博舍

人工智能基础——什么是智能(智能的特征) 人工智能是人的智能吗为什么不是人的

人工智能基础——什么是智能(智能的特征)

智能的概念:智能及智能的本质是古今中外许多哲学家、脑科学家一直在努力探索和研究的问题,但至今任然没有完全了解。

不过生成了以下几种学派:1.思维理论:认为智能是思维的核心。2.知识阈值理论:认为智能行为取决于知识的数量及其一般化的程度,认为智能就是在巨大的搜索空间中迅速找到一个满意解的能力。3.进化理论。

综合以上各种观点,可以认为:智能是知识与智力的综合,其中,知识是一切智能行为的基础,而智力是获取知识并应用知识求解问题的能力。

智能的特征:1.具有感知能力能够感知外界,从而获取知识。2.具有记忆和思维能力记忆用于存储思维所产生的知识,思维用于对信息的处理,是获取知识以及运用知识求解问题的根本途径。思维又可分为逻辑思维、形象思维、以及顿悟思维。逻辑思维:串行的,表现为一个线性过程形象思维:主要依据直觉顿悟思维:突然出现的想法。3.具有学习能力通过与环境的作用不断学习。4.具有行为能力行为能力就是信息的输出,对外界的变化做出反应。

人工智能是什么

人工智能是什么?欢迎大家迈入人工智能的大门1.人工智能的定义2.人工智能的话题3.人工智能的四大技术分支4.人工智能的主要应用领域5.人工智能的三种形态5.1.弱人工智能到强人工智能有多难?5.2.弱人工智能的前进方式5.3.强人工智能到超级人工智能之路5.4.智能爆炸——强人工智能时代微信公众号同步欢迎大家迈入人工智能的大门

  人工智能(ArtificialIntelligence,AI)是当前全球最热门的话题之一,是21世纪引领世界未来科技领域发展和生活方式转变的风向标,人们在日常生活中其实已经方方面面地运用到了人工智能技术,比如网上购物的个人化推荐系统、人脸识别门禁、人工智能医疗影像、人工智能导航系统、人工智能写作助手、人工智能语音助手等等。目前有大量群体对人工智能的定义、原理、分类、应用产生了极大地兴趣,可是网上媒体发布的一些资料信息大多具有极强的偏向性和导向性,很少有客观全面的总结。在这里,我做了一个详细的“人工智能图解笔记”,从人工智能的定义、分类和发展路径等角度,给大家展示了一个全面的人工智能图谱。

1.人工智能的定义

  人工智能的定义主要有以下几种:

人工智能的一种定义:《人工智能,一种现代的方法》笔记:人工智能是类人思考、类人行为,理性的思考、理性的行动。人工智能的基础是哲学、数学、经济学、神经科学、心理学、计算机工程、控制论、语言学。人工智能的发展,经过了孕育、诞生、早期的热情、现实的困难等数个阶段;人工智能的另一种定义:人工智能是研究、开发用于模拟、延伸和扩展人的智能理论、方法、技术及应用系统的一门新的技术科学,它是计算机科学的一个分支;人工智能是一门什么科学?:人工智能科学的主旨是研究和开发出智能实体,‍‍在这一点上它属于工程学。工程的一些基础学科自不用说‍‍,数学、逻辑学、归纳学、统计学,‍‍系统学、控制学‍‍、工程学、计算机科学‍‍,还包括对哲学、心理学、生物学、神经科学、认知科学‍‍、仿生学‍‍、经济学‍‍、语言学‍‍等其它学科的研究‍‍,可以说‍‍这是一门‍‍集数门学科精华的‍‍尖端学科中的尖端学科——因此说人工智能是一门综合学科。‍

2.人工智能的话题

  人工智能的话题有且不限于以下几种:

我们总是把人工智能和电影想到一起:星球大战、终结者、2001:太空漫游等等,电影是虚构的,那些电影角色也是虚构的,所以我们总是觉得人工智能缺乏真实感;人工智能是个很宽泛的话题:从手机上的计算器到无人驾驶汽车,到未来可能改变世界的重大变革,人工智能可以用来描述很多东西,所以人们会有疑惑;我们日常生活中已经每天都在使用人工智能:生活中很多互联网工具已经是人工智能了,只是我们没意识到,或者已经习惯了而已。JohnMcCarthy在1956年最早使用的人工智能(ArtificialIntelligence)这个词,他总是抱怨“一旦一样东西用人工智能实现了,人们就不再叫它人工智能了。”;一些场景的弱人工智能例子:谷歌,一个巨大的搜索热人工智能;智能手机,弱人工智能系统;智能汽车,很多已经安装了控制汽油渗入,控制防抱死系统的电脑等;垃圾邮箱过滤器也是经典的弱人工智能。

