人工智能讲座心得体会
人工智能讲座心得体会
人工智能讲座心得体会
通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:
人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。
人工智能的发展历史大致可以分为这几个阶段:
第一阶段:50年代人工智能的兴起和冷落
人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。
dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay-ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。
日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展。
1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮
由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
对人工智能对世界的影响的感受及未来畅想
最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生
在当前社会中的呢?
在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?
人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。
智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。
虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。
个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。
人工智能研究的近期目标;是使现有的计算机不仅能做一般的数值计算及非数值信息的数据处理,而且能运用知识处理问题,能模拟人类的部分智能行为。按照这一目标,根据现行的计算机的特点研究实现智能的有关理论、技术和方法,建立相应的智能系统。例如目前研究开发的专家系统,机器翻译系统、模式识别系统、机器学习系统、机器人等。随着社会的发展,技术的进步,人工智能的发展是任何人都无法想象的。通过对人工智能的学习,以及与所听所见所闻的结合,我大胆的对未来人工智能的发展做出了以下拙劣的猜想:
一,融合阶段(2014—2014年):
1、在某些城市,立法机关将主要采用人工智能专家系统来制定新的法律。
2、人们可以用语言来操纵和控制智能化计算机、互联网、收音机、电视机和移动电话,远程医疗和远程保健等远程服务变得更为完善。
3、智能化计算机和互联网在教育中扮演了重要角色,远程教育十分普及。
4、随着信息技术、生物技术和纳米技术的发展,人工智能科学逐渐完善。
5、许多植入了芯片的人体组成了人体通信网络(以后甚至可以不用植入任何芯片)。比如,将微型超级计算机植入人脑,人们就可通过植入的芯片直接进行通信。
6、抗病毒程序可以防止各种非自然因素引发灾难。
7、随着人工智能的加速发展,新制定的法律不仅可以用来更好地保护人类健康,而且能大幅度提高全社会的文明水准。比如,法律可以保护人们免受电磁烟雾的侵害,可以规范家用机器人的使用,可以更加有效地保护数据,可以禁止计算机合成技术在一些文化和艺术方面的应用(比如禁止合成电视名人),可以禁止编写具有自我保护意识的计算机程序。
三、自我发展阶段(2014—2014年):
1、智能化计算机和互联网既能自我修复,也能自行进行科学研究,还能自己生产产品。
2、一些新型材料的出现,促使智能化向更高层次发展。
3、用可植入芯片实现人类、计算机和鲸目动物之间的直接通信,在以后的发展中甚至不用植入芯片也可实现此项功能。
4、制定“机器人法”等新的法律来约束机器人的行为,使人们不受机器人的侵害。
5、高水准的智能化技术可以使火星表面环境适合人类居住和发展。
四、升华阶段(2014—2014年):
1、信息化的世界进一步发展成全息模式的世界。
2、人工智能系统可从环境中采集全息信息,身处某地的人们可以更容易地了解和知晓其他地方的情况。
3、人们对一些目前无法解释的自然现象会有更清楚的认识和更完善的解释,并将这些全新的知识应用在医疗、保健和安全等领域。
4、人工智能可以模仿人类的智能,因此会出现有关法律来规范这些行为。
人工智能一但拥有长足的进步,必将带动其他计算机技术的发展。
网络化将虚拟的世界变得无限大,届时,足不出户将成为一种习惯。人工智能必将带动人类的发展,起到决定性作用。
虽然不知道其中有多少在未来会得到实现,但也算是我通过对人工智能的学习所收获的总结。人工智能的繁荣景象和光明前景已展示出其诱人的魅力,让我们一起期待未来的世界吧,一个全新的人工智能世界。
人工智能讲座心得体会
