博舍

人工智能技术出现后,教师真的会被取代吗 人工智能是否能取代教师工作岗位的原因有哪些

人工智能技术出现后,教师真的会被取代吗

教育部日前印发《高等学校人工智能创新行动计划》,要求推进“新工科”建设,重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,形成“人工智能+X”复合专业培养新模式,到2020年建设100个“人工智能+X”复合特色专业,建立50家人工智能学院、研究院或交叉研究中心。

人工智能是一个涉及多学科的复杂科技,需要一系列学科的基础理论支持,在进入应用的时候,亦因技术快速进步的领先优势,对很多工种具有强大的替代性,并导致法律、社会道德、监管等存在滞后性,进而衍生出司法、伦理、就业、心理等各种复杂问题。而对于这些问题,单靠人工智能自身是无法解决的,必须连接其它学科,形成“人工智能+X”复合专业交叉融合,激活人工智能和其它学科的发展潜力。

如今,世界各国都在加大人工智能的研发力度,投入大量的教育资源,为未来培养人工智能人才。那么,在人工智能时代该怎样当老师?

学生提问多虚拟助教帮回答

早在2013年,英国牛津大学发布了一份名为《就业前景:哪些工作最容易受到计算机自动化的挑战》的研究报告。

报告分析了702种常见职业后认为,需要大量社交、创造性的工作,或是需要技巧、灵活运用技能的工作,机器人都难以取代。在报告结尾处长达16页的列表中,高等教育管理者和高等教育教师分别以1%和3.2%的几率,位列未来被“计算机化”可能性最低的职业排名的第52位和112位。

而且人工智能技术的出现不仅难以撼动大学教师的工作岗位,而且还可能助教学工作一臂之力。

为学生答疑解惑是教师的基本职责,但是如果海量问题集中涌来,想一一解答却力不从心,这时希不希望有个人来分担?这就是虚拟助教存在的价值。最出名的一个例子就是助教吉尔。2016年4月,美国佐治亚理工学院计算机专业教授阿肖克戈尔开设的一门人工智能课程临近结束时炸开了锅。作为一门每学期有300多名学生学习的核心必修课,学生在课程网络平台上发布的超过1万条实时信息让戈尔教授和他的8名助教解答起来忙碌不堪。

不过当戈尔发现,学生询问的问题相对固定,通常与期末考、课程大纲和课程安排等相关,于是就“偷偷地”设计了一款人工智能程序“吉尔”作为助教与学生进行在线互动,缓解了任课教师和助教的工作压力。

虚拟助教的上岗并不意味着人类助教即将失业。毕竟目前来看它只是负责机械性地回答一些诸如正确的文件格式、数据使用,以及教职员工的日程安排等有客观答案的问题。而一些更为复杂的问题,还是需要人类助教负责回应。

教学个性化学习系统做决策

如果要问当今高等教育领域最当红的技术是什么,自适应学习技术一定会被反复提及。

“它将让学习系统自动调整课程、学习材料或学习活动,以符合学习者个人情况、性格和需求,从而为学习者提供个性化的学习体验。”由国际新媒体联盟发布的《地平线报告(高等教育版)》,在2015-2017年连续三年预测自适应学习技术未来将在高等教育中被普遍采用。而人工智能无疑为其在教育领域更好的使用提供了有力的技术支撑。

自适应学习系统可以利用基本的人工智能算法,基于学生的学习经历“算出”他们需要学习的内容,更好地实现学习个性化。同时对教师而言,由于此类系统可以在学生学习过程中更好地了解他们的学习进度,这也有助于系统向教师反馈数据、提供信息,以便分析和了解某位学生及其班级的整体需求,协助教师做出正确的教育决策。

考试评分成本高

人工智能先挑错

在给学生作业或考试评分时,对开放性试题(如作文)的评价对教师而言是一项艰巨的任务,在大型课堂为个人提供反馈更是如此。一些人相信,由于学生的回答有其固有的句法和语义结构,因此只需对计算机“稍加训练”,用人工智能系统取代人类反馈是很有可能的,而且其成本要比靠人打分低得多。通过深度学习几百万篇作文和相应的评分,人工智能很快就能掌握批改作文的套路。想一想,一名教师在从教的四十多年里可以阅读一万份作文,那么仅在几分钟内就读完上百万份作文的人工智能似乎经验更为丰富。而且确有实验表明,人工智能给出的分数与人类教师的几乎完全匹配。

从2017年秋季学期开始,密西根大学的教师就开始用计算机辅助给学生改论文作业了。这个由该校教师团队研发的辅助评分工具M-Write,利用文本自动分析技术,借助不同的算法(如词汇匹配、题目匹配)分析学生提交的文章内容,从而找到学生论文中存在的问题。此外,老师还能通过语义分析的结果,找到在写作上需要帮助的学生。不过在将最终评分反馈给学生之前,教师还需要先对计算机的打分结果进行核对,并进行一定的修正。

类似的应用中国高校也在尝试。2017学年末,浙江外国语学院国际学院的11位外国留学生完成了一份特别的中文试卷——批卷老师为来自阿里巴巴的人工智能系统。在这批试卷上,人工智能系统用代表不同意义的符号在试卷上精确地圈出外国留学生们的多词、缺词、错词和词序错误等错误的位置,完成了对作文的批改,其准确率和细致程度接近甚至超乎人类的水平。

相关链接

对教师的新要求:

跟上人工智能时代步伐

不可否认,人工智能技术在给教学工作带来便利的同时,也给大学教师提出新的挑战。咨询管理公司盖洛普联合美国东北大学今年开展的一项有关人工智能对高等教育的研究显示,接受调查的美国大学毕业生群体中,只有22%的人表示他们的学位提供了与人工智能协同工作所需的技能。

东北大学校长约瑟夫·奥恩表示,大学需要适应即将发生的人工智能革命,这意味着学校必须提供有关“只有人类才能完成工作”的教育。这恰恰给人工智能时代的大学教师提出了新的要求——未来的课程设计中,不仅要注重培养学生人工智能目前还难以具备的素质,如创新性、创造力,而且在技术领域知识的传授中也要不断学习,更新自己的知识库。毕竟作为一名教师,如果讲授的内容不能满足学生的需求,不能跟上时代发展的步伐,即便这个岗位不会被淘汰,也可能会被这个职业的要求所淘汰。

延伸阅读

不易被取代的专业

新一轮的“工业革命”主要集中在人工智能、机器人、仿生学科等科学领域,更强调的是让机器拥有自我“思考能力”和“深度学习能力”。重复性高、能够通过大量数据学习模仿的职业将会是人工智能代替的重点,例如,无人驾驶汽车取代司机、生产型机器人取代装配车间工人、语音速记和翻译取代人工速记和同声翻译。

那些跟人文关怀和人的情感相关、无规律可循、需要根据不充分的和随时变化的信息调整应对的职业将是暂时安全的。

这些职业主要来自于以下领域:

