人工智能的十大技术及应用
编辑导语:人工智能从诞生以来,其理论和技术日益成熟,应用领域也不断扩大。本篇作者给我们介绍了人工智能的十大技术及其相关应用,一起来看看吧。
人工智能发展到现在已经将近有80年的历史。近日来特斯拉也说了自己不是汽车公司,是可再生能源公司、是机器人公司、是人工智能公司,特斯拉也明确表示未来人工智能汽车自动化驾驶的方向是视觉识别+机器学习。
人工智能从诞生以来,其理论和技术日益成熟,应用领域也不断扩大,接下来我将给大家介绍下人工智能的十大技术及其相关应用。
一、问题求解
人工智能的第一个大成就是发展了能够求解难题的下棋程序。在下棋程序中应用的某些技术,如向前看几步,把困难的问题分成一些比较容易的子问题,发展成为搜索和问题归约这样的人工智能基本技术。今天的计算机程序能够下锦标赛水平的各种方盘棋、十五子棋、国际象棋和围棋。
1997年5月,IBM公司研制的深蓝(DeepBlue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。另一种问题求解程序把各种数学公式符号汇编在一起,其性能达到很高的水平,并正在为许多科学家和工程师所应用。有些程序甚至还能够用经验来改善其性能。
二、逻辑推理与定理证明
逻辑推理是人工智能研究中最持久的子领域之一。其中特别重要的是要找到一些方法,只把注意力集中在一个大型数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的定理寻找一个证明或反证,确实称得上是一项智能任务。
为此,不仅需要有根据假设进行演绎的能力,而且需要某些直觉技巧。1976年7月,美国的阿佩尔(K.Appe1)笔人合作解决了长达124年之久的难题–四色定理,轰动了整个计算机界。他们用了三台大型计算机,花了1200小时。
三、自然语言理解
自然语言处理是人工智能的早期研究领域之一,已经编写出能够从内部数据库回答用英语提出的问题的程序,这些程序通过阅读文本材料和建立内部数据库,能够把句子从一种语言翻译为另一种语言,执行用英语给出的指令和获取知识等。有些程序甚至能够在一定程度上翻译从话筒输入的口头指令(而不是从键盘输入计算机的指令)。人工智能在语言翻译与语音理解程序方面已经取得可喜的成就。
四、自动程序设计
自动程序设计是人工智能的一个重要研究领域。目前已经研制出能够以各种不同的目的描述来编写计算机程序。对自动程序设计的研究不仅可以促进半自动软件开发系统的发展,而且也使通过修正自身数码进行学习(即修正它们的性能)的人工智能系统得到发展。
五、专家系统
专家系统是一个具有大量专门知识与经验的计算机程序系统,它应用人工智能技术,根据某个领域一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。
专家系统可以解决的问题一般包括解释、预测、诊断、设计、规划、监视、修理、指导和控制等。随着人工智能整体水平的提高,专家系统也得到发展。在新一代专家系统中,不但采用基于规则的方法,而且采用基于模型的原理。
六、机器学习
学习是人类智能的主要标志和获得知识的基本手段。香克(R.Shank)认为:
一台计算机若不会学习,就不能称为具有智能的。
机器学习的主要目的是为了从使用者和输入数据等处获得知识,从而可以帮助解决更多问题,减少错误,提高解决问题的效率。
七、神经网络
人脑是一个功能特别强大、结构异常复杂的信息处理系统,其基础是神经元及其互联关系。对人脑神经元和人工神经网络的研究,可能创造出新一代人工智能机器。
20世纪80年代以来,神经网络研究职又得重大进展。例如,霍普菲尔德(Hopfield)提出用硬件实现神经网络,鲁梅尔哈特(Rumelhart)等提出多层网络中的反向传播(BP)算法。
目前,神经网网络已在模式识别、图像处理、组合优化、自动控制、信息处理、机器人学和工智能其他领域获得日益广泛的应用。
八、模式识别
模式识别是指识别出给定物体所模仿的标本,如文字识别、汽车牌照识别、指纹识别、语音识别等。这是一种用计算机代替人类或帮助人类的感知模式,是对人类感知外界功能的模拟,使一个计算机系统具有模拟人类通过感官接收外界信息、识别和理解周围环境的感知能力。
九、机器视觉
机器视觉或计算机视觉已从模式识别的一个研究领域发展为一门独立的学科。视觉是感知问题之一。在人工智能中研究的感知过程通常包含一组操作。例如,可见的景物由传感器编码,并被表示为一个灰度数值的矩阵。这些灰度数值由检测器加以处理。
检测器搜索主要图像的成分,如线段、简单曲线和角度等。这些成分又被处理,以便根据景物的表面和形状来推断有关景物的三维特性信息。机器视觉已在机器人装配、卫星图像处理、工业过程监控、飞行器跟踪和制导以及电视实况转播等领域获得极为广泛的应用。
十、智能控制