今天是我学习人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。
人工智能在很多领域得到了发展,在我们的日常生活和学习中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。
通过这堂课,我明白了人工智能发展的历史和所处的地位,它始终处于计算机发展的最前沿。我相信人工智能在不久的将来将会得到更深一步的实现,会创造出一个全新的人工智能世界。
人工智能讲座心得体会
一、研究领域
在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。
在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。
二、各领域国内外研究现状(进展成果)近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。
1、分布式人工智能与艾真体
分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。
分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。
mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动
态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。
2、计算智能与进化计算
计算智能(computingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。
进化计算(evolutionarycomputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。
达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。
直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。
3、数据挖掘与知识发现
知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。
从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。
机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。
比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的
coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统e*plora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。
4、人工生命
人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。
人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。
人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。
人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。
三、学了人工智能课程的收获
(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。
(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。
(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。
(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。
(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。
(6)基本了解人工智能程序设计的语言和工具。
四、对人工智能研究的展望
对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。
人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。
当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。
五、对课程的建议
(1)能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成
果中人工智能那些知识被应用。
(2)多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》
系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。
(3)条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的
作品,增强同学对人工智能的兴趣,加强同学之间的学习。
(4)课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些
新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。
上一篇:2020年收看“两会”开幕式及学习两会精神心得体会下一篇:公司党组织党建工作考核明细学科前沿讲座课程总结与感悟
0写在前面本文记录了两个月以来8场学科前沿技术讲座的课程总结与感悟。
学院请到了很多厉害的教授以及企业的专家和学者,讲座的方向多以大数据和人工智能为主,作为计算机科学专业的学生,时刻保持对行业发展前沿领域的关注,我认为是十分必要的。
1课程感悟经过近两个月的讲座课程的学习,我对计算机科学的学术前沿内容有了更多、更深入的理解和感悟。
讲座的内容很充实,形式也十分丰富,讲座的主题也涵盖了包括但不限于数据库原理、大数据、人工智能等等。我认为,在本科三年级的这个阶段,在核心专业课基础知识-包括数据结构与算法、计算机组成原理、编译原理、操作系统、面向对象等-已经熟练掌握得十分牢固的前提下,应该把目光放得长远。
在邹欣老师的《构建之法》一书的前言中有所提到:
学校想培养什么样的学生,是世界一流,中国一流,还是本省二流?有什么样的期望,就要有什么样的课程设计。
作为北航的一名本科生,应该将成为国际一流人才作为自己的培养目标,而要成为这样的人才,就需要用国际一流的标准去要求自己。
所以,能够在这个本科生涯即将告一段落、即将步入社会的重要关键节点,学院为我们开设这样一门课程,并请到了李波老师、马殿富老师、邹欣老师、马帅老师等等为我们深入地剖析当前计算机科学与技术的前沿知识,是我在这一学期的一大幸运。
在众多精彩的讲座中,最吸引我的主题,非人工智能相关的话题莫属。一方面,是今年来,人工智能浪潮来袭,使人工智能技术再一次到达顶峰,与人工智能有关的内容成为炙手可热的话题。另一方面,也是我本人,对于人工智能领域的前沿技术的热爱,让我对老师们精彩的演讲产生了浓厚的兴趣。因此,若要在这短短五千字的报告中,用简洁凝练的语言,来表达我的感悟的话,那么我最想表达的内容,必定是我对于人工智能前沿技术的体会与心得。
人工智能在历史上曾经历三起三落,现在正是人工智能技术走上坡路的时期,这一点是不难解释的,那就是数据量的不断增长、数据硬件存储能力的扩增以及数据计算能力的提升与计算成本的降低,为机器学习的算法实现提供了无限可能。
另外,随着理论研究的不断深入,机器学习在传统领域的基础上,又扩展出了多个分支—强化学习、深度学习、多任务学习,等等。应用领域也得以扩展,从数据挖掘、图像检测、模式识别到自然语言处理等等,可以说机器学习已经遍及到人们生活的方方面面。
讲座中所学到的内容与知识都是静态的,而只有将这些知识,实际运用起来才能让其变得生动灵活。正如马尔科姆•格拉德威尔在他的《逆转:弱者如何找到优势,反败为胜》一书中所提到的,如果一直停留在理论层面上去分析问题的话,那么有利局势的天平将很难朝你的一侧倾斜。因此,只有在真正的实践中,才能体会到讲座中,老师们所向我们介绍的人工智能的神奇力量。为此,我亲自尝试了人工智能的两个具体的应用,并用机器学习的方法,解决了实际生活中的问题,这一过程让我感触颇深,也是我在这门课中收获最大的地方。
第一个实践是运用多任务学习的方法,尝试解决了一类商业选址问题。
商业选址是一类重要的投资决策问题。其重要性主要体现在投资的长期性、固定性以及对经济效益的决定性上。在传统的商业选址问题中,通常的考量因素往往涵盖了地域、交通、竞争压力以及人流量等方面。在这种情况下,投资者的经验以及数据信息来源的有效性将起到决定性的作用。随着移动互联网时代的到来,越来越多的商业应用,如美团、大众点评等渐渐走入人们的生活。这其中蕴含着巨大潜在的商业价值有待挖掘,尤其对于商业选址这类重要的问题而言,数据所提供的参考信息已然成为大数据时代的选址利器。
近年来,社会经济持续发展,企业不断扩张,连锁店的经营模式得到了更为广泛的应用。如餐饮业的海底捞火锅店、麦当劳、星巴克,服饰业的H&M、Nike、Zara等品牌的迅猛发展,连锁店这种商业模式开始逐渐在市场中占据主导地位。由此为这些连锁品牌带来一个关乎企业发展的核心问题,即连锁店的选址问题。为此,在我的实践中,综合考量投资所在地商场的内部和外部特征,为连锁品牌的投资者进行商业选址的推荐。对大众点评上的海量数据进行分析,并为投资者给出最优化的选址推荐。
第二个实践则是综合运用了计算机视觉相关技术,实现了一种视频的风格迁移方法。