1、跟人文关怀和人的情感相关的职业,包括所有的艺术创作工作。例如音乐、文学、绘画、雕刻、哲学、诗歌、舞蹈、戏剧、电影等等。

2、高端服务业和高档手工业特别是奢侈品行业的个性化、定制化服务。

3、探索未知和创造新事物的所有职业。这主要体现在面对不断变化的对象和目前还没有足够数据量的未知领域。人工智能最重要也是最基础的一点是有足够的样本量,然后进行深度学习,通过大数据间千丝万缕的联系寻找其中的逻辑关系。一些行业完全不具备这些特点,如地外星系探索、生命的本源、海洋深处的秘密等领域。

4、需要根据不充分的和随时变化的信息,做出重要决断的职业。如政治家、刑事警察等。

5、管理人员。即使实现全自动化生产的装配车间也需要有相应的管理人员进行监督管理,协调各种突发事件。

人工智能时代的工作变化、能力需求与培养

摘要:在人工智能时代,程序化工作和一部分非程序化工作将被人工智能取代,工作将向高度智慧化转移,劳动者的工作定位将发生升级方式、介入方式、前进方式、转移方式和集中方式等不同的变化。为了适应人工智能时代,要在学校教育和企业教育中注重提高受教育者的人工智能素养、培养创造性思维能力、社会交流能力以及环境应变能力。应对人工智能时代培养所需人才的关键措施包括:突出个性化培养理念;构建人工智能素养教育体系;实施问题导向及跨学科合作探讨的学习方式;利用人工智能技术提高学习效率。

关键词:人工智能;工作定位;能力需求;能力培养

基金项目:本文系中国社会科学院登峰战略企业管理优势学科建设项目、中国社会科学院京津冀协同发展智库研究课题的阶段性成果。

 

当前,我们正处在全面进入人工智能时代的过渡期,几乎所有领域都出现了装载有人工智能技术的机械设备。18世纪中期以来,人类历史上先后出现了蒸汽机、内燃机与马达、计算机与互联网技术。这些技术极大地改变了人类的生产生活方式,推动了人类社会的发展。可以说,人工智能是继三大技术之后的又一重大技术。况且,与以往技术不同,人工智能可以替代人的脑力劳动,这将大幅度地改变人们现有的工作内容,并要求人们拥有不同于以往的特殊能力。然而,关于如何界定人在人工智能时代的工作定位及所需能力、如何培养人工智能时代所需要的人才,是尚未解决的课题。目前,有研究围绕人工智能可能产生的就业影响,尤其是结构性失业风险以及社会经济对策等方面进行了分析(万昆,2019;陈明生,2019;王君等,2017;潘文轩,2018),也有研究对人工智能背景下职业教育体制改革与发展问题进行了探讨(南旭光,汪洋,2018;毛旭,张涛,2019;丁晨,2019),但深入到工作能力层面,从劳动者角度探究人工智能时代的人才培养问题的相关研究还较为少见。鉴于此,本文基于技术—工作—能力—培养的视角,结合前沿研究进行理论分析,阐明人工智能对工作业务的影响机制,明确人工智能时代的工作定位与能力需求,探讨能力培养的战略思路和关键方法。

一、人工智能时代的工作变化

人工智能(ArtificialIntelligence,简称AI)是指可以感应环境、做出行动,并获取最佳结果的合理主体(RationalAgent)(S.J.Russell,P.Norvig,2018)。感应环境、做出行动和获取最佳结果,属于人的智慧行为,而这些行为通过计算机程序(合理主体)被再现出来,就成为了人工智能。换言之,人工智能就是具有人类智慧的计算机系统。而在现实的工作环境中,人工智能的计算机系统又是与大量的感应器、超高速通信网、大数据收集分析装置、终端设备、机器手等组成更为复杂的系统来进行实际作业的,如机场出入境管理的人脸识别系统、汽车自动驾驶系统等。因此,可以说人工智能就是装载有可以模拟人类智慧行为的计算机程序的自动化设备。

现阶段的人工智能可以在一定程度上替代人完成识别、决策和操控方面的任务。在识别方面,人工智能可以进行信息判别、分类与检索,如从影像中发现癌变征兆;从音调语速中检测情绪;从图像中监控设备异常、天气异常、用户账号异常等。在决策方面,人工智能可以进行数值形式下的物象评估与匹配,如预测销售额、GDP指标、民意度、信用风险、病变风险;推断消费者爱好、产品推销时机;根据消费者爱好、习惯不同而推荐不同内容的商品广告等。在操控方面,人工智能可以进行表现生成、设计行动最佳化及作业自动化,如自动撰写新闻稿件、概括文章大意;设计项目路线图、商品标识、网页布局、药品成分、建筑物结构;优化游戏策略、送货路线、店铺布局;实施自动驾驶、客户咨询等。只要人规定好了计算机程序的信息处理目的和分析方式,人工智能就能准确无误地替代人工进行作业(安宅和人,2015)。

(一)工作变化的特征

人工智能时代工作变化的特征体现在以下三方面。

1.程序化工作被人工智能取代

所谓程序化工作,按照美国经济学家奥托(D.H.Autor)等的定义,是指变化少、可以按照事先规定的程序进行的工作(Autoretal,2003)。程序化工作又分为主要使用认知能力的程序—认知型工作和主要使用肢体能力的程序—肢体型工作。认知能力是指直觉、判断、想象、推理、决策、记忆、语言理解等能力;肢体能力是指体力。程序—认知型工作具有重复性、单一性、目的明确并且主要使用脑力等特点,如行政事务、会计工作。程序—肢体型工作虽然也有重复性、单一性、目的明确等特点,但主要使用体力,如流水线组装、仓库运输业务。由于程序化工作相对简单,易于编制成计算机程序,所以人工智能对人类劳动的替代,首先会从这些工作开始。例如,产品组装是按照作业标准反复实施同样内容的工作,而作业标准完全可以编制为计算机程序,所使用的设备以及动作也完全可以建立成模型,因此,产品组装就可以由人工智能来代替实施。再如,需要一定认知能力的会计业务,人工智能也可以通过扫描或接受电子信号等方式获取相关数据,而后根据规定程序进行分类、汇总等作业。因此,在人工智能时代程序化工作会呈现明显的减少趋势,以往的自动化设备,基本是替代体力劳动的蓝领劳动者,而人工智能将替代白领劳动者。英国剑桥大学学者弗雷(C.B.Frey)与奥斯本(M.Osborne)在2013年发表的报告中指出,美国在未来20年里将有47%的工作存在被替代的可能性,电话推销员、标题审查与摘要人员、手工缝纫工、技工、保险受理员、手表修理工、货物运输人员、税务代理员、照片处理工、会计助理、图书馆技术员、数据输入员等工作被取代的概率可高达99%(C.B.Frey,M.Osborne,2013)。日本经济新闻和英国金融时报2017年合作进行的调查显示,制造、餐饮、运输等23个产业的2000项工作中有超过3成的业务可能被替代,制造业被替代的比例是80.2%,包括焊接、组装、裁缝、制鞋等业务;餐饮业被替代的比例是68.5%,如客服、点餐、食材准备、餐桌与餐具摆放等业务;运输业被替代的比例是48.4%,包括车辆维修、飞机驾驶、运输信息提供等业务(ShotaroTani,2017)。这些研究表明,被取代概率高的工作基本上都是重复性、单一性、目的明确的程序化工作,其中不乏白领岗位的部分业务。

