数据科学猫:人工智能要素、生态与应用领域(上篇)
进击的橘子猫正式改名上线啦!
我的CSDN主页:https://blog.csdn.net/Orange_Spotty_Cat
也欢迎大家搜索微信公众号“进击的橘子猫”,我也会定期分享数据科学、Python、大数据、项目管理与PPT的相关知识。
让我们进击起来吧!
简介
在上篇中,本文会主要针对人工智能的要素、生态进行概括性的介绍。同时介绍两个AI的应用场景,即AI在智能医疗与智能安防的发展场景。
在下篇中,会主要介绍AI在智能家居、智能零售与智能汽车方向的应用。
一句话概括版
人工智能(AI)的四要素包括数据、算力、算法与场景。
AI会与云计算、大数据、物联网等概念结合以提供综合的AI生态
AI正在不同的方面不断改变着各个行业,本文将举例介绍AI在医疗、安防方面的应用
人工智能的四要素
人工智能的知识领域包含四个关键点,即数据、算力、算法与场景。这四个要素不断迭代并相互协作,以保证了人工智能的发展。
数据:主要指大数据的支撑。人工智能在历史的发展中,对海量数据的存储、分析与建模曾经是人工智能发展的瓶颈。随着大数据的发展,传感器的毫秒级数据、社交网络评论、搜索历史记录、照片图像、视频与语音等数据的采集与分析成为可能,也为人工智能提供了重要的分析基础与输入。
算力:主要是对CPU与GPU的计算能力。随着深度学习的发展,人工智能对算法的计算性能要求越来越高。大多数复杂神经网络都要求高内存、高算力的CPU以及GPU支持。
算法:主要指实现智能的数据模型。比如机器学习模型与深度学习模型。我们日常经常听到的逻辑回归、随机森林、lightgbm、卷积神经网络等等,都是人工智能的算法。
场景:主要人工智能的应用方向。典型的比如人脸识别、语音识别、情感分析、风险预警、精准营销等等。一个同样的算法在不同的行业会有各种各样不同的应用场景,业务部门会通过各式各样的场景从不同的维度实现数据的价值,将算法变为切实的业务流程与业务应用。
人工智能生态
人工智能的生态会结合云计算、大数据技术以及物联网等概念。
人工智能的底层为基础设施。
从数据采集的源头来说,主要包括互联网、传感器与物联网技术。这三个作为人工智能主要的大数据来源,会生成各种各样的结构化与非结构化数据、静态与实时数据,以满足人工智能对数据的需求
同时,从物理计算能力来说,基础设施包括服务器与芯片的发展。服务器与芯片的发展主要是满足人工智能对算力的需求。
由基础设施往上便延伸出对基础技术的要求。这里同样是从数据以及算力两条线对基础技术提出要求:
互联网、传感器以及物联网的数据要求大数据的存储技术支持。
服务器与芯片主要推动了云计算的发展。
AI的条件主要是指数据、算力与算法的发展。
在具备AI的存储与计算条件后,就能够基于此延展出AI的场景应用方向,由此作用于AI的各个应用领域
AI应用领域之智能医疗
AI技术在医疗的应用相当广泛,下图列举了8大类现下智能医疗的发展领域。
药物挖掘
传统的药物研发的周期长、成本高、成功率低等痛点。人工智能与药物挖掘的结合,使得新药研发时间大大缩短,研发成本大大降低。
目前国内药物挖掘技术已经在逐步落地,但研发周期仍相对较长,且算法需要大量的时间和数据积累,短期内很难产生营收数据。
健康管理
健康管理主要包含营养学、身体健康管理、精神健康管理三大子场景。目前国内公司主要集中于对身体健康的管理。国内在营养学场景的人工智能公司较少,国人尚未普遍树立营养饮食意识;碳云智能和Airdoc有推出一些产品分别通过血糖监测和菜品识别指导用户合理用餐。在国际方面,爱尔兰都柏林的创业公司Nuritas将AI与生物分子学相结合,进行肽的识别;根据每个人的身体情况,使用特定的肽来激活健康抗菌分子,改变食物成分,消除食物副作用,从而帮助个人预防糖尿病等疾病的发生、杀死抗生素耐药菌。
医院管理
医院管理主要指针对医院内部、医院之间各项工作的管理,主要包括病历结构化、分级诊疗、DRGs(诊断相关分类)智能系统、医院决策支持的专家系统等。在分级诊疗的政策推动之下,国内陆续出现促进分级诊疗的企业服务,行业前景广阔。分级诊疗的实现,离不开医联体与智能云服务,二者相辅相成。
研究辅助
辅助医学研究平台利用人工智能技术辅助生物医学相关研究者进行医学研究的技术平台。
虚拟助理
医疗领域中的虚拟助理,基于特定领域的知识系统,通过智能语音技术和自然语言处理技术,实现人机交互,将患者的病症描述与标准的医学指南作对比,为用户提供医疗咨询、自诊、导诊等服务。
医学影像
医学影像主要运用计算机视觉技术解决病灶识别与标注、靶区自动勾画与自适应放疗、影像三维重建三种需求。
辅助诊疗