随着手机等智能终端的兴起,许多软件如春笋般发芽成长。从用户的触媒习惯来看,大家投入在短视频上的时间越来越多。艾瑞数据显示,用户单机单日有效使用时长已经从2017年度第一季度的21.1分钟增长到2018第二季度的33.1分钟。短视频行业中,我们也可以看到,抖音、快手等短视频软件异军突起,发展迅猛。短视频行业的火热,与短视频相关的技术自然也是如鱼得水。我所实现的视频风格迁移方法,即拥有针对短视频进行视频风格迁移的能力。用户可以根据喜好,选择某种名画的风格,即可对自己拍摄的短视频进行加工,生成美轮美奂的带有名画风格的短视频。
我在这一实践中,综合运用了多种计算机视觉的相关技术,包括但不限于采用convLSTM来捕捉视频的时序特征、WarpError来计算视频流中相邻帧之间的差值、引入了一种风格迁移模型RecoNet同时结合了InstanceNormalization的方法,来代替传统的BatchNormalization,从而实现对多风格的控制,等等。最终使得这一视频风格迁移方法相较与目前最佳解决方案的效果,在视频稳定性等呈现效果上,有着更优的表现。
通过这两个实践,我都成功地将讲座中老师们所介绍到的人工智能的理论应用到实际,从而让我真切体会到了人工智能对人们生活方式的改变。
2课程收获2-1总述与课程感悟部分不同的是,在课程感悟部分,我重点论述了我在本学期两个月来,从头至尾完整、认真地听过8次讲座后在宏观层面的整体感受。而在这一章节,课程收获中,我将更偏重于将我本学期在讲座中所学习到的领域知识或是让我对整个科技前沿体系的理解有帮助的内容记录下来,形成一个相对完整的脉络。
另外,这一部分对于课程收获的总结,也对我日后时常回顾这8场讲座的精彩内容,保留一个比较细致的记录。
我在此课程中的收获,正如我在课程感悟中所提及的,正是我所感兴趣的人工智能相关的话题,因此,接下来我将从人工智能的发展历程,人工智能的发展现状,以及人工智能的发展前景展开论述,在最后的一个小节中,作为补充,我也来谈谈我自己对人工智能的认识和态度。
2-2人工智能发展历程随着众多核心技术的迅猛发展,已经诞生了半个多世纪的人工智能终于从研究与发现发展到如今的巅峰期。回顾起来,在过去半个多世纪中人工智能经历过黄金时代也曾有过低谷,不过科技的魅力在于历经起起伏伏之后,现在的人工智能已开始深深影响人类社会。
都说人工智能在历史上经历了“三起三落”,那么这三“起”与三“落”到底指代着什么,发生的时间节点与背景优势什么,以下我将按照时间线顺序来记录一下。
人工智能的第一次高峰:在1956年的这次会议之后,人工智能迎来了属于它的第一段高峰。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”
人工智能第一次低谷: 70年代,人工智能进入了一段痛苦而艰难岁月。由于科研人员在人工智能的研究中对项目难度预估不足,不仅导致与美国国防高级研究计划署的合作计划失败,还让大家对人工智能的前景蒙上了一层阴影。与此同时,社会舆论的压力也开始慢慢压向人工智能这边,导致很多研究经费被转移到了其他项目上。
在当时,人工智能面临的技术瓶颈主要是三个方面,第一,计算机性能不足,导致早期很多程序无法在人工智能领域得到应用;第二,问题的复杂性,早期人工智能程序主要是解决特定的问题,因为特定的问题对象少,复杂性低,可一旦问题上升维度,程序立马就不堪重负了;第三,数据量严重缺失,在当时不可能找到足够大的数据库来支撑程序进行深度学习,这很容易导致机器无法读取足够量的数据进行智能化。
人工智能的崛起:1980年,卡内基梅隆大学为数字设备公司设计了一套名为XCON的“专家系统”。这是一种,采用人工智能程序的系统,可以简单的理解为“知识库+推理机”的组合,XCON是一套具有完整专业知识和经验的计算机智能系统。在这个时期,仅专家系统产业的价值就高达5亿美元。
人工智能第二次低谷:可怜的是,命运的车轮再一次碾过人工智能,让其回到原点。仅仅在维持了7年之后,这个曾经轰动一时的人工智能系统就宣告结束历史进程。到1987年时,苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机。从此,专家系统风光不再。
人工智能再次崛起:上世纪九十年代中期开始,随着AI技术尤其是神经网络技术的逐步发展,以及人们对AI开始抱有客观理性的认知,人工智能技术开始进入平稳发展时期。1997年5月11日,IBM的计算机系统“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫,又一次在公众领域引发了现象级的AI话题讨论。这是人工智能发展的一个重要里程。 2016年,alphago在围棋上击败了李世石,再一次向世人揭示了人工智能非凡力量。
2-3人工智能发展现状经历了技术驱动和数据驱动阶段,人工智能现在已经进入场景驱动阶段,深入落地到各个行业之中去解决不同场景的问题。此类行业实践应用也反过来持续优化人工智能的核心算法,形成正向发展的态势。
老师们在讲座中所提及的人工智能的主要应用领域主要涵盖了以下几个方面,包括制造、家居、金融、零售、交通、安防、医疗、物流、教育等等。不难看出,人工智能在当前的应用已经十分广泛,可以说基本覆盖到了人们日常生活的方方面面。