2.一部分非程序化工作被人工智能取代

相对于程序化工作,非程序化工作通常变化较大,难以按照事先规定的计划进行。这一工作又分为两类,一类是非程序—认知型工作,如科学研究、文学创作、作曲作画、经营管理、医疗诊断、诉讼辩护等;一类是非程序—肢体型工作,如烹饪、理疗、看护以及汽车驾驶等。非程序—认知型工作需要高层次的文化水平、分析能力和想象力,现阶段的人工智能还达不到完全替代的水平。烹饪、理疗、看护以及汽车驾驶等非程序—肢体型工作需要高度的人际间互动、灵敏的环境反应能力以及灵活的肢体动作,而这些要求现阶段的人工智能尚不能完全做到,所以这些工作基本上还需要人来承担。但随着人工智能技术的发展,人工智能在未来不仅会代替人做更多的程序化工作,而且有望将一部分非程序化工作纳入替代范围,如自动驾驶、行走助力、编制诉讼方案、作曲作画等(Autor,2015)。届时非程序化工作完全由人来完成的局面就会发生变化,进而带来业务重组,从以前由人承担所有业务变成由人工智能和人共同分担业务,如影像诊断由人工智能完成,最终诊断由医生完成;围棋陪练由人工智能承担,棋艺解说由教练承担。

3.工作向高度智慧化转移

装载有人工智能的设备可以替代人的程序化工作,甚至部分非程序化工作,但现阶段人工智能仍有很大的局限性,如人工智能不能设定目标和规划未来、不能产生意识、不能对未曾有的变化作出反应、不能提出问题、不能设计分析框架、不能产生灵感、不具有常识判断力、不具有指挥人的领导能力(安宅和人,2015)。所以现阶段仍有四类工作是人工智能所无法替代的。一是高度创造性的思维工作。如通过综合分析各种知识归纳和提出新概念、通过多方面分析发现问题并提出解决方案、基于情感创造出文学艺术作品等。二是高度社会化的沟通工作。如包含理解、说服、交涉在内的工作,人际间交往与协同作业等。三是高度灵敏的肢体型工作。如演奏乐曲、表演舞蹈、高难度手工艺等。四是高度非程序化的工作。如看护、清扫工作。这些工作看似简单,但需要人根据知识、经验以及常识等对情境作出判断,如在清扫时对发现的废纸需要进行判断,确定它是重要笔记还是真正的废纸,而人工智能的扫地机是无法做到的(野口悠纪雄,2018)。但即使如此,现在几乎所有领域中都在使用人工智能,并且人工智能的工作领域还在不断扩展。在看护工作中,移动搀扶患者机器人已经开始出现;人工智能已能够进行文学、绘画及音乐的初步创作,人与人工智能协同作业的状态已成为普遍现象。在这种状态下,人的工作内涵必然要向高度智慧化转移。

(二)人机关系与工作定位

在刚开始引进人工智能的生产过程中,人仍是作业的主体,人工智能起辅助性和支持性作用。人工智能辅助人进行数据和信息处理方面的业务,支持人做一些复杂的、技术性的工作,从事需要肢体劳动的、程序化的操作,但对于需要高度认知能力的工作,如推理与决策,以及需要与人沟通的工作,如协调、开发与咨询、沟通与互动,人工智能的贡献相对较少,但这种情况将会发生改变。世界经济论坛《职业前景报告2018》发表了2018年人与设备的工作时间占比值和2022年人与设备的工作时间占比的预测值(见表1)。对于所有业务,2022年设备的工作时间占总工作时间的比值会增加,其中设备在信息和数据处理、探索和获取业务信息的工作时间占比将超过人的工作时间。在行政、肢体的程序化任务、识别和评估业务信息、执行复杂技术任务中,设备的工作时间占比也将超过四成。即使在推理与决策以及沟通与互动这样原本主要由人来完成的业务中,设备的工作时间也将提高三成左右。因此,未来人工智能不仅能在生产过程中起辅助、支持的作用,而且在一些业务中将会作为“数字劳动力”发挥主导作用。进而言之,在人工智能时代,智能设备将越来越多地替代人的劳动,人机协作的关系将越来越显著。

 

表12018年、2022年人与设备的工作时间占比值单位:%

资料来源:作者根据世界经济论坛《职业前景报告2018》整理。

 

在人工智能时代,一些职业及一些工作被替代是不可避免的趋势,因此劳动者必须对职业及工作选择有清楚的认知。美国管理学学者达文波特(T.H.Davenport)和卡比(J.Kirby)认为,人工智能时代劳动者的工作定位,即如何选择能实现自身价值的职业,有五种方式,分别为:一是升级方式,即提升管理素质和掌握超越计算机的大局思维,向高级管理岗位发展。这要求对经营系统有透彻的理解,并需要有充分的计算机知识与技能。随着人工智能质量的提高、数量的增加,高级管理岗位的事务性工作将被大幅度替代,因此升级到高级管理岗位的人数会比以往少;二是转移方式,即转移到不能程序化、结构化的工作领域。现阶段,人工智能设备尚不能完全替代人的劳动,因此工作流程中会保留一些人的岗位。但随着人工智能水平的提高,这些岗位也将逐渐被替代,因此,这些岗位的劳动者,要有充分的危机感;三是介入方式,即学习计算机的程序化决策过程,掌握监视和调整计算机功能的新型能力,以现场管理者的身份介入基本上由人工智能实施的作业过程中;四是集中方式,即以计算机程序尚未渗透到的领域为唯一标准来选择职业或工作。这种方式要求特殊、高超的人类智慧及技能,需要早期、长期训练,甚至需要天赋;五是前进方式,指与时俱进,加大学习力度,研究开发能改变当前领域工作效率的高水平智能机器(T.H.DavenportandJ.Kirby,2015)。从与人工智能的关系看,升级方式、介入方式和前进方式,都需要学习人工智能技术。对这些人群,国家应该对他们的学习进行资助。转移方式中劳动者没有学习新技术的欲望或能力,他们的收入可能会减少,就业也不稳定,国家应从就业政策角度进行援助。集中方式需要从中小学起通过个性化教育对这方面的人才进行培养。

二、人工智能时代的能力需求

随着人工智能在生产过程中的普遍应用,人在生产中的地位不断发生变化,大量程序化作业、甚至越来越多的非程序化作业都将由自动化设备实施,而人必须能够驾驭智能设备,发现和解决工作流程中的问题,对智能设备进行更新创造,从而使其更好地服务于人类社会。从劳动者角度看,必须具备符合人工智能时代所需要的能力,才能使自己的劳动付出变得更有价值;从企业角度看,具有符合人工智能时代能力的员工,是创造价值所不可缺少的人力资源,值得大力引进和培养;从社会角度看,劳动队伍和后备力量都具备符合人工智能时代要求的能力,就可以稳定就业,促进社会经济持续发展。关于能力,可以对有认知能力和社会情感能力的基础理论进行研究。为了探讨能力与社会需求的关系,能力被分成诸多子能力,以验证与不同技术条件的适配性。在解析这些研究之后,笔者将提出符合人工智能时代要求的能力要件,以便为理论研究和政策决策提供参考。