智能控制是一类不需要(或需要尽可能少的)人的干预就能够独立地驱动智能机器实现其目标的自动控制,是自动控制的高级阶段。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。十多年后,建立实用智能控制系统的技术逐渐成熟。
百度公司董事长兼首席执行官李彦宏认为,人工智能是具有显著产业溢出效应的基础性技术,能够推动多个领域的变革和跨越式发展。例如:人工智能可以加速发现医治疾病的新疗法,大幅降低新药研发成本;可以带动工业机器人、无人驾驶汽车等新兴产业的飞跃式发展;可以大幅提升国防信息化水平,加速无人作战装备的应用。人工智能技术将极大地提升和扩展人类的能力边界对促进技术创新、提升国家竞争优势,乃至推动人类社会发展产生深远影响。
以上就是人工智能的相关技术及其应用,如何让人工智能带给生活更大提升,不仅仅是技术上的创新,也需要更多的人工智能专业产品经理去思考。
本文由@汪仔2461原创发布于人人都是产品经理,未经许可,禁止转载
题图来自Unsplash,基于CC0协议
如何认识人工智能对未来经济社会的影响
原标题:如何认识人工智能对未来经济社会的影响人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。
人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。
总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。
作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。
一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。
另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。
当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。
(作者单位:国务院发展研究中心创新发展研究部)
(责编:赵超、吕骞)分享让更多人看到
制造业+人工智能创新应用发展报告
核心观点/主要发现人工智能为制造业带来机遇:人工智能在制造业的应用将由解决可见问题(如缺陷检测)向解决和避免生产系统中的不可见问题(如工艺优化)进化,实现制造系统生产效率的提升和产品竞争力的突破。同时,人工智能的应用使越来越多的技术商和创业企业成为制造业生态圈的一员,并创造新的生态组织模式。
人工智能制造业应用总体规模:受政策支持、数据环境、算力提升、算法模型优化、商业化应用潜力五大利好因素驱动,中国制造业人工智能应用市场前景广阔,预计未来五年将保持年均40%以上的增长率,并在2025年超过140亿元人民币。
基础层市场:中国人工智能芯片市场将保持年均40%-50%的增长。GPU与FPGA市场已被国外寡头占据,唯专用芯片ASIC尚未被头部企业垄断,成为各方布局的焦点。
技术平台层市场:计算机视觉和机器学习技术带动人工智能在制造业应用市场的增长,预计到2025年,计算机视觉在制造业领域的应用市场将达到55亿元人民币,机器学习的应用市场达为44亿元人民币;人工智能云部署方式快速增长,预计2025年市场规模将达60亿元人民币,占整体人工智能应用市场的43%,为制造企业提供开发新服务和新商业模式的机会。
应用层市场:应用场景角度,预测性维护或将成为人工智能在制造业的杀手级应用;柔性生产、协同制造等新的制造模式推动智能排产应用市场快速增长。行业应用角度,预计到2025年,电子通信/半导体人工智能应用市场的规模将达到41亿元人民币,汽车制造行业紧随其后达37亿元人民币,能源电力行业25亿元人民币,制药行业17亿元,金属及机械制造行业13亿元,其他行业8亿元。
挑战:人工智能制造业应用的挑战主要是芯片技术有待突破、工业数据应用分析能力不足、解决方案无法直击业务痛点、复制性较差,以及制造企业理念和人才掣肘。
政策建议:建议政府与全社会协力从人工智能人才培养、制造业信息化水平、技术标准及关键性技术、技术产业融合等方面推动人工智能应用。
以人工智能为引擎推动产业智能化发展
作者:王林辉(吉林大学商学与管理学院教授)董直庆(华东师范大学工商管理学院教授)