辅助诊疗的产品有两大类:医疗大数据辅助诊疗、医疗机器人(主要指针对诊断与治疗环节的机器人)。医疗机器人主要包括手术机器人、肠胃检查与诊断机器人、康复机器人等。
疾病预测
疾病风险预测是指通过基因测序与检测,提前预测疾病发生的风险。疾病风险预测核心解决的问题是预测个体在未来一段时间内患某种疾病或(发生某种事件)的风险概率。疾病预测会根据某个人群定义,例如全人群、房颤人群、心梗住院人群等,针对某个预测目标,例如脑卒中、心衰、死亡等,设定特定的时间窗口,包括做出预测的时间点,和将要预测的时间窗,预测目标的发生概率。
AI应用领域之智能安防
智能安防通过升级安防场景搭建更高效的城市治安系统。典型的应用场景例如闭路监控系统、防盗报警系统、楼宇门禁系统、一卡通系统、停车场管理系统、智能门锁、电子围栏、红外界警报系统、巡逻管理系统等等。
现在大型的安全防范系统结合技术手段,具备了探测、监控、报警与管理等功能,主要为公安系统进行预防、制止违法犯罪行为和重大治安事件,以维护社会治安稳定。
在安防领域,计算机视觉与深度学习技术是必要的条件。摄像头与监控网络形成的海量视频数据需要大数据的存储与处理技术支撑,也需要深度学习算法从视频中抓取可疑目标,进行交叉对比,实时进行检索与轨迹追踪。
人工智能领域技术,主要包含了哪些核心技术
从语音识别到智能家居,从人机大战到无人驾驶,人工智能的“演化”给我们社会上的一些生活细节,带来了一次又一次的惊喜,未来更多智能产品依托的人工智能技术会发展成什么样呢?让我们来看看2018人工智能标准化白皮书里面,对人工智能关键技术的定义。
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算
四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势。人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:在网络大时代背景下,人工智能技术是如何应用的http://www.duozhishidai.com/article-15277-1.html未来人工智能技术,主要包含哪几种?http://www.duozhishidai.com/article-4938-1.html人工智能时代,你需要了解的9大技术领域http://www.duozhishidai.com/article-3845-1.html
————————————————版权声明:本文为CSDN博主「人工智能爱好者」的原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/zhinengxuexi/article/details/88716489
人工智能的历史、现状和未来
2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄
2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄
2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国
2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士
人工智能的伦理挑战与科学应对
【光明青年论坛】
编者按
2023年2月21日,中国外交部正式发布《全球安全倡议概念文件》,呼吁“加强人工智能等新兴科技领域国际安全治理,预防和管控潜在安全风险”。在中国式现代化进程中,人工智能的技术革新是助推我国科技创新的重要力量之一。作为最具代表性的颠覆性技术,人工智能在给人类社会带来潜在巨大发展红利的同时,其不确定性也会带来诸多全球性挑战,引发重大的伦理关切。习近平总书记高度关注人工智能等新兴科技的发展,强调要加快提升“人工智能安全等领域的治理能力”,“塑造科技向善的文化理念,让科技更好增进人类福祉”。为此,本版特组织几位青年学者围绕人工智能的伦理挑战与科学应对展开讨论,并邀请专家予以点评,以期引发学界的更多关注,为推动人工智能健康发展贡献智慧。
与谈人
彭家锋 中国人民大学哲学院博士生
虞昊 华东师范大学政治与国际关系学院博士生
邓玉龙 南京师范大学哲学系博士生
主持人
刘永谋 中国人民大学哲学院教授、国家发展与战略研究院研究员
1.机遇与挑战并存的人工智能
主持人:新技术革命方兴未艾,以人工智能等为代表的新兴科技快速发展,大大拓展了时间、空间和人们的认知范围,人类正在进入一个“人机物”相融合的万物智能互联时代。请具体谈谈人工智能给人类社会发展带来什么样的机遇?