3.人工智能的四大技术分支

  人工智能的四大技术分支如下所示:

模式识别:是指对表征事物或者现象的各种形式(数值的文字、逻辑的关系等等)信息进行处理分析,以及对事物或现象进行描述分析分类解释的过程,例如汽车车牌号的辨识,涉及到图像处理分析等技术;机器学习:研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构是指不断完善自身的性能,或者达到操作者的特定要求;数据挖掘:知识库的知识发现,通过算法搜索挖掘出有用的信息,应用于市场分析、科学探索、疾病预测等等;智能算法:解决某类问题的一些特定模式算法,例如我们最熟悉的最短路径问题,以及工程预算问题等等。

4.人工智能的主要应用领域

  人工智能的主要应用领域有哪些呢?

机器人领域:人工智能机器人,如PET聊天机器人,它能理解人的语言,用人类语言进行对话,并能够用特定传感器采集分析出现的情况、调整自己的动作来达到特定的目的;语音识别领域:该领域其实与机器人领域有交叉,设计的应用是把语言和声音转换成可进行处理的信息,如语音开锁(特定语音识别)、语音邮件以及未来的计算机输入等方面;图像识别领域:利用计算机进行图像处理、分析和理解,以识别各种不同模式的目标和对象的技术,例如人脸识别、汽车牌号识别等等;专家系统:具有专门知识和经验的计算机智能程序系统,后台采用的数据库,相当于人脑具有丰富的知识储备,采用数据库中的知识数据和知识推理技术来模拟专家解决复杂问题。

5.人工智能的三种形态

  人工智能具体有哪三种形态呢?

弱人工智能:弱人工智能(ArtificialNarrowIntelligence,ANI)是擅长与单个方面的人工智能,比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上存储数据,它就不知道怎么回答你了;强人工智能:强人工智能(ArtificialGeneralIntelligence,AGI),是人类级别的人工智能,强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能要难得多,我们现在还做不到。LindaGottfredson教授把智能定义为“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念,快速学习和从经验中学习等操作”。强人工智能在进行这些操作时,应该和人类一样得心应手;超人工智能:超人工智能(ArtificialSuperIntelligence,ASI),牛津哲学家,知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科技创新、通识和社交技能”。超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍,超人工智能也正是为什么人工智能这个话题这么火热的缘故,同样也是为什么永生和灭绝这两个词会在本文中多次出现。

5.1.弱人工智能到强人工智能有多难?

  弱人工智能已经实现了,强人工智能还有一段路要走。那么目前究竟遇到了哪些困难呢?

一个大困难:人类的大脑是我们所知宇宙中最复杂的东西,至今我们都还没完全搞清楚;可以简单解决的:可简单解决的造一个能在瞬间算出10位数乘法的计算器;目前比较难以解决的:选一个能分辨出一个动物是猫还是狗的计算机;已经成功的:造一个能战胜世界象棋冠军的电脑;还没做出来的:谷歌目前花了几十亿美元在做一个能够读懂六岁小朋友的图片书中的文字,并且了解那些词汇意思的电脑;逻辑容易感知难:一些我们觉得困难的事情——微积分,金融市场策略、翻译等等,对于电脑来说都太简单了;而且我们觉得容易的事情——视觉、动态、转移、直觉——对电脑来说太难了;计算机科学家DonaldKnuth:人工智能已经在几乎所有需要思考的领域超过了人类,但是在那些人类和其它动物不需要思考就能完成的事情上还差得很远;人工智能的一个典型目标例子:要想达到人类级别的智能电脑,电脑必须要理解更高深的东西,比如微小的脸部表情变化,开心、放松、满足、满意、高兴这些类似情绪间的区别,以及为什么《布达佩斯大饭店》是好电影,而《富春山居图》是烂电影。

5.2.弱人工智能的前进方式

  弱人工智能已经实现了,强人工智能还有一段路要走。那么目前究竟遇到了哪些困难呢?