党的二十大报告强调,“推动战略性新兴产业融合集群发展,构建新一代信息技术、人工智能、生物技术、新能源、新材料、高端装备、绿色环保等一批新的增长引擎”。当前,人工智能日益成为引领新一轮科技革命和产业变革的核心技术,在制造、金融、教育、医疗和交通等领域的应用场景不断落地,极大改变了既有的生产生活方式。统计数据显示,中国2021年机器人出货量达26.8195万台,存量突破100万台,2011年后中国人工智能专利申请量高居世界首位,2020年达到46960项,这表明中国已跻身全球人工智能发展的前列,市场前景广阔。作为世界第二大经济体,我国拥有数以亿计的互联网用户以及海量大数据资源,这种大国经济特征为深化人工智能应用、加快产业智能化发展提供了丰富的数据支持和广阔的应用场景。我国门类齐全、体系完整和规模庞大的产业体系,更是为产业智能化向广度和深度发展奠定了坚实基础。展望未来,人工智能技术引领的新一轮科技革命和产业变革浪潮,将成为未来世界经济和高端制造的主导技术,更会对中国现代化产业体系建设发挥无可替代的作用。
人工智能赋能方向和产业智能化应用场景
人工智能技术可以模拟人的思维过程如归纳、推理、判断等,使机器独立或通过人机协作方式执行生产任务。在机器人参与的生产过程中,生产任务被分解成一系列连续型任务,然后通过系统集成、功能集成和网络集成统一由机器人完成。人工智能技术可嵌入技术研发、产品设计、原材料加工、中间品制造、最终品装配、产品流通与市场销售等产业链条的各个环节,全面赋能各个产业链节点,最终产生更高效的新业态与新经济模式。
基于技术高渗透性及生产任务可智能化的属性,人工智能的应用场景不断拓展。人工智能技术正在全面赋能各类行业,全方位改变传统产业的经营模式和生产业务流程,推动产业的智能化升级。在制造业领域,工业机器人可精准代替人工完成高难度、高负荷的任务,尤其是能够代替人在危险或恶劣环境中工作,目前工业机器人应用最广泛的汽车制造业已基本实现全流程智能化制造。在农业领域,智能机器人在播种、灌溉、除草和收割等农业生产中广泛应用,逐渐展现出一幅智慧农业的美好画卷。在服务业领域,智能客服机器人代替人工进行查询、咨询和业务处理等工作,在极大降低客服成本的同时也提升了服务质量。在医疗卫生行业,机器人可协助医生精准完成外科手术,快速完成数以万计影像的特征识别、标注与分析,从而提高病情诊断的效率与准确率,可以协助护理人员帮助患者恢复肢体功能。在商业方面,以人工智能为核心技术的智能化产能预测和销售系统,可以精准对接供求信息并开展智慧决策,实现以市场需求为导向的资源投入和优化决策。
人工智能技术催生新产业、重塑产业链
根据其技术属性,人工智能产业可细分为基础层、技术层和应用层三个层面。基础层主要包括芯片、传感器、云计算和大数据服务等软硬件设施及数据服务;技术层包括核心的人工智能技术诸如机器学习、计算机视觉、语音图像识别和算法理论等;应用层主要指人工智能的应用领域如智能家居、智能安防和智慧金融等。这三个层面的产业和企业相互促进,对我国的产业链进行全方位赋能。
人工智能技术通常以智能机器设备为载体,通过智能化系统实现传统生产环节的智能化改造,在替代劳动力执行生产任务的同时,也会通过创造新生产任务催生相关的新职业和新产业。具体而言,人工智能技术的应用会促进企业突破既有生产边界,向产业链上游延伸或向下游拓展,推动终端设备、产品及服务的智能化,加快技术成果的产业化和商业化,不断衍生出新的行业或新的产品,诸如无人驾驶、无人零售、智能家居等。新产品新产业的涌现,必然会催生大量新的职业。2020年2月25日,人力资源和社会保障部与国家市场监管总局、国家统计局便联合向社会发布了智能制造工程技术人员、工业互联网工程技术人员、虚拟现实工程技术人员、人工智能训练师等新职业。此外,人工智能技术结合互联网、大数据等数字技术不断催生新行业的同时,也不断淘汰旧行业,引发新旧行业更替,从而重塑现有产业格局。
人工智能技术可以促进产业链纵向延伸,不断加大产业链长度,进而实现产业链重构;人工智能技术可以促进产业链的横向拓展,拓宽产业链的宽度并形成产业集群;人工智能技术可以结合大数据和互联网等数字技术,不断提升产业链的内部关联性与外部协同性,从而全面优化产业链,形成产业链新格局。智能化系统的应用能促使互补型企业更好地关联起来,通过企业合并、重组或集群化发展实现产业链横向拓展;智能化系统的应用能接通散落于不同空间产业链的断环或孤环,形成新的产业链环,增加产业链的整体附加值和韧性,有效提高产业链抵御外部风险的能力。当然,人工智能技术也会打破产业链空间稳态,使一些企业摆脱地理区位和传统生产要素的约束,并通过进退与转移形成新的产业集群,带动新的上下游产业发展,从而引发相关产业链由线状向网状交织模式的演化,进而重塑产业链空间格局。
加快发展人工智能技术,推动产业智能化发展
人工智能技术正在成为推动我国经济持续增长的重要引擎,如何占据人工智能技术制高点并推动产业智能化发展,是当前加快产业转型升级,推动经济高质量发展的重要内容。
政府应积极搭建智能服务平台,助力企业加快智能化转型。政府充分发挥主导作用,为相关企业、高校及科研院所的产学研合作提供稳定合作的平台,促进科技成果有效转化;积极建设信息服务平台,为企业提供智能化设备采购、使用指导、维修养护、检测诊断、人员培训和市场推广等服务,多举措支持和促进人工智能产业发展。