彭家锋:人工智能、大数据、物联网、云计算等智能技术蓬勃兴起,对人类社会的方方面面产生深刻影响,推动整个社会逐步迈入智能社会。在此过程中,存在许多重大历史机遇需要我们把握。就技术治理而言,人工智能作为一种治理技术,正在助推社会治理的治理理念、治理方式、治理效能等方面的变革,将传统技术治理提升至智能化新阶段,呈现出“智能治理的综合”趋势。智能治理将全面提升社会公共治理的智能化水平,主要呈现出四个方面的特征:一是治理融合化,即促进各种智能技术与其他治理技术相互融合,大幅度提升智能社会的治理水平;二是治理数据化,即以日益增长的海量数据为基础,通过对数据映射出来的“数字世界”进行社会计算,实现治理目标;三是治理精准化,即发挥智能技术强大的感知能力、传输能力和计算能力,将传统的粗放治理转变为精准治理;四是治理算法化,即不断完善智能决策系统,尝试将程序化的算法决策扩展到更多的决策活动中,从而提高决策质量。
虞昊:人工智能有助于反思人类社会得以建立与发展的基础。随着分析式AI向着生成式AI不断演变,尤其是生成式AI初步展现出判别问题、分析情感、展开对话、创作内容等越来越具有人类特征的功能,原本属于人类的领域正被人工智能以另一套由“0”与“1”构成的计算机语言逐步侵蚀。这既是对人类社会的冲击,也势必会在更加平等的开放性框架中增强人类的主体性,促进人类社会进一步发展。
邓玉龙:总体来说,以人工智能为代表的新科技发展,显著提升了社会生产力。例如,生成式AI不但能完成传统AI的分析、判断工作,还能进一步学习并完成分析式AI无法从事的创造性工作。从人机交互的角度来看,人工智能也促进了生产关系的高效发展。具体表现在:一是刺激劳动形态的转化。人工智能高效承担大量的基础机械性劳动,人类劳动则向高阶的创造性劳动转化,由此引发社会层面的劳动结构转型、升级,并且以人工智能为中介,社会范围内的劳动整合、协调能力也实现升级。二是促进劳动场域的重构。随着劳动形态的转化和劳动的社会化扩展,人工智能将劳动从固定场域中解放出来,人类劳动的灵活性增加。相比于创造性劳动,机械性劳动更加受到空间和时间的制约,而在人工智能从技术层面替代更低边际成本的基础性劳动之后,人类劳动空间和时间的自由性实现跃迁。三是对主体的发展提出了更高要求,尤其是对主体适应社会发展提出了更高要求。人工智能技术的发展对人类传统的知识结构提出挑战,要求人类更新原有的知识结构以适应社会发展需要,也对教育提出更高要求,教育模式和教育内容需要更契合科技发展的水平,培养更加全面发展的人才。
主持人:人工智能的一系列产物在给人们带来生活便利的同时,也一定程度上引起大家对其可能引发的伦理挑战的警惕。一些人关注人工智能的风险问题,对人工智能的推进有些焦虑。如何看待这种警惕和焦虑?
虞昊:人工智能的风险以及由此带来的焦虑,是完全可以理解的。但我们无法返回一个没有人工智能的世界,人工智能已然深度介入人类社会,试图遏制人工智能的推进只能是螳臂当车。同时我们对人工智能的发展也不能放任不管,无视甚至于压制人工智能的推进只能是掩耳盗铃。因此,我们应该正视这种焦虑,在发展人工智能的过程中探求解决方案,在人工智能带来的风险中寻求危中之机。
邓玉龙:我们应正确看待这种焦虑。要看到,焦虑有其积极的意义,它体现人类的忧患意识,催生对人工智能风险的预见性思考,提醒我们注意焦虑背后人工智能技术发展存在的问题。正确对待焦虑有助于积极采取措施防范风险,辩证分析焦虑中先见性的思考,通过社会治理模式的升级化解风险问题。同时,仅有焦虑和恐惧是不够的,更重要的是积极解决人工智能发展带来的社会问题。从劳动的角度看,人工智能确实会取代部分人类劳动,推动劳动结构转型升级,让劳动向着碎片化、个体化方向发展,劳动者处于弱势地位,面临着“机器换人”的挑战。但是我们也应该理性认识到,人工智能不是对人类劳动能力的完全替代,而是对劳动者提出了更高的要求,要求劳动者掌握科学知识,将技术的发展内化为自身能力,在更具创造性的劳动中实现自身价值。
彭家锋:任何技术的发明使用,不可避免地伴随着这样或那样的风险。人工智能技术自然也不例外,在其应用过程中,同样引发了诸如隐私泄露、算法歧视、法律责任等风险问题。因此,关注人工智能的风险问题,并由此对人工智能的推进产生焦虑,具有一定理论依据和现实基础。但更应当清醒地认识到,人工智能的某些相关风险可以提前得到规避,并不必然会发生;即便真的发生,也仍可不断寻求化解风险的有效手段。以个人隐私滥用风险为例,在治理过程中,虽然不可避免地会涉及个人数据收集和分析处理,但可以通过建立完整的规范和监管体系来保护个人隐私,降低滥用风险。
2.人工智能科技竞争的“伦理赛道”
主持人:习近平总书记在以视频方式出席二十国集团领导人第十五次峰会时指出,“中方支持围绕人工智能加强对话,倡议适时召开专题会议,推动落实二十国集团人工智能原则,引领全球人工智能健康发展”。请谈谈“人工智能原则”应包含哪些内容?科技向善的文化理念对推动全球人工智能健康发展具有怎样的现实价值?