第一步:增加电脑处理速度:要达到强人工智能,肯定要满足的就是电脑硬件的运算能力,如果一个人工智能要像人脑一般聪明,他至少要能达到人脑的运算能力。从人脑的发展速度来看,预计到了2025年就能花1000美元买到可以和人脑运算速度抗衡的电脑了;第二步:让电脑变得更智能:抄袭人脑,参考人脑范本做一个复杂的人工神经网络,科学界正在努力逆向工程人脑,来理解生物进化是怎么造出这个神奇的东西的,乐观的估计是我们在2030年之前能够完成这个任务,我们已经能模拟小虫子的大脑了,蚂蚁的大脑也不远了,接着就是老鼠的大脑,到那时模拟人类大脑就不是那么不现实的事情了;模仿生物演化,除了抄袭人了,也可以像制造飞机、模拟小鸟那样模拟类似的生物形式。不全部复制,包括部分人工的设计干预,因为人类主导的演化会比自然快很多很多,但是我们依然不清楚这些优势是否能使演化模拟成为可行的策略。让电脑来解决这些问题,如果抄学霸的答案和模拟学霸备考的方法都走不通,那就干脆让考题自己解答自己吧。这种想法很无厘头,却是最有希望的一种。总的思路是我们建造一个能进行两项任务的电脑——研究人工智能和修改自己的代码,这样他就不只能改进自己的架构了,我们直接把电脑变成了电脑科学家,提高电脑的智能就变成了电脑自己的任务,前期会很慢,但一旦上路,后面会飞速发展。

5.3.强人工智能到超级人工智能之路

  从强人工智能到强人工智能,还有哪些需要改进和增强的地方呢?

发展的观点:总有一天,我们会造出和人类智能相当的强人工智能电脑。到了这个时候,人工智能不会停下来,考虑到强人工智能之于人脑的种种优势,人工智能只会在“人类水平”这个节点做短暂的停留,然后就会开始大踏步向超人类级别的智能走去;超级人工智能比人类牛逼的地方:硬件上,运算速度往着几何级的速度增长;容量和存储空间也会迅速提升,远超人类,而且不断拉开距离;可靠性、持续性,不会疲惫,能持续不断的思考;软件上,可编辑性、升级性,以及更多的可能性。和人脑不同,电脑软件可以进行更多的升级和修正,并且很容易做测试,另外一个则是集体能力,人类的集体智能是我们统治其它物种的重要原因之一,而电脑在这方面比我们要强得很多,一个运行特定程序的人工智能网络能够经常在全球范围内自我同步,这样一台电脑学到的东西会立刻被其它所有电脑学得,而电脑集群可以共同执行同一个任务,因为异见、动力、自利这些人类特有的东西未必会出现在电脑身上。

5.4.智能爆炸——强人工智能时代

  如果强人工智能时代来临,地球将是一幅怎样的景象呢?

人类统治地球观:人类对于地球的统治教给我们一个道理——智能就是力量,也就是说一个超人工智能,一旦被创造出来,将是地球有史以来最强大的东西,而所有生物,包括人类都只能屈居于其下——而这一切有可能在未来几十年就发生。当一个超人工智能出生的时候,对我们来说,就像一个全能的上帝降临地球一般;递归的自我改进概念:一个运行在特定智能水平的人工智能,比如说脑残人类水平,有自我改进的机制,当它完成一次自我改进后,她比原来更加聪明了,我们假设它到了爱因斯坦水平,而这个时候它继续进行自我改进,然而现在它有了爱因斯坦水平的智能,所以这次改进会比上一次更加容易,效果也更好。第二次的改进使它比爱因斯坦还要聪明很多,但它接下来的改进进步更加明显。如此反复,这个强人工智能的智能水平越长越快,直到它达到了超人工智能的水平——这就是智能爆炸,也是加速回报定律的终极体现;当人工智能达到人类水平:以下的情景可能会发生:一个人工智能系统,花了几十年时间到达了人类脑残智能水平,而这个节点发生的时候,电脑对于世界的感知大概和一个四岁小孩一般;而这个节点后一个小时,电脑立马推导出了统一广义相对论和量子力学的物理理论;而在这之后一个半小时,这个超人工智能变成了超人工智能,智能达到了普通人类的17万倍;科技大佬警惕人工智能的原因:现在很多科技大佬包括科学家都在提出警惕人工智能,要建立和完善法律法规,目的就是担心未来人类会因此毁灭。那些在我们看来超自然的只属于全能的上帝的能力,对于一个超人工智能来说,可能就像按下一个电灯开关那么简单,防止人类衰老、治疗各种不治之症、解决世界饥荒、甚至让人类永生、操纵气候来保护地球未来什么的,这一切都将变得可能,同样可能的是地球上所有生命的终结。微信公众号同步

