来将极大简化当前繁琐的看病流程,解放医生,也解放病人。“但我不认为医生会完全消失,但其职业方式将发生重大变化。未来的医院,将成为病人、医生、算法三者共生、互相协作的场所。”

医学影像可能率先商业化

方正证券报告指出,从全球创业公司实践的情况来看,AI+医疗的具体应用包括洞察与风险管理、医学研究、医学影像与诊断、生活方式管理与监督、精神健康、护理、急救室与医院管理、药物挖掘、虚拟助理、可穿戴设备以及其他,其中以下面四种模式为主流:

首先是AI+辅助诊疗,即将人工智能技术用于辅助诊疗中,让计算机“学习”专家医生的医疗知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。辅助诊疗场景是医疗领域最重要、也最核心的场景,人工智能+辅助诊疗潜在市场空间巨大,至少是万亿级以上的营收规模。

在AI+辅助诊疗的应用中,IBMWatson是目前最成熟的案例。2012年Watson通过了美国职业医师资格考试,并部署在美国多家医院提供辅助诊疗的服务。目前IBMWatson提供诊治服务的病种包括乳腺癌、肺癌、结肠癌、前列腺癌、膀胱癌、卵巢癌、子宫癌等多种癌症。

其次是AI+医学影像,是将人工智能技术具体应用在医学影像的诊断上,主要分为两部分:一是图像识别,应用于感知环节,其主要目的是将影像这类非机构化数据进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,是AI应用的最核心环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握“诊断”的能力。

如今,AI+医学影像已经走出实验室,下一步将迎来商业化浪潮。贝斯以色列女执事医学中心(BIDMC)与哈佛医学院合作研发的人工智能系统,对乳腺癌病理图片中癌细胞的识别准确率能达到92%,与病理学家的分析结合在一起时,它的诊断准确率可以高达99.5%。国内的DeepCare对于乳腺癌细胞识别的准确率也达到了92%。

第三是AI+药物挖掘,是指将深度学习技术应用于药物临床前研究,达到快速、准确地挖掘和筛选合适的化合物或生物,达到缩短新药研发周期、降低新药研发成本、提高新药研发成功率的目的。通过计算机模拟,AI可以对药物活性、安全性和副作用进行预测。借助深度学习,在心血管药、抗肿瘤药、孤儿药和常见传染病治疗药等多领域取得了新突破。目前,已经涌现出多家AI技术主导的药物研发企业。

“现在新药研发越来越难,过去用人工智能从事新药研发数据不够、算法也不够,未来在这一领域可能会有大的突破。”乔继英表示,新药研发多年来“10年10亿美金”的“魔咒”或许有望打破。

第四是AI+健康管理。目前从全球AI+医疗创业公司来看,主要集中在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。乔继英表示,个人健康管理,仅有简单的信息反馈是不够的,如果可以在更有效、更低成本层面实现个人健康管理,这也是未来的一个方向。

其中,“AI+医学影像”被多位业内人士认为最有可能率先实现商业化。

马旭广个人特别看好图像识别在医疗领域的应用,“只要比对足够多的影像,AI就能够提高诊断效率,提高诊断准确性,这是我坚信AI在医疗过程中发展最快的领域。”

PhilWu对此表示认同,“人工智能在医学影像领域有可能最早落地,但要实现精准的医学诊断,还需要更多数据、案例的录入,但影像图片确实是一个很好的切入点。”PhilWu透露,沃森将有影像学肿瘤方案产品在2018年上线。

2015年,IBM以10亿美元收购医学影像公司Merge,MergeHealthcare是美国最有影响力的医疗影像公司,不仅拥有大量的医学数据和图像(CAT扫描、乳房摄像),还有世界顶尖的技术平台。该平台可以帮助医生和医院存储并分析医学图像。IBM相关负责人此前曾表示,Watson与Merge的结合可以提供对影像的深度解读,帮助医疗提供者和研究人员节省时间。出售这种医学影像的深度解读便是其盈利方式。

顺为资本合伙人李锐认为,图像智能识别可以降低医生的工作量,这是业界已经达成共识的,但是在综合诊疗上人工智能是否能给予医生很好的建议和意见?IT和互联网出身的人对此有很大的信心,但医生背景的人目前还有很多疑虑。“我也比较保守,去年投的几个公司都是医生加互联网的团队,或是创始人既干过医生也干过互联网。”李锐说。

乔继英认为,无论是治疗皮肤病还是癌症,图像可能只是一个参数,而治疗疾病需要多个参数。“从投资人角度来说,光看图像还不足以让我做出判断。我们更希望至少能解决一个小的问题,能做出一个临床辅助诊断。”

商业化挑战

IDCDigital预测,截至2020年,医疗数据量将达40万亿GB,预计约80%数据为非结构化数据。显然,人工智能在医疗领域有无限想象空间。

但是,人工智能在医疗领域实现商业化依旧面临诸多挑战。即便是在医疗领域渗透最广的Watson,其商业化路径仍在探索。“AI+医疗”的商业化还会面临一个医疗行业从业者都无法回避的问题,那就是医疗行业的公益性。“医疗行业不纯粹是商业行为导向,当医生应用人工智能来做辅助诊断的时候谁来付费?”邓侃表示,这个问题他经常被投资人问到。

互联网医疗创业大浪中,糖尿病领域的企业多如牛毛,利用人工智能做糖尿病管理,也是不少创业公司正在尝试的事情。慧控糖就是其中一家。慧控糖创始人杨枫认为,人工智能做糖尿病管理,个性化数据特别珍贵。“我们的经验是先从个性化数据这样的小数据着手,服务好每一个患者,这样患者更容易买单。患者愿意买单,你已经活下来了,等到数据大的时候再去发现规律。先有服务,后有数据,再有大数据。”

乔继英认为,AI适合解决的商业问题特征包括“行业存在持续痛点、流程重复、可进行数字化信息输入,问题可以细分并且有边界。”如果能为之提供解决方案,自然有人愿意买单。“医疗里的付费方包括保险、药企、医院等医疗服务机构、医生、患者。其中,医生是用户和决策者,患者是使用者,付费方是保险机构,整个链条比较长和复杂,不过把链条挖到底,总能找到愿意付费的那一方。”

“现在全世界都要做人工智能,国内的数据基础大,可能我们的速度更快,所以在人工智能领域国内企业有弯道超车机会。”杨枫对未来很乐观。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