彭家锋:为应对人工智能等新科技快速发展带来的伦理挑战,2022年,中共中央办公厅、国务院办公厅印发了《关于加强科技伦理治理的意见》,其中明确了“增进人类福祉”“尊重生命权利”“坚持公平公正”“合理控制风险”“保持公开透明”等五项科技伦理原则。我认为,这五项原则基本涵盖了人工智能原则的伦理要求,彰显了科技向善的文化理念。科技向善的文化理念,根本目标是让科技发展更好地服务社会和人民,带来良好社会或社会公益的善。科技向善对推动全球人工智能健康发展至少具有以下三个方面现实价值:一是塑造公众信任。公众对人工智能的信任很大程度上并不完全由相关风险程度决定,而是取决于公众的利益与价值是否得到足够重视。后者正是科技向善的内在要求。二是引领技术创新。科技向善的文化理念将在技术创新发展过程中发挥价值引领作用。三是促进全球合作。科技向善的文化理念试图在全球范围内建立人工智能伦理规范的“最大公约数”,各国在达成伦理共识的基础之上,能够建立互信,实现更加充分深入的国际合作。
虞昊:个人认为,人工智能原则也应包含非对抗与非失控的理念。非对抗意味着不应将人工智能视作人类社会的对抗性存在,人工智能已经成为人类社会的构成性要素,我们必须持更为开放的态度去面对人工智能。非失控意味着不应放弃对人工智能的伦理规范,应以智能的方式去规范加速发展的人工智能。如果以上述理念为前提,也就是说,在支持人工智能发展的情况下,科技向善的文化理念在推动全球人工智能健康发展中就变得极为重要。此处的“善”在国家治理层面即指向“善治”,而当人工智能的发展从国家范围扩展到全球范围,“善治”就在构建人类命运共同体的意义上拥有了更贴近现实的内涵。各国应摒弃冷战思维与零和博弈,基于善意与友谊共同思考人类作为整体如何在人工智能的冲击下通往全球性的“善治”。
邓玉龙:2019年欧盟发布《可信赖的人工智能伦理准则》,2021年中国国家新一代人工智能治理专业委员会发布《新一代人工智能伦理规范》(以下简称《规范》)。与欧盟发布的伦理准则相比,《规范》体现了中国特色社会主义的制度优势,旨在将伦理规范融入人工智能全生命周期。人工智能发展的根本目的是促进人的全面发展,因此,我以为,人工智能原则还应体现共享和有序发展的要求。共享,旨在防止人工智能的技术垄断。科技发展应该兼顾全体人民的利益,而不是服务于少数群体,由全体人民共享科技发展成果,推动全球科技水平的共同增长。有序发展,旨在防止人工智能技术的无序扩张。人工智能技术的发展最终是为了提升人的幸福感,推动科技有序发展能够促进人机和谐融合,有效预防潜在无序扩张的风险。
主持人:从规范层面来说,伦理反思对规范人工智能发展的作用主要体现在哪些方面?
彭家锋:近年来,世界各主要国家在人工智能领域竞争日趋激烈,纷纷将人工智能发展置于国家发展的战略层面。比如,美国陆续出台《国家人工智能研究和发展战略计划》(2016)和《关于维持美国在人工智能领域领导地位的行政命令》(2019);欧盟先后发布《欧洲人工智能战略》(2018)和《人工智能白皮书》(2020);中国也较早发布了《“互联网+”人工智能三年行动实施方案》(2016)和《新一代人工智能发展规划》(2017)。人工智能科技竞争的客观局面已然形成。在此背景下,如果忽视人工智能技术发展所带来的全球性风险与挑战,极有可能陷入技术赶超的竞争逻辑。因此,亟须规范人工智能的科技竞争,而倡导伦理反思或许就是一条可行之路。伦理反思的意义至少在于:一是设定伦理底线。人工智能技术的开发和应用需要遵循一些基本的价值理念和行为规范。只有守住伦理底线,才有可能避免颠覆性风险的发生。二是实现敏捷治理。伦理反思是一个动态、持续的过程,贯穿于人工智能科技活动的全生命周期。为了确保其始终服务于增进人类福祉和科技向善的初衷,需要保持应有的道德敏感性,以灵活、及时、有效的手段化解人工智能带来的各种伦理挑战,确保其在科技向善的道路上行稳致远,实现良性发展。
邓玉龙:人工智能科技竞争是为了促进科学技术发展,而科学技术发展的最终目的是推动人类社会的进步。人工智能科技竞争不应该仅包括技术竞争的单一维度,更不应该通过技术优势遏制他国的科技发展,而应该是在人工智能科技条件下的综合性竞争,通过良性竞争促进全球人工智能和全人类的共同发展。其中就应该包括社会治理竞争,通过社会治理保障社会公平,因而对社会中人与人关系的伦理反思构成人工智能科技竞争的有机组成部分。首先,伦理反思对人工智能科技竞争提出了更高的要求。人工智能的公平性、可信任性、可解释与透明度、安全性不仅是伦理要求,也代表了人工智能技术的发展方向,是人工智能科技竞争需要抢占的技术制高点。科技的发展是为了人的全面发展,因而人的发展内嵌于科技发展要求,伦理反思有助于防止工具主义的泛滥。其次,伦理反思为人工智能科技竞争提供价值引导。伦理反思注重保障人的权利,科技发展并不是社会发展中的唯一衡量因素,我们还应该关注其中多样性的因素,尤其注重保护特殊群体的利益,例如防止数据鸿沟等不良影响。伦理反思有助于实现人工智能的综合性健康发展。
3.人工智能安全与人的全面发展
主持人:科学探究一直以来都是人们认识世界和了解自身的重要认知方式,人工智能等信息产业的革命如何影响着人们的认知方式?