企业注重培训在岗人员职业技能,使其快速适应人工智能领域的新技术环境。通过定期组织在岗人员技能培训,提升劳动者的职业技能水平和人机匹配效率,更好地适应新技术环境。人力资源和社会保障部门应联合企业及职业培训机构,根据现实市场需求及时开设相关技能培训课程,如计算机网络、数据存储技术、图像设计等,以及人机交互能力等新技能培训,为劳动者提供技能学习的机会,尽可能减少由于技能折旧引发的失业。
加强校企合作,构建相关劳动就业需求的动态跟踪与预测机制,准确把握人工智能应用背景下的职业技能需求,精准定位人才培养方向。高等院校增设人工智能等相关专业,重视人工智能基础算法与基础硬件等核心课程体系建设,改造和优化原有课程体系,为人工智能技术发展提供人才支持。增设相关的创新创业训练项目,并与企业共建实习实训基地,打造专业理论与实践能力协同培育模式,为社会输送应用型专业人才。
《光明日报》(2022年11月29日 11版)
[责编:丁玉冰]人工智能应用领域的研究与展望
引言
20世纪的科技成就中,人工智能占据着重要的位置,它的研发使用是将智能机器人的技术、信息化技术、自动化技术和关于人类自身智能探索与研究融为一体的必然结果。随着人工智能的系列化研究与发展,如今,人工智能已经被广泛地应用于很多领域。但是关于人工智能的应用领域的综述并不多,本文就人工智能在不同领域应用发展趋势进行展望。
1人工智能的由来
人工智能是研究、开发模拟应用、延伸和拓展人的智能领域的理论、方法、技术以及应用系统的一门新的学科。相比于其他学科,人工智能的研究和发展历史是很短暂的,但是它的研究发展与应用却为人类生活带来了翻天覆地的变化,是人类发展历史的一个里程碑,将人类从繁重的体力劳动和脑力劳动中解放出来,同时帮助人类探索拓展了更多的未知领域。
1956年,麦卡赛和明斯基等科学家就提出了“人工智能”的理念,认为在未来机器将会以其独有的人工智能特点更好地服务于人类,代替人类来完成许多高难度、高强度和高危险系数类的工作。这一理念的提出引来了许多优秀科学家的青睐,随即对此展开了更深入的研究、探索、发展和应用[1]。
在计算机的应用普及之前,几乎没有什么机器设备可以分担人类的脑力劳动,特别是依据人脑的思维去对数据进行收集、处理、运算、判定、存储、积累、分析和选择决断。当计算机有了一定程度的发展和应用之后,能够代替人脑工作的软件才逐步被开发并应用到研究和生活中。由早期的各种复杂数据分析运算,一维、二维、三维和立体的测绘,继而发明并应用二维码的识别、无人机作业、月球车等各种模拟人类思维模式的应用,到后来人工智能云处理、对比、处理和建议等人脑无法准确、无误且快速处理大数据的运用。如今,人工智能的应用已经遍布人类生活的许多领域。
2人工智能的应用领域
现在人工智能在计算机领域的应用比较广泛,在其他领域的发展应用也是频见报道。随着人工智能“深、广、精”的研究、发展与应用,不久,必将迎来在更多领域的应用,未来的人工智能将更加智能,更加的人性化,更像个“人”一样进入人类生活,为人类社会的发展服务。
2.1人工智能在工业领域的应用
人工智能的应用在工业发展方面起着举足轻重的作用,它具有效率高、稳定可靠、重复精度好,可承担劳动强度大、危险系数高的作业等优势,已被广泛应用到了工业生产领域,如机器人焊接、机器人搬运、机器人装配、机器热打磨抛光和机器人喷涂电镀等。2018年,林远长等人研究得到焊接机器人在每米长度方向上焊接轨迹跟踪仿真误差为0.18mm,而实际跟踪误差为0.2mm,由此验证利用人工智能仿真误差与实际误差基本一致,完全满足工业生产需求[2]。赵猛研发发动机挠性飞轮盘螺纹装配工业机器人项目[3],提高装配的自动化和柔性化程度,保证装配质量和生产效率。用人工智能的机器人来代替普通工人去完成许多对人体有不良影响及人体生理条件限制而不能承受的工作,是20世纪工业发展的一个质的飞跃,是工业发展史的一个标志性的里程碑。
2.2人工智能在金融领域的应用
近来,随着人工智能的开发及应用,互联网金融更是取得了极其辉煌迅猛的发展。二维码支付、手机银行、网络借贷、P2P平台、淘宝、京东等逐渐成为人们茶余饭后议论的热点词汇。通过大数据库、云计算、计算机网络应用、区块数据链等最新IT技术,即可获取大量、精确的信息,更加个性化、定向化的风险定位模型,更科学、严谨的投资决策过程,更透明、公正的信用中介角色等,从而能大大地提高金融业务效率和服务水平,特别是一些技术应用,如大数据征信、供需信息、供应链金融等[4]。
2.3人工智能在信息安全领域的应用