  小编在这里通知大家,关注微信公众号“机器学习和人工智能”,干货多多~  我们会定期推送Python编程,人工智能基础算法,学术界、工业界最新动态,让更多的人了解人工智能~  欢迎扫描下方二维码关注哈~

人工智能不是人的智能,但能像人那样思考、也可能超过人的智能

比尔·盖茨曾在一篇给大学生的毕业寄语中写道“当今时代是一个非常好的时代”,如果在今天寻找一个能对世界造成巨大影响的机会,他毫不犹豫的就会考虑——人工智能。那么,你知道什么是人工智能?你知道人工智能的发展如何吗?你对未来人工智能有什么期待吗?人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种复杂工作的理解是不同的。人工智能不同于传统的机器人,传统机器人只是代替人类做一些已经输入好的指令工作,而人工智能则包含了机器学习,从被动到主动,从模式化实行指令,到自主判断根据情况实行不同的指令,这就是区别。如今人工智能的发展越来越快,从清华大学的华智冰到抖音短视频的柳夜熙,给人们带来了一次又一次的震撼。不过人工智能发展的脚步不会停止,会一直向智能化一步步走下去,会给这个世界带来更多的惊喜。说到人工智能就不得不谈一谈RPA技术了,那么什么是RPA技术呢?RPA即机器人流程自动化,是一种应用程序,它通过模仿最终用户在电脑的手动操作方式,提供了另一种方式来使最终用户手动操作流程自动化。在RPA行业,实在智能走出了与众不同的道路,与人工智能相结合的道路,即AI+RPA赛道,给了RPA行业指路明灯。RPA发展的最终结果是智能化,所以还是人工智能。至于AI+RPA未来发展到什么程度,还是让我们拭目以待吧。

人工智能可能有自主意识了吗

➤大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术

➤不同于当前依赖数据学习的技术路线,新一代人工智能强调在没有经过数据学习的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互

➤当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。在发展科技的同时,必须同步发展我们的规制体系

➤“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”

今年6月,美国谷歌公司软件工程师布莱克·勒莫因称语言模型LaMDA出现自我意识。他认为,LaMDA拥有七八岁孩童的智力,并相信LaMDA正在争取自己作为一个人的权利。

LaMDA是谷歌去年发布的一款专门用于对话的语言模型,主要功能是可以与人类交谈。

为佐证观点,勒莫因把自己和LaMDA的聊天记录上传至互联网。随后,谷歌以违反保密协议为由对其停职。谷歌表示,没有任何证据支持勒莫因的观点。

事实上,“AI(人工智能)是否拥有自主意识”一直争议不休。此次谷歌工程师和LaMDA的故事,再次引发讨论。人们想知道:人工智能技术究竟发展到了怎样的阶段?是否真的具备自主意识?其判定依据是什么?未来我们又该以怎样的能力和心态与人工智能和谐共处?

人工智能自主意识之辨

勒莫因认为LaMDA具有意识的原因有三:一是LaMDA以前所未有的方式高效、创造性地使用语言;二是它以与人类相似的方式分享感觉;三是它会表达内省和想象,既会担忧未来,也会追忆过去。

受访专家告诉《瞭望》新闻周刊记者,上述现象仅仅是因为LaMDA所基于的Transformer架构能够联系上下文,进行高精度的人类对话模拟,故能应对人类开放、发散的交谈。

至于人工智能是否已经具备自主意识,判定标准如何,受访专家表示,对人类意识的探索目前仍属于科技前沿,尚未形成统一定义。

清华大学北京信息科学与技术国家研究中心助理研究员郭雨晨说:“我们说人有自主意识,是因为人知道自己在干什么。机器则不一样,你对它输入内容,它只是依照程序设定进行反馈。”

中国社会科学院科学技术哲学研究室主任段伟文认为,一般意义上,人的自我意识是指对自我具备觉知,但如何认识和理解人类意识更多还是一个哲学问题而不是科学问题,这也是很难明确定义人工智能是否具备意识的原因。

被誉为“计算机科学与人工智能之父”的艾伦·图灵,早在1950年就曾提出图灵测试——如果一台机器能够与人类展开对话而不能被辨别出其机器身份,那么可以称这台机器具有智能。

这一设想随后被具化为,如果有超过30%参与测试的人以为自己在和人说话而非计算机,就可以认为“机器会思考”。

当前随着技术的发展,已经有越来越多的机器能够通过图灵测试。

但清华大学人工智能国际治理研究院副院长梁正告诉《瞭望》新闻周刊记者,图灵测试只能证明机器在表象上可以做到让人无法分辨它与人类的不同,却不能证明机器能够思考,更不能证明机器具备自主意识。