彭家锋:人工智能等信息产业的革命,促进了科学研究新范式——数据科学的诞生,进而对人们的认知方式产生深刻影响。数据科学被认为是继实验、理论和模拟之后的新的科研范式。相较于传统科学,数据科学融合了统计和计算思维,通过人工智能等技术提供的海量数据、强大算法和算力,能够直接从数据中寻找相关关系、提取相关性或者预测性知识,进而产生一种基于相关性的科学思维模式。但这种相关性并不一定能够转化为因果关系,因为可解释性对于从数据科学技术确定的相关性中提取因果解释至关重要,而相关技术一般都缺乏必要的透明度和可解释性。数据科学更可能成为一种预测科学,但是预测并不是科学追求的唯一目标。通过揭示世界的潜在因果结构来解释和干预现象,也是科学的两个重要目标。因此,尽管数据科学能够通过分析大量数据生成相关性知识,却不能直接产生因果解释。对此,传统科学的可检验性假设方法和因果规律探求仍有其重要价值。数据科学并非取代传统科学,相反,两者将相互补充,共同成为人类探索世界的有效工具。
虞昊:显而易见的是,随着人工智能向着通用人工智能迈进,其能够为人们提供的教育资源、生活娱乐、工作讯息也越来越丰富,人们势必越来越依赖于通过与人工智能进行交互来获取外界信息。因此,当人工智能深度地构成人们认知世界的滤镜时,若不对人工智能本身具有重复性、同质性倾向的认知框架保持警醒,人工智能可能扭曲人们的认知方式直至影响人的主体创造性。
邓玉龙:以人工智能为代表的全新技术发展被称为第四次工业革命,其中最显著的特征就是机器与人类的深度融合,机器不再作为一种外在性的工具被人类使用,而是在与人类的深度关联中影响人类的认知方式。一方面,信息产业革命丰富了人类认知的联结方式。人工智能和大数据技术的发展促进人类的分析逻辑从因果关系扩展为相关关系,对相关关系的重视使人工智能可以从大数据而非小数据维度获取信息,为人类认知提供新的视角。按照传统人类认知方式的理解,因果关系要求关于世界的认知是确定性的,而这在数字时代的复杂性社会中很难实现。人工智能对相关关系的认知填补了这一缺失,允许我们在无法掌握确定信息但在掌握大量数据的条件下对未来趋势作出预测。另一方面,如果我们对人工智能等科技的输出结果和生成内容盲目信赖,将结果和内容与经验事实之间进行绝对等同的连接,误认为是事实的全部,那么我们就会丧失人文主义抽象反思的能力,对此我们应当保持警惕,始终坚持反思和批判的人文精神。
主持人:如何调适人的主体创造性与信息高度集成共享之间的关系?