(一)能力的两个方面

理论上看,人的能力一般包含两个方面。一个方面被称为认知能力,另一个方面是非认知能力。其中关于非认知能力有着几种不同的命名,如社会情感能力、软能力、社会能力、人格特质、性格(Heckman,Kautz,2012)。以下将沿用经济合作与发展组织(OECD)(2015)的表述样式,用“社会情感能力”来表示非认知能力。该研究认为,认知是关于获取和应用知识经验的过程,而认知能力就是所有与获取和应用知识经验有关的能力。认识能力有三个层次:第一层是基本能力,如模式识别、计算和记忆;第二层是获取能力,如检索、分类和解释;第三层是应用能力,如思考、推理和概念化。这三层能力的复杂程度从低到高、依次递进。与认知能力不同的是,社会情感能力是对目标实现、社会协作和情感控制产生影响的人格特征。例如,目标实现方面的忍耐、自律、意愿;社会协作方面的沟通、开放、体贴;情感控制方面的自尊、灵活、自信等。

在实际中,人是认知能力和社会情感能力的载体。换言之,这两种能力在人的身体中同时存在,相互影响、相互作用,形成了人的脑力活动和肢体行为。例如,批判性思考就是两种能力合二为一的结果。批判性思考既有认知能力的特点,即能够客观地进行逻辑推理,严守成本收益原则,冷静地进行战略分析。同时,因为批判性思考的对象是现实中的新问题,仅仅依靠过去的经验和教科书手法是不够的,还必须对新现象持有开放心态,根据具体情况,灵活改变思路和行动,而这些特点正是社会情感能力范畴的内容(池迫浩子,宫本晃司,2015)。

(二)能力需求变化与预测

技术进步使得工作环境发生变化,对劳动者的能力需求也出现了新变化。20世纪70年代以来,以大型计算机、电脑终端和互联网为代表的信息通信技术迅速发展,制造业以及服务业的生产过程大为改观,这使得对劳动者的社会情感能力的需求显著提高(Deming,2015)。在1980-2012年间,需要高度社会情感能力的职业就业人数占美国所有就业人数的比例增长了近12个百分点,而只需要认知能力的职业就业人数占比减少了3个百分点。另外,需要高度社会情感能力的职业的工资增长也比其他职业更快,并且2000年以后的增幅大于2000年之前。这是因为生产过程自动化,岗位任务重组,人员重新分配,团队形式增加,而社会情感能力可以降低协调成本,加强不同作业领域的有效合作。

以数字技术为轴心的自动化设备的应用,不仅要求劳动者提高社会情感能力的水平,同时也要求其认知能力和社会情感能力综合水平的提高。维因伯格(Weinberger,2014)利用美国职业大典的数据,对1977-2002年间各职业就业人员具有的计算能力、人际能力以10阶段法进行了赋值,根据数值把职业分为了两类,一类是计算能力与人际能力赋值均高于5的职业,一类是两种能力中一方赋值高于5而另一方赋值低于5的职业。分析发现,两种能力赋值均高于5的职业的就业人数增加,仅一种能力赋值高于5的职业的就业人数减少。该研究还以1972年和1992年的高中3年级中的两个年级层为对象,考察了各层人群的高中数学成绩、领导经验和高中毕业7年后的工资之间的关系。结果表明,同时具有数学能力和领导经验的人的工资在增加,只有一方面能力的人的工资没有变化,不具有这两方面能力的人的工资在减少。这个结论揭示了能力间互补的重要性,即认知能力与社会情感能力,不是各自单独产生价值,而是相互组合(互补)来产生更大的价值。技术进步并没有否定人的任何一方面的能力,而是要求在提高各自水平的基础上达到新高度的互补。由此可以推论出,兼有两种能力的劳动者在以人工智能为轴心的新技术时代将为社会所需,他们的劳动价值会得到社会认可。

 

表22018年、2022年关键能力需求

资料来源:世界经济论坛《职业前景报告2018》。

  

以上的推论不仅在以往的数据研究中得到了验证,在近未来的预测研究中也得出了同样的结论。世界经济论坛的《职业前景报告2018》发表了313家跨国企业管理高层的调查数据,从中可以看出2022年需要的关键能力中,属于认知能力的有8个,分别是:分析性思考与创新,主动学习与战略性学习,创造性、独特性和主动性,技术设计与编程,批判性思考与分析,解决复杂问题,问题推理与构思,系统分析与评估。与2018年相比,技术设计与编程、系统分析与评估是新增项目,反映出人工智能时代对劳动者的数字技能的强烈需求,揭示了劳动力素质提高的方向。而领导力和社会影响、情绪性智商属于社会情感能力的范畴。这两个能力同时出现在2018年、2022年两个时间段里,由此可以说,社会情感能力在未来的人工智能技术环境中是不可缺少的。只要生产过程中有人的存在,只要市场及组织内部环境不断变化,就需要社会情感能力去发现问题、运用技术技能去解决问题从而实现劳动的价值。另一方面,包括脑力、肢体在内的基本认知能力的需求将会减少,如操作灵活性、持久性与准确性,视觉、听觉与说话,读、写、算等能力。一些基本操作能力的需求也会减少,如财务和物资资源管理、设备安装与维护、质量管理与安全管理等能力。这些能力基本用于实施程序化业务,其工作的操作标准简单明了,个人发挥创造性的空间较少,从能力层次看,虽然属于知识经验应用能力范畴,但处于低级层次。

世界经济论坛在2016年对人工智能时代的能力需求变化进行了探讨。当时的研究报告指出,高层次认知能力不仅在当时受到重视,而且在2020年对其的需要将会进一步增加。而对于与肢体相关的能力,专家大都认为其需求将会减少。尤其是设备维护、质量管理与安全管理等能力,2016年报告中还有五成的人认为需求会处于稳定状况(世界经济论坛,2016)。由于2016年、2018年的调查方式不同,因此不能对其进行严格的对比,但可以看到能力变化的趋势,即对高层次认知能力的需求一直处于增强趋势,而对设备安装与维护等低层次能力的需求则明显减弱,这反映出人工智能时代对能力的高层次化有着越来越强的需求。