段伟文表示,目前大体有两种方式判定人工智能是否具有自主意识,一种以人类意识为参照,另一种则试图对机器意识进行全新定义。

若以人类意识为参照,要观察机器能否像人一样整合信息。“比如你在阳光下,坐在河边的椅子上看书,有树影落在脸上,有风吹来,它们会带给你一种整体的愉悦感。而对机器来说,阳光、河流、椅子等,是分散的单一元素。”段伟文说。

不仅如此,段伟文说,还要观察机器能否像人一样将单一事件放在全局中思考,作出符合全局利益的决策。

若跳出人类构建自主意识的范式,对机器意识进行重新定义,则需要明白意识的本质是什么。

段伟文告诉记者,有理论认为如果机器与机器之间形成了灵活、独立的交互,则可以称机器具备意识。也有理论认为,可以不追究机器的内心,仅仅把机器当作行为体,从机器的行为表现判断它是否理解所做事情的意义。“比如机器人看到人类喝咖啡后很精神,下次当它观察到人类的疲惫,能不能想到要为人类煮一杯咖啡?”段伟文说。

但在段伟文看来,这些对机器意识进行重新定义的理论,其问题出在,即便能够证明机器可以交互对话、深度理解,但是否等同于具备自主意识尚未有定论。“以LaMDA为例,虽然能够生成在人类看来更具意义的对话,甚至人可以与机器在对话中产生共情,但其本质仍然是在数据采集、配对、筛选机制下形成的反馈,并不代表模型能够理解对话的意义。”

换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术。

郭雨晨直言,尽管在情感计算方面,通过深度学习的推动已经发展得比较好,但如果就此说人工智能具备意识还有些一厢情愿。“把‘意识’这个词换成‘功能’,我会觉得更加准确。”

技术换道

有专家提出,若要机器能思考,先要解决人工智能发展的换道问题。

据了解,目前基于深度学习、由数据驱动的人工智能在技术上已经触及天花板。一个突出例证是,阿尔法围棋(AlphaGo)在击败人类围棋世界冠军后,虽然财力和算力不断投入,但深度学习的回报率却没有相应增长。

一般认为,人工智能可被分为弱人工智能、通用人工智能和超级人工智能。弱人工智能也被称为狭义人工智能,专攻某一领域;通用人工智能也叫强人工智能,主要目标是制造出一台像人类一样拥有全面智能的计算机;超级人工智能类似于科幻作品中拥有超能力的智能机器人。

从产业发展角度看,人工智能在弱人工智能阶段停留了相当长时间,正在向通用人工智能阶段迈进。受访专家表示,目前尚未有成功创建通用人工智能的成熟案例,而具备自主意识,至少需要发展到通用人工智能阶段。

梁正说,大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。“如果你给这类语言模型喂养大量关于内省、想象等与意识有关的数据,它便更容易反馈与意识有关的回应。”

不仅如此,现阶段的人工智能在一个复杂、专门的领域可以做到极致,却很难完成一件在人类看来非常简单的事情。“比如人工智能可以成为围棋高手,却不具备三岁小孩对陌生环境的感知能力。”段伟文说。

谈及背后原因,受访专家表示,第一是当前人工智能主要与符号世界进行交互,在对物理世界的感知与反应上发展缓慢。第二是数据学习让机器只能对见过的内容有合理反馈,无法处理陌生内容。第三是在数据驱动技术路线下,人们通过不断调整、优化参数来强化机器反馈的精准度,但这种调适终究有限。

郭雨晨说,人类在特定任务的学习过程中接触的数据量并不大,却可以很快学习新技能、完成新任务,这是目前基于数据驱动的人工智能所不具备的能力。

梁正强调,不同于当前主要依赖大规模数据训练的技术路线,新一代人工智能强调在没有经过数据训练的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互。

相比人类意识的自由开放,以往人工智能更多处在封闭空间。尽管这个空间可能足够大,但若超出设定范畴便无法处理。而人类如果按照规则不能解决问题,就会修改规则,甚至发明新规则。

这意味着,如果人工智能能够超越现有学习模式,拥有对自身意识系统进行反思的能力,就会理解自身系统的基本性质,就有可能改造自身的意识系统,创造新规则,从而成为自己的主人。

“人工智能觉醒”背后

有关“人工智能觉醒”的讨论已不鲜见,但谷歌迅速否认的态度耐人寻味。

梁正表示:“如果不迅速驳斥指认,会给谷歌带来合规性方面的麻烦。”