彭家锋:当人们逐渐将更多创造性工作交由人工智能完成,不免让人担忧人工智能是否将会威胁到人的主体创造性。从人机关系的角度来看,这种担忧是基于一种人机敌对论的视角,认为人工智能挤压了人的主体创造性空间,是替代逻辑的延续。但从人机协作的视角出发,将人工智能看作人的得力帮手,通过创造性地使用人工智能可以赋予人类更大的创造性空间。比如,在进行文字写作、多媒体脚本、程序代码、文稿翻译等工作时,可先由人工智能高水平地完成草稿工作,然后再由人类进行一些创造性的调整和发挥。此时人工智能生成的内容将成为进一步创作的原材料,人类将以更高的效率投入创造性活动之中。当然,要实现以上效果并非易事,不仅需要思想观念的转变,还应在制度安排、教育方式等方面作出相应调整。
虞昊:面对信息高度集成共享的人工智能,人有可能转变为算法的动物。试想下述场景:当依据人工智能展开行动变得足够便捷有效时,行动者便会倾向于采信人工智能,此时,看似是人类行动者基于自然语言在进行互动,实则是算法逻辑基于计算机语言在进行数字化运转。于是,人的主体创造性被侵蚀,人可能沦为算法动物。对此类情形,我们应该保持足够的清醒与警惕。
邓玉龙:人工智能技术生成的内容(AIGC)具有高度集成共享的特性,能够高效地对人类知识进行数据挖掘、信息生成。调适人的主体创造性与信息高度集成共享之间的关系,我们需做到如下几个方面:首先,需要通过人的创造性扩大AIGC数据库,当下AIGC主要是依赖于大语言模型,以大量的网络文本作为训练数据库生成的,通过人的创造性生成可以不局限于网络文本,而是进一步扩展数据库的训练文本,从而提高其丰富度。其次,需要通过人的创造性为AIGC提供价值训练,通过人的创造性生成的价值立场、伦理法则等与AIGC的训练数据库相融合,从而建构可信赖、可持续的信息高度集成共享机制。最后,需要将人创造性生成的内容与AIGC共同作为人类知识的来源,人类知识的获得不能仅仅局限于AIGC,而是需要人发挥其主体创造性对人工智能技术生成的内容进行反思和拓展,将人类无法被数据化的、经验性的知识与AIGC数据化的知识融合成为人类知识的来源。
(本版编辑张颖天整理)
人工智能包含哪些技术
一、概述
近几年各界对人工智能的兴趣激增,自2011年以来,开发与人工智能相关的产品和技术并使之商业化的公司已获得超过总计20亿美元的风险投资,而科技巨头更是投资数十亿美元收购那些人工智能初创公司。相关报道铺天盖地,而巨额投资、计算机导致失业等问题也开始浮现,计算机比人更加聪明并有可能威胁到人类生存这类论断更是被媒体四处引用并引发广泛关注。
IBM承诺拨出10亿美元来使他们的认知计算平台Watson商业化。
谷歌在最近几年里的投资主要集中在人工智能领域,比如收购了8个机器人公司和1个机器学习公司。
Facebook聘用了人工智能学界泰斗YannLeCun来创建自己的人工智能实验室,期望在该领域获得重大突破。
牛津大学的研究人员发表了一篇报告表明,美国大约47%的工作因为机器认知技术自动化而变得岌岌可危。
纽约时报畅销书《TheSecondMachineAge》论断,数字科技和人工智能带来巨大积极改变的时代已经到来,但是随之而来的也有引发大量失业等负面效应。
硅谷创业家ElonMusk则通过不断投资的方式来保持对人工智能的关注。他甚至认为人工智能的危险性超过核武器。
着名理论物理学家StephenHawking认为,如果成功创造出人工智能则意味着人类历史的终结,“除非我们知道如何规避风险。”
即便有如此多炒作,但人工智能领域却也不乏显着的商业行为,这些活动已经或者即将对各个行业和组织产生影响。商业领袖需要透彻理解人工智能的含义以及发展趋势。
二、人工智能与认知科技
揭秘人工智能的首要步骤就是定义专业术语,勾勒历史,同时描述基础性的核心技术。
1、人工智能的定义
人工智能领域苦于存在多种概念和定义,有的太过有的则不够。作为该领域创始人之一的NilsNilsson先生写到:“人工智能缺乏通用的定义。”一本如今已经修订三版的权威性人工智能教科书给出了八项定义,但书中并没有透露其作者究竟倾向于哪种定义。对于我们来说,一种实用的定义即为——人工智能是对计算机系统如何能够履行那些只有依靠人类智慧才能完成的任务的理论研究。例如,视觉感知、语音识别、在不确定条件下做出决策、学习、还有语言翻译等。比起研究人类如何进行思维活动,从人类能够完成的任务角度对人工智能进行定义,而非人类如何思考,在当今时代能够让我们绕开神经机制层面对智慧进行确切定义从而直接探讨它的实际应用。值得一提的是,随着计算机为解决新任务挑战而升级换代并推而广之,人们对那些所谓需要依靠人类智慧才能解决的任务的定义门槛也越来越高。所以,人工智能的定义随着时间而演变,这一现象称之为“人工智能效应”,概括起来就是“人工智能就是要实现所有目前还无法不借助人类智慧才能实现的任务的集合。”
2、人工智能的历史
人工智能并不是一个新名词。实际上,这个领域在20世纪50年代就已经开始启动,这段探索的历史被称为“喧嚣与渴望、挫折与失望交替出现的时代”——最近给出的一个较为恰当的评价。