巴克什(Bakhshi)等利用美国和英国数据预测了两国2030年各职业的就业增长和职业所需的能力(Bakhshietal,2017)。该研究中的职业能力包括120项。美英两国各职业最为重视的能力有15项(见表3)。从表3看,美国和英国总体情况类似。在美国,与人际交往有关的能力会越来越重要,这些能力包括指导、社交知觉/认识、协调、服务导向、主动倾听,以及相关知识,如心理学和人类学、教育和培训、治疗和咨询、哲学和神学。认知能力范畴中的应用能力也会越来越重要,如要求能够了解当前和未来形势并且能够做出行动规划(战略性学习);能够了解新信息对当前和未来问题的解决与决策发挥影响(主动学习);能够提出有关某个主题的许多想法(思想流利性)。在英国,有10项属于认知能力范畴中的应用能力,这些能力是判断和决策、思想流利性、主动学习、战略性学习、原创性、系统评价、推理、解决复杂问题、系统分析、批判性思考。在人工智能技术更为广泛应用的近未来,劳动者只有充分具备这些能力,才能够有效解决新环境中出现的新问题,并且能够有针对性地提出新想法,积极吸收新信息;能够识别社会技术系统的变化,了解社会技术系统各环节的互连和反馈关系并采取正确行动。另外,英国对于人际交往的能力也非常重视,这些能力包括指导、协调,以及相关知识,如教育和培训等。

表32030年美国、英国各职业中最重要的15项能力

资料来源:作者根据Bakhshi等(2017)整理。

 

2017年,日本人才咨询公司阿德卡(Adecco)对309家上市公司管理高层进行了抽样调查,收集到了两个时间点(调查时间点为2017年、人工智能普遍应用的2035年)对各种能力的需求程度。结果显示(见表4),2035年最需要的前10项重要能力中,5项为认知能力,包括创造性、分析性思考与抽象性思考、解决复杂问题、信息收集和解决简单问题。5项是社会情感能力,分别是人际关系、灵活性、挑战精神、领导力和积极性与主体性。2017年的前10项重要能力中,4项为认知能力,依次是分析性思考与抽象性思考、解决复杂问题、创造性和信息收集;6项是社会情感能力,如人际关系、积极性与主体性、挑战精神、团队工作与协调性、灵活性和目标实现意愿。从数量看,不论是2017年还是2035年,认知能力和社会情感能力的排名基本相当,表明无论什么时代,均衡能力结构都是必要的。从内容看,不论是2017年还是2035年,认知能力和社会情感能力的子项目基本相同,反映出企业能力需求具有一定的稳定性。从个别能力变化看,有两个突出现象,一个是认知能力中,创造性需求的大幅上升。这表明在人工智能时代企业将进行业务重组,要求员工在高价值工作领域创新工作方式和取得突破;另一个是社会情感能力中,对灵活性的需求有所提升。这反映出企业需要员工充分发挥主动性,去发现生产流程中的问题、发现新的社会需求,而不仅仅是执行指令。

表42017年、2035年最需要的前10项重要能力

资料来源:作者根据西村崇(2017)整理。

 

(三)符合时代要求的能力要件

综合以上研究,笔者认为,在人工智能时代,能力的首要内容应该是与人工智能有关的新知识、新技能。此外要在人工智能的学习与应用过程中提高社会情感能力,主要是指与人沟通的方法与相关知识。再者,劳动者的能力结构要向高层次升级,应重点发展高层次认知能力。具体概括为两个方向:一是应用人工智能技术创造新产品、新服务的能力,这里称作创造性思维能力;二是发现新问题和解决新问题的能力,这里称作环境应变能力,包括主动学习与战略性学习、解决复杂问题等。在人工智能时代,对于劳动者而言,重要的是使能力结构升级以符合技术发展需要,不仅认知能力要达到新水平,还要与工作方式变化相匹配,而且与人工智能技术互补的社会情感能力也要同步发展。鉴于此,人工智能时代的能力要件可归纳为以下四个方面。

1.人工智能知识

正如读、写、算是工业社会所必须的基本能力一样,对于要在人工智能技术条件下工作的劳动者而言,人工智能的基础知识是不可缺少的。这是以往时代所没有的全新的能力。所谓的人工智能知识,首先是数学知识。因为人工智能的基础就是数理模型,主要包括概率、统计、线形代数等内容;其次是数据科学,是在计算机上收集、解析数据的知识和技能,需要有数理和计算机语言知识,需要计算机操作能力。有了这两方面的知识,就可以形成关于人工智能的新技能:能够使用程序语言,利用既成模块,编制、操作或使用具有简单的感应、解析、反馈等智慧行为的自动化装备。劳动者掌握了人工智能的新技能,不仅可以理解新设备的基本机制,甚至可以研究更先进的人工智能、或利用人工智能来提高生产效率。根据领域、岗位、业务的不同,涉及人工智能的内容会有所不同。国家的教育、经济以及科技部门应该与企业联手设计内容、层次不同的教材,设定认知资格制度,作为评价人才的标杆。

2.社会交流能力

在人工智能时代,要创造新价值,人际或社会交流能力愈发显得重要。创造新产品、新服务及新的工作模式,意味着要对现状有充分的了解,利用人工智能对现状进行改变、重组。这需要周边很多人及社会的理解、帮助及合作。因此,在人工智能时代,人应该提高自身的社会交流能力,能简明扼要地说明目的,开诚布公地寻求理解与帮助,诚实守信地与人合作。社会交流能力的基础是情感,所以人在情绪、意志等方面的情商以及对于文化艺术的审美都非常重要。人工智能时代社会交流能力的特点,就是大量运用网络社交媒体、互联网等工具。这些工具有其便捷之处,但也存在虚假信息等伦理道德问题以及易受黑客攻击的脆弱性问题。社会交流能力与创造性思维能力一样,需要长时间的培养,需要社会氛围的支撑。社会交流能力的特殊之处在于它涉及性格,而性格有天生的因素。所以,在学校教育以及企业教育中,既要传授基本的交流方法,也要考虑个人性格中的天生因素,因人施教,调动有利因素,培养能够从社会中学习、有益于社会的人才。

3.创造性思维能力

人工智能技术使程序化的工作自动化,把人从单一循环、重度及危险的劳动中解放出来,给予人更多的时间,为人的创造性思维提供了更大的可能性。同时,人也必须发挥自己特有的创造性思维能力,才能在人工智能时代确立自身的存在价值。所谓创造性思维能力,是利用人工智能技术,结合自己所在的特定领域,去发现社会及市场需求,提出关于新产品、新服务以及新工作模式的能力。创造性思维能力包括抽象能力、综合能力和应用能力。抽象能力,就是能够概括出事物本质并发展成为概念的能力。借助抽象能力进行分析和推理,才会产生新的认识。综合能力,就是能够融会贯通,把不同领域的知识连接起来,进行整合、分析和再创造的能力。经济学家熊彼特认为,创新有五种形式,即产品创新、技术创新、原材料创新、市场创新和组织创新,它们无一不是生产要素间组合与创造的结果(约瑟夫·熊彼特,2016)。利用人工智能提出关于新产品、新服务以及新工作模式的设想,是对人工智能与其他知识进行融合与创造的过程,所以需要综合能力。应用能力,是能够把知识应用于解决现实问题,也就是解决问题的能力。其中的关键是有目的意识,能够发现问题,使创造性活动具有经济价值与社会意义。而这恰恰是人类特有的能力,无法用计算机程序再现。创造性思维能力,需要长时间的培养,从幼儿园到大学、甚至到就业之后都必须接受持续的教育或启发。同时,要在家庭教育、学校教育和社会上形成鼓励独创、容许差异的宽松氛围。