数字密码安保模式伴随着互联网技术的不断发展,其弊端也逐步显露,一方面容易被破解,导致信息泄露,另一方面,对于越来越多的信息安保需求,对人脑的记忆力要求也越来越高。由此产生的各种困扰也越来越多,如忘记密码后,自动取款机无法取现、打不开文件、登录不了系统等问题层出不穷,因此信息安全问题越来越被人们所关注。但当人工智能和生物识别技术结合并深入发展之后,信息安全领域得到了一个全新的发展和提高。指纹解锁速度可达0.2s,支持多个指纹同时录入,且被广泛应用;iPhoneX的人脸识别解锁,支付宝的刷脸登录和考勤机器上的刷脸打卡等正渐渐步入人们的日常生活之中;人的虹膜具有惟一性,为实现信息认证、保障信息安全提供了理论基础。现实中也已经有电子厂商将这一技术运用到了实际产品当中,比如三星S系列的手机,就配备了虹膜识别技术,但是虹膜识别目前对环境的要求比较高,尤其是在暗光环境下识别效果还有待提升。相比于指纹识别,虹膜识别在完成产业化的道路上还有很长的路要走[5]。
2.4人工智能在医疗领域的应用
医疗领域的人工智能应用更加普遍,它正在成为改善人们身心健康的主力军,可为病人提供就诊前健康状况初步分析和评估、协同医师处理病人信息和改善服务质量、在医院精准地指导病人就医、节约医疗资源、缓解就医难的紧张局面等。医学领域,精准是非常重要的,因为任何偏差或者误判都会危及人体的健康乃至生命。2015年,杨宇面对心脏手术医疗机器人的异构式主从控制研究,充分运用人工智能[6],简化了手术操作,降低了操作风险。人工智能芯片能够存入大量的信息,并对这些信息进行高速地运算处理和判断,做出最准确的决策,这是目前人脑没有办法做到的[7]。人工智
能还可以根据患者的实际情况,收集所需要的数据,结合过去的数据进行计算和决策,从而得出最有效的治疗方案,以此减少医务人员的脑力劳动强度,合理利用医疗资源[8]。
3人工智能应用领域的展望
随着人工智能在数字理论技术、自动化控制、机器人应用等方面不断地研究发展,将来,机器必定会无限地接近人的各种行为,通过智能“视觉”“听觉”“触觉”“味觉”“嗅觉”来接收信息,传递信息;通过“电脑”来处理信息,选择和决策;通过智能输出端的“说”和“做”来传递信息发布需求和指令;通过智能肢体“行为”来响应与实施。在人类的日常工作、学习、医疗、安全和可持续发展等领域,人工智能都将尽最大的可能去为人类提供服务。然而无论人工智能发展到哪一步,依然无法在思维、精神、感触和情绪方面全盘取代人脑,仍旧不够人性化和智能化,只能跟随人类对自身智能的开发和研究而尽量接近人类[9]。与此同时,随着大数据类的人工智能的研究与开发,信息安全问题将会凸显,并且成为科学家以后很长一段时间的困扰和研究热点[10]。
4结语
总之,人工智能技术的发展是日新月异的,为将来在更多领域、更广泛的应用人工智能技术提供了更多的可能,但是,这一切都是基于人类对自身智能的充分了解和掌握。为此,还需要很多的知识和技术积累,针对人工智能更大量的应用,科研人员还需要做更多的工作。一方面是开发更多的未知智能,另一方面是完美地将人的智能转化成机器人的智能来为人类生存与发展服务。
人工智能的十大应用
导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。
作者:王健宗何安珣李泽远
来源:大数据DT(ID:hzdashuju)
01 无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。
美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。
2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。
Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。
2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。
近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。
但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。
02 人脸识别
人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。
2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;
2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。
03机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。
随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。
04声纹识别
生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。