20世纪50年代明确了人工智能要模拟人类智慧这一大胆目标,从此研究人员开展了一系列贯穿20世纪60年代并延续到70年代的研究项目,这些项目表明,计算机能够完成一系列所本只属于人类能力范畴之内的任务,例如证明定理、求解微积分、通过规划来响应命令、履行物理动作,甚至是模拟心理学家、谱曲这样的活动。
但是,过分简单的算法、匮乏的难以应对不确定环境(这种情形在生活中无处不在)的理论,以及计算能力的限制严重阻碍了我们使用人工智能来解决更加困难和多样的问题。伴随着对缺乏继续努力的失望,人工智能于20世纪70年代中期逐渐淡出公众视野。
20世纪80年代早期,日本发起了一个项目,旨在开发一种在人工智能领域处于领先的计算机结构。西方开始担心会在这个领域输给日本,这种焦虑促使他们决定重新开始对人工智能的投资。20世纪80年代已经出现了人工智能技术产品的商业供应商,其中一些已经上市,例如Intellicorp、Symbolics、和Teknowledge。
20世纪80年代末,几乎一半的“财富500强”都在开发或使用“专家系统”,这是一项通过对人类专家的问题求解能力进行建模,来模拟人类专家解决该领域问题的人工智能技术。
对于专家系统潜力的过高希望彻底掩盖了它本身的局限性,包括明显缺乏常识、难以捕捉专家的隐性知识、建造和维护大型系统这项工作的复杂性和成本,当这一点被越来越多的人所认识到时,人工智能研究再一次脱离轨道。
20世纪90年代在人工智能领域的技术成果始终处于低潮,成果寥寥。反而是神经网络、遗传算法等科技得到了新的关注,这一方面是因为这些技术避免了专家系统的若干限制,另一方面是因为新算法让它们运行起来更加高效。
神经网络的设计受到了大脑结构的启发。遗传算法的机制是,首先迭代生成备选解决方案,然后剔除最差方案,最后通过引入随机变量来产生新的解决方案,从而“进化”出解决问题的最佳方案。
3、人工智能进步的催化剂
截止到21世纪前10年的后期,出现了一系列复兴人工智能研究进程的要素,尤其是一些核心技术。下面将对这些重要的因素和技术进行详细说明。
1)摩尔定律
在价格、体积不变的条件下,计算机的计算能力可以不断增长。这就是被人们所熟知的摩尔定律,它以Intel共同创办人GordonMoore命名。GordonMoore从各种形式的计算中获利,包括人工智能研究人员使用的计算类型。数年以前,先进的系统设计只能在理论上成立但无法实现,因为它所需要的计算机资源过于昂贵或者计算机无法胜任。今天,我们已经拥有了实现这些设计所需要的计算资源。举个梦幻般的例子,现在最新一代微处理器的性能是1971年第一代单片机的400万倍。
2)大数据
得益于互联网、社交媒体、移动设备和廉价的传感器,这个世界产生的数据量急剧增加。随着对这些数据的价值的不断认识,用来管理和分析数据的新技术也得到了发展。大数据是人工智能发展的助推剂,这是因为有些人工智能技术使用统计模型来进行数据的概率推算,比如图像、文本或者语音,通过把这些模型暴露在数据的海洋中,使它们得到不断优化,或者称之为“训练”——现在这样的条件随处可得。
3)互联网和云计算
和大数据现象紧密相关,互联网和云计算可以被认为是人工智能基石有两个原因,第一,它们可以让所有联网的计算机设备都能获得海量数据。这些数据是人们推进人工智能研发所需要的,因此它可以促进人工智能的发展。第二,它们为人们提供了一种可行的合作方式——有时显式有时隐式——来帮助人工智能系统进行训练。比如,有些研究人员使用类似MechanicalTurk这样基于云计算的众包服务来雇佣成千上万的人来描绘数字图像。这就使得图像识别算法可以从这些描绘中进行学习。谷歌翻译通过分析用户的反馈以及使用者的无偿贡献来提高它自动翻译的质量。
4)新算法
算法是解决一个设计程序或完成任务的路径方法。最近几年,新算法的发展极大提高了机器学习的能力,这些算法本身很重要,同时也是其他技术的推动者,比如计算机视觉(这项科技将会在后文描述)。机器学习算法目前被开源使用,这种情形将促成更大进步,因为在开源环境下开发人员可以补足和增强彼此的工作。
4、认知技术
我们将区分人工智能领域和由此延伸的各项技术。大众媒体将人工智能刻画为跟人一样聪明的或比人更聪明的计算机的来临。而各项技术则在以往只有人能做到的特定任务上面表现得越来越好。我们称这些技术为认知技术(下图),认知技术是人工智能领域的产物,它们能完成以往只有人能够完成的任务。而它们正是商业和公共部门的领导者应该关注的。下面我们将介绍几个最重要的认知技术,它们正被广泛采纳并进展迅速,也获得大量投资。
1)计算机视觉
是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。
计算机视觉有着广泛应用。其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被Facebook用来自动识别照片里的人物;在安防及监控领域被用来指认嫌疑人;在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多购买选择。