4.环境应变能力

环境应变能力,就是能够根据不同情境作出不同决策的能力。在人工智能时代留给人的工作基本上都是非程序化工作,它们不可事先预测,也无法编制操控指南,需要劳动者根据自身掌握的知识、经验、常识以及悟性来灵活行动。现阶段的人工智能可以通过大样本学习来增加经验和提高应变能力,但世界是复杂的,很多变化都带有偶然性,解决方案没有经验可循,这限制了样本数量,从而制约了人工智能应变能力的提高。与人工智能不同的是,人所特有的生命体的构造使得其对事物的理解在很多情况下只需要小样本学习和借助常识就可以完成(李开复,王咏刚,2017)。在以往的人才培养中,人们也注意到了环境应变能力,但人工智能时代的特殊之处在于劳动者要接触更为复杂的数字技术,而数字技术的进步日新月异,人们为了防止知识的陈腐化,要能够主动学习,因为仅仅靠教师或上级安排的在岗或离职学习完全不够,要根据自己的具体情况,不间断地吸取新知识。战略性学习,是具有前瞻性的、有长远目标的学习。这个长远目标,可以是对自己所在领域发展前景的预测、自我发展方向的判断,也可以是对企业战略的理解,提前着手学习新知识,当环境变化时就可以游刃有余地应对。人工智能时代的劳动者往往处于与自动化设备合作的作业环境中,生产过程中的故障不仅有硬件的问题,也有计算控制系统的问题,只有在对硬件、软件充分理解的基础上,才能解决现场工作中的复杂问题。总而言之,人工智能时代的环境应变能力,有其鲜明的时代要求,在学校教育和企业教育中必须使用有针对性的教学方法来培养有用人才。

以上归纳了符合人工智能时代要求的四个方面的能力,这四个方面的能力并不是独立存在的,它们之间有着不可分割的联系。人工智能知识是新时代劳动者能力的基础,有了它才能够驾驭自动化设备,进行新产品、新技术及新价值的创造。创造性思维是人工智能时代劳动者能力的核心,突出显示了人的智慧价值。而社会交流能力和环境应变能力则对人的气质或性格提出了新要求,要求处于人工智能时代的劳动者区别于越来越聪明的自动化设备,在纷繁复杂的社会和飞速变化的技术环境中发挥人的作用。

三、人工智能时代的劳动者能力培养

为了培养与人工智能时代相适应的人才,提高全社会的智慧水平,我们应该在理念、内容以及方式、手段上有所变革。

(一)突出个性化培养理念

在工业时代,大批量单品种生产是主流方式,为了提高效率实施机械化、专业化分工,产生了大量单一循环、目标明确的标准化工作岗位。企业将作业编成操作手册或计算机程序,要求劳动者达到按照手册或程序正确操作的能力标准。在这种体制下,劳动者和设备、产品一样都是标准化管理的对象,因此人才培养也是标准化的。体现在高等教育、职业教育及企业教育上,就是培养能够按照标准进行反复、简单作业的劳动者。教育方法基本上依靠大量、统一的习题,或反复练习。这样的理念与方法培养出来的学生或劳动者,只能做单纯的工作,其不仅在精度、速度方面要输给人工智能,并且会变得只能简单地对工作中的变化作出机械的反应,缺少发现问题、解决问题的能力,更谈不上创造新价值,而这种能力恰恰是人工智能时代的劳动者最需要的。因为程序化的工作都由人工智能完成,需要人来做的正是去发现工作系统的问题,不断地进行更新改进,提高生产效率,或者通过新思路、新方法创造新价值。因此,人工智能时代的人才培养,尤其要重视学习者的创造性思维能力,要在因材施教的理念下,充分发挥个人的潜在优势。

(二)构建人工智能素养教育体系

把人工智能教育贯穿小学、初高中、大学以及工作后的全部阶段,提高全社会的人工智能基本素养。目前,包括中国在内的主要国家都已经在小学及初高中开展计算机编程教育,在大学实施更为专业的人工智能教育。同时,针对在职者的相关教育也极为重要。这是因为人工智能技术对劳动的影响面越来越广泛,工作甚至职业变得愈发不确定,在职者要提前做好转业与转岗的准备。为了维持社会经济的可持续发展,国家应该就全社会、全生涯的人工智能素养教育制定战略规划,集结教育及各行业行政管理部门的力量,从资金、设备、师资、教材、技术资格认定、学习费用补助等诸方面制定具体措施。对于义务教育的中小学阶段,应该完善每个学校的信息网络,要使高速Wi-Fi网络覆盖全部校区,使每个学生都有自己专用的终端设备(电脑或平板电脑)。在教室等集体授课的场所,安装可以触屏输入、可以数据储存传递的电子黑板,在教学过程中使用人工智能设备。当前,教育界中能担任人工智能教学的教师人才十分欠缺。国家应该制定紧急行动计划,至少要在5年内填补中小学相关基础素养课程的空白,使每个学校至少有一名该学科的教师。教师的来源,可以直接从博士毕业生、企业的工程师等专业人才中招聘,可以不受教师资格的约束。在大学阶段,理工科要学习高度的人工智能技术,文科及美术、音乐等学科,也要开设人工智能专业课程,因为今后人工智能将在模拟人的艺术感受方面深入发展,需要既懂艺术又懂人工智能的人才。由于人工智能技术发展很快,要组织学术界和企业界的力量,及时更新课程,并且根据人在不同生涯阶段的特点编制有针对性的教材。应该利用大数据来补充劳动力市场信息系统并监控不断变化的技能需求,以适应所提供的课程与教材(OECD,2016)。要尽快设立国家人工智能技术资格认定制度,使学习成果能在社会上受到评价,提高学习者的学习积极性。对于在职人员的学习,应给予费用和时间上的支持。对于企业实施的员工培训,应该以减免培训费等激励政策给予扶持。

(三)实施问题导向及跨学科合作探讨的学习方式

创造性思维能力、社会交流能力的具体表现是能够利用人工智能技术解决现实问题,以及能够利用人工智能创造新产品、新服务与新工作模式。以往“满堂灌”的学习方式难以培养这些能力,今后应该加强问题导向及跨学科合作探讨方式的学习。所谓问题导向,就是有明确、真实并且具体的现实问题,解决这些问题是学习的目的。这需要企业与学校共同制订学习目标,引导学生进行社会实践。问题导向的学习方式,还需要学习材料具有现实性。数据要真实,设备及材料要先进,教材要能够反映前沿理论与实践。跨学科合作探讨学习包含四个方面,首先是跨学科的学习内容,即学生根据具体问题学习数学、统计、数据、人工智能以及物理、化学、生物、艺术等多学科知识,这需要打破以往文理分科的界限;其次是跨学科的学习成员,即打破以往班级学习约束,组成由不同专业背景学生构成的小组,尤其是大学阶段要尽可能采取这种办法;再次是小组学习方式,即在教师指导下以小组为中心进行讨论和得出解决方案。同时,要构筑互联网学习平台,教师与学生之间、学生与学生之间有充分的提问—反馈—讨论的渠道。跨学科合作探讨形式的学习方法,不仅有利于提高学习自主性和团队合作性,也有助于进行知识碰撞、知识整合和知识创造,从而提高综合能力和应用能力。