据了解,关于人工智能是否有自主意识的争论并非单纯技术领域的学术探讨,而关乎企业合规性的基本坚守。一旦认定公司研发的人工智能系统出现自主意识,很可能会被认为违反第2版《人工智能设计的伦理准则》白皮书的相关规范。

这一由美国电气和电子工程师协会2017年发布的规范明确:“根据某些理论,当系统接近并超过通用人工智能时,无法预料的或无意的系统行为将变得越来越危险且难以纠正。并不是所有通用人工智能级别的系统都能够与人类利益保持一致,因此,当这些系统的能力越来越强大时,应当谨慎并确定不同系统的运行机制。”

梁正认为,为避免社会舆论可能的过度负面解读,担心大家认为它培育出了英国作家玛丽·雪莱笔下的弗兰肯斯坦式的科技怪物,以“不作恶”为企业口号的谷歌自然会予以否认。“不仅如此,尽管这一原则对企业没有强制约束力,但若被认为突破了底线,并对个体和社会造成实质性伤害,很有可能面临高额的惩罚性赔偿,因此企业在合规性方面会更为谨慎。”

我国也有类似管理规范。2019年,国家新一代人工智能治理专业委员会发布《新一代人工智能治理原则——发展负责任的人工智能》,提出人工智能治理的框架和行动指南。其中,“敏捷治理”原则主要针对技术可能带来的新社会风险展开治理,强调治理的适应性与灵活性。

中国信息化百人会成员、清华大学教授薛澜在接受媒体采访时表示,当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。特别是在第四次工业革命背景下,我国的人工智能技术和其他国家一样都处于发展期,没有现成的规制体系,这样就使得我们在发展科技的同时,必须同步发展我们的规制体系。“这可能是人工智能发展面临最大的挑战。”

在梁正看来,目前很难断言新兴人工智能技术具有绝对风险,但必须构造合理的熔断、叫停机制。在治理中既要具有一定的预见性,又不能扼杀创新的土壤,要在企业诉求和公共安全之间找到合适的平衡点。

毕竟,对人类来说,发展人工智能的目的不是把机器变成人,更不是把人变成机器,而是解决人类社会发展面临的问题。

从这个角度来说,我们需要的或许只是帮助人类而不是代替人类的人工智能。

为了人机友好的未来

确保通用人工智能技术有益于人类福祉,一直是人工智能伦理构建的前沿。

薛澜认为,在科技领域,很多技术都像硬币的两面,在带来正面效应的同时也会存在风险,人工智能就是其中一个比较突出的领域。如何在促进技术创新和规制潜在风险之间寻求平衡,是科技伦理必须关注的问题。

梁正提出,有时技术的发展会超越人们预想的框架,在不自觉的情况下出现与人类利益不一致甚至相悖的情况。著名的“曲别针制造机”假说,即描述了通用人工智能在目标和技术都无害的情况下,对人类造成威胁的情景。

“曲别针制造机”假说给定一种技术模型,假设某个人工智能机器的终极目标是制造曲别针,尽管看上去这一目的对人类无害,但最终它却使用人类无法比拟的能力,把世界上所有资源都做成了曲别针,进而对人类社会产生不可逆的伤害。

因此有观点认为,创造出法力高超又杀不死的孙悟空本身就是一种不顾后果的冒险行为。

与其对立的观点则认为,目前这一担忧为时尚早。

“我们对到底什么样的技术路线能够发展出具备自主意识的人工智能尚无共识,现在谈论‘禁止发展’,有种空中楼阁的意味。”梁正说。

商汤科技智能产业研究院院长田丰告诉《瞭望》新闻周刊,现实中人工智能技术伦理风险治理的关键,是产业能够在“预判防范-应用场景-用户反馈-产品改进”中形成市场反馈机制,促成伦理风险识别与敏捷治理。同时,企业内部也需建立完整的科技伦理自律机制,通过伦理委员会、伦理风控流程平台将伦理风险把控落实到产品全生命周期中。

郭雨晨说,人工智能技术发展到目前,仍始终处于人类可控状态,而科技发展的过程本来就伴随对衍生问题的预判、发现和解决。“在想象中的人工智能自主意识出现以前,人工智能技术脚踏实地的发展,已经造福人类社会很多年了。”

在梁正看来,人与人工智能在未来会是一种合作关系,各自具备对方无法达成的能力。“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”

编辑:李华山

2022年08月16日07:42:05

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