相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。
同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。
目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。
05智能客服机器人
智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。
智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。
随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。
而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。
06智能外呼机器人
智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。
从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。
基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。
07智能音箱
智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。
支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。
在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。
08个性化推荐
个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。
个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。
09医学图像处理
医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。
传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。
该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。
10 图像搜索
图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。
关于作者:王健宗,博士,某大型金融集团科技公司资深人工智能总监、高级工程师,中国计算机学会大数据专家委员会委员、高级会员,美国佛罗里达大学人工智能博士后,曾任美国莱斯大学电子与计算机工程系研究员、美国惠普公司高级云计算解决方案专家。
何安珣,某大型金融集团科技公司高级算法工程师,中国计算机学会会员,中国计算机学会青年计算机科技论坛(YOCSEF深圳)委员。拥有丰富的金融智能从业经验,主要研究金融智能系统框架搭建、算法研究和模型融合技术等,致力于推动金融智能的落地应用与价值创造。
李泽远,某大型金融集团科技公司高级人工智能产品经理,中国计算机学会会员,长期致力于金融智能的产品化工作,负责技术服务类的产品生态搭建与实施推进。
本文摘编自《金融智能:AI如何为银行、保险、证券业赋能》,经出版方授权发布。
延伸阅读《金融智能》
点击上图了解及购买
转载请联系微信:DoctorData
推荐语:这是一部讲解如何用AI技术解决银行、保险、证券行业的核心痛点并帮助它们实现数智化转型的著作。作者从金融智能一线从业者的视角,深入剖析了传统金融行业的痛点与局限,以及金融智能的特点与优势,阐明了人工智能等技术在金融业的必要性,并针对金融智能在银行、保险和证券业的诸多应用场景,给出了具体解决方案。
划重点????
干货直达????
有了中台,那后台还剩下什么?(图解中台架构)
关于读书,我发现每一个技术大牛都有这个怪癖
2020福布斯中国富豪榜发布!10年来谁是中国最有钱的人?
34秒看完200余年美国总统大战:民主党vs共和党谁是赢家?
更多精彩????
在公众号对话框输入以下关键词
查看更多优质内容!
PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作
大数据 | 云计算 | 数据库 | Python | 可视化
AI | 人工智能 | 机器学习 | 深度学习 | NLP
5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生
据统计,99%的大咖都完成了这个神操作
????