现阶段,包括中国在内的一些国家都在进行问题导向及跨学科合作探讨学习方式的实践,诞生了STEAM(Science,Technology,Engineering,Art,Mathematics)教育课程、问题/项目导向型教育课程(Problem/Project-BasedLearning:PBL)、创新思维课程等方法。但这些方式都处在发展过程中,需要专家和学者不断吸取有益经验对其进行改进。日本为了培养人工智能人才,制定了国家战略推行STEAM教育,并研究整理了具体案例,为各学校及企业提供参考材料。如日本某职业高中与企业合作,开展了STEAM教育课程。该课程的项目之一是设计使用便利的人工智能设备,推进智能化农业生产。项目分四个阶段进行。第一阶段引发学生对农业和机器人的兴趣,使用4个课时。教师启发学生考虑联系农业作业的实际需求,确定制作机器人的具体内容。企业技术专家介绍机器人控制语言,演示机器人的动作。学生进行讨论,得出关于制作方向的结论;第二阶段进行机器人控制与数学、物理等学科知识的应用,使用4个课时。具体任务有两个,一个是解剖分析现有农业机械,获得感性、基础认识,再使用控制语言设计机器人基本雏形,另一个是运用数学知识,探讨马达转速与机器人动作的关系,设计控制程序,制作马达。企业技术专家讲解高感度彩色感应器、图像识别等技术,联系物理知识,讲解关于摩擦作用的处理方法;第三阶段学习机器人开发的基本程序,使用4个课时。技术专家讲解现实社会中技术人员如何编写“产品规格书”、通用计算机语言、数据解析工具等,引导学生继续使用控制语言模块制作机器人;第四阶段进行总结和演示,使用4个课时。学生演示、讲解自己制作的机器人的特点以及与农业作业的关联。同时,教师引导学生梳理学习内容,激发今后学习机器人技能的兴趣(经济产业省,2019)。

(四)利用人工智能技术提高学习效率,增强学生的创造性思维能力、社会交流能力

现阶段的人工智能已经可以代替教师对学生进行辅导,提高学生的学习效率,如X-Tech、EdTech、LearnTech等技术。这些工具可以根据每个学生的实际情况,给出不同的学习指导方案,提高学习效率。有国外学校在教学中引进了人工智能系统,学生使用平板电脑阅读数学教材、做习题。人工智能系统收集所有学生的学习信息,包括答案、解题过程、速度、集中力、理解力等,在此基础上判断出每个学生的强、弱项,给出符合个人学习水平的阅读材料和习题,大大提高了学习效率。该学校利用人工智能对小学六年级学生进行了初中一年级上学期的数学课程教育,常规需要14周的学习内容仅用2周就完成了,并且学生们的考试成绩都超过了常规教育的平均点。如果能如此高效地接受知识,学生就可以把时间更多地用在联系实际的项目学习以及体育、艺术等活动上,强化学生创造力和社会交流能力的培养。如果说铅笔、笔记本、橡皮是传统必需的学习工具,那么当前与互联网无障碍连接的电子终端已经成为人工智能时代学习的必要工具。国家应该尽快完善义务教育、高中教育、大学教育和在职教育的电子化环境,引进人工智能设备,提高全社会的学习效率。

目前,人工智能正以前所未有的速度部分或完全替代人的劳动,社会生产率将会大大提高。我们必须精准理解人工智能对职业、劳动和能力的影响,从国家层面制定战略规划,运用市场经济杠杆和政策手段提高包括义务教育、高中教育、高等教育和在职教育在内的生涯教育的人工智能基本素养,维持社会经济的稳定发展。

 

参考文献

[1]陈明生.人工智能发展、劳动分类与结构性失业研究[J].经济学家,2019(10):66-74.

[2]丁晨.从适应到引领:人工智能时代职业教育发展的机遇、挑战与出路[J].中国职业技术教育,2019(13):53-59.

[3]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.

[4]毛旭,张涛.人工智能与职业教育深度融合的促动因素、目标形态及路径选择[J].教育与职业,2019(24):53-59.

[5]南旭光,汪洋.人工智能时代职业教育治理的限时挑战与路径选择[J].教育与职业,2018(18):25-30.

[6]潘文轩.人工智能技术发展对就业的多重影响及应对措施[J].湖湘论坛,2018(4):146-153.

[7][美]S.J.Russell,P.Norvig.人工智能:一种现代的方法(第3版)[M].殷建平,等译.北京:清华大学出版社,2018.

[8]王君,张于喆,张义博,等.人工智能等新技术进步影响就业的激励与对策[J].宏观经济研究,2017(10):169-181.

[9]万昆.人工智能技术带来的就业风险及教育因应[J].广西社会科学,2019(6):185-188.

[10][奥]约瑟夫·熊彼特.经济发展理论[M].何畏,等译.北京:商务印书馆,2016.

[11]安宅和人.人工知能はビジネスをどう変えるか[J].DiamondHarvardBusinessReview,2015(11):43-58.

[12]池迫浩子,宮本晃司.家庭、学校、地域社会におけるスキルの育成:国際的エビデンスのまとめと日本の教育実践·研究に対する示唆[R/OL].2015-08-27.https://berd.benesse.jp/feature/focus/11-OECD/pdf/FSaES_20150827.pdf.

[13]経済産業省.“未来の教室”実証事業成果報告:ベジタリア株式会社[R/OL].2019-07-12.https://www.learning-innovation.go.jp/verify/z0044/.

[14]野口悠纪雄.AI入門講座[M].東京:東京堂出版,2018.[15]西村崇.AI時代に必要なスキルは「対人関係力」と「創造力」、アデコが調査報告[EB/OL].2017-05-17.https://xtech.nikkei.com/it/atcl/news/17/051701429/.

[16]D.H.Autor,L.F.Levy,R.J.Murnane.Theskillcontentofrecenttechnologicalchange:anempiricalexploration[J].QuarterlyJournalofEconomics,2003(4):1279–1333.

[17]D.H.Autor.Whyaretherestillsomanyjobs?Thehistory andfutureofworkplaceautomation[J].JournalofEconomicPerspectives,2015(3):3–30.

[18]H.Bakhshi,J.M.Downing,M.A.Osborneetal.Thefuture ofskills:employmentin2030[R/OL].2017-12-30.https://futureskills.pearson.com/research/assets/pdfs/technical-report.pdf.

[19]T.H.Davenport,J.Kirby.Beyondautomation[J].Harvard BusinessReview,2015(6):59-65.

[20]D.J.Deming.Thegrowingimportanceofsocialskillsinthelabormarket[J].NBERWorkingPaper,2015:21473.

[21]C.B.Frey,M.A.Osborne.Thefutureofemployment:how susceptiblearejobstocomputerisation?[R].WorkingPaper,OxfordMartinProgrammeonTechnologyandEmployment,2013.

[22]J.J.Heckman,T.Kautz.Hardevidenceonsoftskills[J].LaborEconomics,2012:451-464.