机器视觉作为一个相关学科,泛指在工业自动化领域的视觉应用。在这些应用里,计算机在高度受限的工厂环境里识别诸如生产零件一类的物体,因此相对于寻求在非受限环境里操作的计算机视觉来说目标更为简单。计算机视觉是一个正在进行中的研究,而机器视觉则是“已经解决的问题”,是系统工程方面的课题而非研究层面的课题。因为应用范围的持续扩大,计算机视觉领域的初创公司自2011年起已经吸引了数亿美元的风投资本。
2)机器学习
指的是计算机系统无需遵照显式的程序指令而只是依靠暴露在数据中来提升自身性能的能力。其核心在于,机器学习是从数据中自动发现模式,模式一旦被发现便可用于做预测。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息的数据库,系统就会学习到可用来预测信用卡欺诈的模式。处理的交易数据越多,预测就会越好。
机器学习的应用范围非常广泛,针对那些产生庞大数据的活动,它几乎拥有改进一切性能的潜力。除了欺诈甄别之外,这些活动还包括销售预测、库存管理、石油和天然气勘探、以及公共卫生。机器学习技术在其他的认知技术领域也扮演着重要角色,比如计算机视觉,它能在海量图像中通过不断训练和改进视觉模型来提高其识别对象的能力。现如今,机器学习已经成为认知技术中最炙手可热的研究领域之一,在2011-2014年中这段时间内就已吸引了近十亿美元的风险投资。谷歌也在2014年斥资4亿美金收购Deepmind这家研究机器学习技术的公司。
深度学习是机器学习的一个重要的扩展。
3)自然语言处理
是指计算机拥有的人类般文本处理的能力,比如,从文本中提取意义,甚至从那些可读的、风格自然、语法正确的文本中自主解读出含义。一个自然语言处理系统并不了解人类处理文本的方式,但是它却可以用非常复杂与成熟的手段巧妙处理文本,例如自动识别一份文档中所有被提及的人与地点;识别文档的核心议题;或者在一堆仅人类可读的合同中,将各种条款与条件提取出来并制作成表。以上这些任务通过传统的文本处理软件根本不可能完成,后者仅能针对简单的文本匹配与模式进行操作。请思考一个老生常谈的例子,它可以体现自然语言处理面临的一个挑战。在句子“光阴似箭(Timeflieslikeanarrow)”中每一个单词的意义看起来都很清晰,直到系统遇到这样的句子“果蝇喜欢香蕉(Fruitflieslikeabanana)”,用“水果(fruit)”替代了“时间(time)”,并用“香蕉(banana)”替代“箭(arrow)”,就改变了“飞逝/飞着的(like)”与“像/喜欢(like)”这两个单词的意思。
自然语言处理,像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合。建立语言模型来预测语言表达的概率分布,举例来说,就是某一串给定字符或单词表达某一特定语义的最大可能性。选定的特征可以和文中的某些元素结合来识别一段文字,通过识别这些元素可以把某类文字同其他文字区别开来,比如垃圾邮件同正常邮件。以机器学习为驱动的分类方法将成为筛选的标准,用来决定一封邮件是否属于垃圾邮件。
因为语境对于理解“timeflies(时光飞逝)”和“fruitflies(果蝇)”的区别是如此重要,所以自然语言处理技术的实际应用领域相对较窄,这些领域包括分析顾客对某项特定产品和服务的反馈、自动发现民事诉讼或政府调查中的某些含义、以及自动书写诸如企业营收和体育运动的公式化范文等。
4)机器人技术
将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、致动器、以及设计巧妙的硬件中,这就催生了新一代的机器人,它有能力与人类一起工作,能在各种未知环境中灵活处理不同的任务。例如无人机,还有可以在车间为人类分担工作的“cobots”,还包括那些从玩具到家务助手的消费类产品。
5)语音识别技术
主要是关注自动且准确的转录人类的语音。该技术必须面对一些与自然语言处理类似的问题,在不同口音的处理、背景噪音、区分同音异形异义词(“buy”和“by”听起来是一样的)方面存在一些困难,同时还需要具有跟上正常语速的工作速度。语音识别系统使用一些与自然语言处理系统相同的技术,再辅以其他技术,比如描述声音和其出现在特定序列和语言中概率的声学模型等。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。比如Domino’sPizza最近推出了一个允许用户通过语音下单的移动APP。
6)专家系统
上面提到的认知技术进步飞快并吸引了大量投资,其他相对成熟的认知技术仍然是企业软件系统的重要组成部分。这些日渐成熟的认知技术包括决策最优化——自动完成对复杂决策或者在资源有限的前提下做出最佳权衡;规划和调度——使设计一系列行动流程来满足目标和观察约束;规则导向系统——为专家系统提供基础的技术,使用知识和规则的数据库来自动完成从信息中进行推论的处理过程。