家居智能家居是老师在讲座中提到的一个常见的人工智能应用之一。
智能家居主要是基于物联网技术,通过智能硬件、软件系统、云计算平台构成一套完整的家居生态圈。用户可以进行远程控制设备,设备间可以互联互通,并进行自我学习等,来整体优化家居环境的安全性、节能性、便捷性等。值得一提的是,近两年随着智能语音技术的发展,智能音箱成为一个爆发点。小米、天猫、Rokid等企业纷纷推出自身的智能音箱,不仅成功打开家居市场,也为未来更多的智能家居用品培养了用户习惯。但目前家居市场智能产品种类繁杂,如何打通这些产品之间的沟通壁垒,以及建立安全可靠的智能家居服务环境,是该行业下一步的发力点。
金融正如我在自我实践中所接触的项目一样,人工智能可以在商业、金融领域为人们提供可靠的数据保障。
人工智能在金融领域的应用主要包括:身份识别、大数据风控、智能投顾、智能客服、金融云等,该行业也是人工智能渗透最早、最全面的行业。未来人工智能也将持续带动金融行业的智能应用升级和效率提升。例如第四范式开发的一套AI系统,不仅可以精确判断一个客户的资产配置,做清晰的风险评估,以及智能推荐产品给客户,将转化率提升65%。很多金融行业的应用,都可以作为人工智能在其他行业落地的典型案例。
交通最近一段时间,我效力于王静远老师的实验室,主要负责配合实验室的学长,完成一些基本的开发工作,王老师的实验室主要负责与数据挖掘有关领域,解决交通与医疗相关问题。在交通方面,主要是智慧交通,对车辆做行车轨迹恢复以及行程时长估计。而在医疗方面则是与医院展开合作,对孕妇可能存在的潜在风险进行评估,从而保证孕妇妊娠过程的安全。
智能交通系统是通信、信息和控制技术在交通系统中集成应用的产物。智能交通应用最广泛的地区是日本,其次是美国、欧洲等地区。目前,我国在智能交通方面的应用主要是通过对交通中的车辆流量、行车速度进行采集和分析,可以对交通进行实施监控和调度,有效提高通行能力、简化交通管理、降低环境污染等。
医疗目前,在垂直领域的图像算法和自然语言处理技术已可基本满足医疗行业的需求,市场上出现了众多技术服务商,例如提供智能医学影像技术的德尚韵兴,研发人工智能细胞识别医学诊断系统的智微信科,提供智能辅助诊断服务平台的若水医疗,统计及处理医疗数据的易通天下等。尽管智能医疗在辅助诊疗、疾病预测、医疗影像辅助诊断、药物开发等方面发挥重要作用,但由于各医院之间医学影像数据、电子病历等不流通,导致企业与医院之间合作不透明等问题,使得技术发展与数据供给之间存在矛盾。
2-4人工智能发展前景对待人工智能当下火爆的市场形势,要判断和分析其在未来的发展,还需要冷静、客观。
在影响就业之前,人工智能将会对雇主产生影响。长期来看,人工智能不会摧毁就业市场——至少在2018年是不可能的。但是企业面临着一个重大挑战:只有汇集了来自不同种类的数据以及不同学科的团队成员时,人工智能才能发挥出最大的效果。同时,它还需要借助相应的结构和技能来实现人机协作。但是大多数企业都把数据存放在联合企业和团队的数据库里。很少有企业开始为员工提供他们所需要的基本人工智能技能。普通的企业还没有准备好满足人工智能的需求。
人工智能将融入现实,开始发挥其效用。它可能不会成为媒体的头条新闻,但人工智能现在已经准备好了,能够自动完成日益复杂的流程,识别出能够创造商业价值的趋势,并提供具有前瞻性的情报。
这带来的结果是,人们的工作量减少,做出的战略决策也变得更好了:员工的工作也比以前更好了。但是,由于传统的投资回报率(ROI)策略可能无法准确地识别出这一价值,企业将需要考虑采取新的指标,以便更好地理解工智能可以为它们做什么。
人工智能将帮助回答有关数据的重大问题。许多针对数据技术和数据集成的投资都未能回答这样的一个重大问题:投资回报率在哪?现在,人工智能正在为这些数据项目提供商业案例,新的工具将会使这些项目的价值凸显出来。
企业不再需要决定“清理数据”——也不应该这样做。他们应该首先从一个业务问题开始来量化人工智能的好处。一旦数据被用来解决一个特定的问题,进一步开发数据驱动的人工智能解决方案就会变得更容易,从而就会形成一个良性循环。问题出在了哪里?一些企业仍然在犹豫要不要建立,或者是没有建立好数据基础。
在未来,人工智能领域的投资将以“AI+行业”的方式展开,预计人工智能应用场景较为成熟且需求强烈的领域,如安防、语音识别、医疗、智慧城市、金融等领域,带来升级转换,提高行业智能化水平,改善企业的盈利能力,预计随着诸如无人驾驶汽车等认知智能技术的加速突破与应用,人工智能市场将加速爆发。
3后记老师们精彩的讲座,为我打开了人工智能世界的大门;通过两个具体案例的实践,让我真切的亲身探索了人工智能这个丰富多彩的世界。我被人工智能给人类社会和当今人们生活方式所带来的改变,深深折服,在惊叹于技术发展的同时,也让我对踏入人工智能行业充满了向往。
但与此同时尽管人工智能作为行业内的新兴热点,随着时间的推移其热度一直有增无减,对其未来的发展,仍应保持理性与客观的态度。因此,对领域内学科技术前沿时刻保持高度的敏锐嗅觉,透过问题的表面现象看到本质,才是这门课带给我最大的思考。
人工智能的未来何去何从,我拭目以待。