[23]ShotaroTani.Isyourjobrobot-ready?Ourinteractive calculatorletsyoufindouthowthreatenedyouare[R/OL].2017-04-22.https://asia.nikkei.com/Economy/Is-your-job-robot-ready.

[24]C.J.Weinberger.Theincreasingcomplementaritybetweencognitiveandsocialskills[J].TheReviewofEconomicsandStatistics,2014(5):849-861.

[25]WorldEconomicForum.Thefutureofjobs:employment,skillsandworkforcestrategyforthefourthindustrialre-volution[R/OL].2016-01-18.https://reports.weforum.org/future-of-jobs-2016/preface/.

[26]WorldEconomicForum.Thefutureofjobsreport2018:Centrefortheneweconomyandsociety[R/OL].2018-09-17.https://www.weforum.org/reports/the-future-of-jobs-report-2018.

[27]OECD.Skillsforsocialprogress:thepowerofsocialand emotionalskills[R/OL].2015-12-30.OECDSkillsStudies,OECDPublishing,Paris,http://dx.doi.org/10.1787/9789264226159-en.

[28]OECD.Skillsforadigitalworld[R/OL].2016-12-30.https://www.oecd.org/els/emp/Skills-for-a-Digital-World.pdf.

 

刘湘丽.人工智能时代的工作变化、能力需求与培养[J/OL].新疆师范大学学报(哲学社会科学版),2020(04):1-12[2020-05-20].https://doi.org/10.14100/j.cnki.65-1039/g4.20200518.001.

人工智能代替教师

Google就是一个很好的例子,它的服务倚赖于人工智能(AI)技术的发展,教育学领域在其影响下已开始出现显著的转变。自从Google创建以来,很多图书馆员与老师都走向了没落。我们对堆放书籍和报刊杂志的物理空间的需求越来越小,因为现在大部分知识都可以在网上找到。除此以外,开放教育资源(OER),如维基百科,YouTube,以及可汗学院(KhanAcademy),都在改变教育领域的格局。通过人工智能搜索,所有资源都触手可得。另外我们还有应用软件,如Photomaths,只要将手机对着一道做不出来的数学问题,答案就会自动得出,更厉害的是,连中间的解题步骤也没省略。人工智能变得有多么强大,如此可见一斑。

     1.给予学生的支持

    (1)佐治亚理工学院的机器人——吉尔·沃森(JillWatson)显示了人工智能在给予学生支持方面达到了什么样的程度。吉尔·沃森是一台人工智能教学辅助机器人,被训练为会基于之前的反应回答问题。300个学生与它互动之后,一致赞扬这位“老师”回答问题的效率和速度。而事实上,唯一导致机器人被识破的原因就是它回答得太快了。我们还可以期待更多这样的例子——人工智能教学支持替代传统教师支持。特别是在线教学,很多老师需要花大量时间监督学**、给予学生反馈。因此,这很可能是又一个人工智能自动化将要成熟的领域。

    (2)这个领域人工智能已取得了不错的进展,而且很可能会比传统教师表现更出色。在某种程度上Google已经提供了访问每一门学科“知识”的路径,内容详实,细节丰富。关于“丰富的知识储备量”,人工智能沃森早在2011年就已在综艺节目《危险边缘》中击败了人类参赛者,赢得了100万美元的奖金。在技术层面上来说,YouTube已经是很好的学**如何“做”某件事的知识来源。加上3D与虚拟现实,学**如何“做”某件事的渠道又有了扩展,如模拟飞行。日本的机器人项目“Todai”甚至通过了东京大学的入学考试,数学、物理、英语、历史,人工智能软件的平均分为58%,高于人类学生平均分43.8%。如果人工智能能在这个阶段已具有大学本科水平的技能,那么很可能很快就要取代人类大学水平的工作了。

    (3)课程或通过经验学**可能是很主观,甚至是有缺陷的。人工智能能提供的不仅是优化设计,而且能够不断改进,因为它使用的是个人数据来判断课程中的弱点。现在已经有很多这样的例子了,从大规模在线课程(MOOCs)到其它形式的在线学**——错误的内容,糟糕的问题,过长的视频和展示,产生的数据全部被网上学**系统捕获,以不断寻求改进。

    (4)“机构化”是一个有趣的概念,因为学**需要的是一个比放之四海而皆准的教学大纲更有条理、更个性化的课程计划。人工智能在判断和处理个体差异时可以比传统教学做得更好——不仅针对个体学**者搭建学**结构,还将通过机器学**持续改进,识别学**行为中的弱点。人工智能甚至可能做到自动生成课程大纲和教学内容。

   2.跟踪学生进步和成果

    (1)进步追踪并不是一件容易的事,需要同步跟踪多名学生的实际表现。这在传统教学中是非常困难的。而人工智能,从另一方面来说,却是能够弥补这一缺陷。它对多名学**者实时数据的收集、处理、检验,是传统教师通过观察与测验所不能比拟的。不止如此,人们还意识到人工智能在摒除人为偏见方面更值得挖掘。这是因为有时候人为偏见可能会抑制学**者的进步,而我们已经有充分的证据显示教学中性别与社会经济的偏向。人工智能不受性别、种族、口音、背景的偏见,比传统教师教学系统更能够提供高质量、广阔的解决办法。

    (2)根据热力学第二定理,体系的熵总在不断地增加,一切想要减少熵的行为,最终只会招致更多熵增。我们的一切思考,都是求内在的转变。其实,“机器人老师”也并非一个新鲜话题。

    人工智能代替教师之后不能更好的去让学生了解知识

    日本“机器人老师”“萨亚”:东京理科大学小林宏教授按照一位女大学生的模样塑造而成。“萨亚”皮肤白皙、面庞清秀,着白色上衣,脸部皮肤以精细橡胶制成,皮肤后藏有18台微型电机,可以使面部呈现出高兴、惊讶、厌恶、害怕、悲伤、生气共6种表情。“萨亚”会讲大约300个短语,700个单词,可以对一些词语和问题做出回应,她还可以学会讲各种语言。“萨亚”给一班10岁左右的五年级学生讲课,受到新奇兴奋的孩子们的极大欢迎。

       韩国“蛋形机器人老师”:在韩国小学生的课堂里,出现了一个3.3英尺高、拥有一个“人脸”的可爱机器人。“她”在授课中能自如地在教室中“来回踱步”,并“张口”讲课。这个“蛋形老师”不仅长相讨人喜欢,而且拥有朗诵、跳舞等才艺。不仅孩子们喜欢,就连家长也喜欢和机器人老师交谈。

       “福州造”的教育机器人:它除了帮助老师朗诵课文、批改作业、课间巡视之外,通过功能强大的传感器还能灵敏地感知学生的生理反应,甚至还可以扮演“测谎高手”角色。此外一旦和“学生机”绑定,也可更清楚地了解学生对各个知识点的掌握情况。有媒体形容,今后,早读课带着同学们朗读的,可能会是一台萌萌的机器人。考场内监考的,也可能不再是老师,而是一台来回巡视的机器人,只要学生稍有舞弊的歪念,就能被机器人“感应”到 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