人工智能对现代企业管理的挑战与应对研究
张彬彬 龙口矿业集团海湾大酒店
摘要:人工智能是当下非常火热的词汇,是众多行业或者领域都爱热议的话题。随着算法的改进和云计算的发展,传统的人工智能技术得到了极大的发展,也就是当下人工智能如此火爆的重要原因。总的来说,人工智能的发展确实给我们的生活带来了非常明显的变化,改变着传统的生活方式。同样的,对于企业来说,随着人工智能的逐步渗透,企业的经营管理也将面临着较大的变化和挑战,也会迎来自身的转型和发展。鉴于此,我们将在概述人工智能和企业管理内涵的基础上,基于人工智能在现代企业管理中的运用的分析,详细阐述人工智能对于现代企业管理的挑战,以期能够促进企业在经营管理中能够更好的面对和利用人工智能技术。
关键词:人工智能;企业管理;挑战
一、引言
对于企业的经营管理来说,可以说是具有相当历史经验积累和理论研究积淀的工作之一,也可以说是领域之一。众多年来,企业的经营管理从纯粹的“人治”到“制度先行”的模式,一步一步的变化和发展,在企业的生存和发展过程中起到了最为重要的作用。但是人工智能的发展及其在各个领域的渗透,使得企业的经营管理面临着前所未有的变化,这种变化一方面是其全新的模式带来的不适,另一方面也是其带来的挑战。在众多的企业中,少数企业很早就已经意识到了这样的变化和挑战,也很好的基于企业自身的实际情况而做出了相应的应对措施,但是还是有大部分的企业在人工智能面前显得“无所适从”,没有做好适应趋势发展和应对挑战的充分准备。我们希望我们的研究和探索能够促进企业更好的面对和应对这样的挑战。
二、人工智能及企业管理概述
(一)人工智能概述
人工智能,就是我们平常所听所见的“AI”,顾名思义就是通过计算机科学的理论和方式让电脑或者程序能够模仿人类的行为方式,以期其能够在一定程度上代替人类的劳动。人工智能属于计算机科学,但是却不仅仅是计算机科学,其往往还包含了社会学、心理学、数学等等,甚至还还会涉及到具体应用领域的专业理论知识和技能,以及相关领域的人类经验积累。由此看来,人工智能在理论知识层面具有相当的综合性和复杂性,不会属于某一个学科领域。
对于人工智能来说,其并不是一个新的领域或者概念,其实人工智能很早就已经下理论界出现,并且得到了一些较为初级的发展。近年来,由于算法的进步以及大数据和云计算的快速发展,才使得人工智能得以“重生”,在众多的领域越发的显示出具有划时代的意义和价值,也才有了当下非常火爆的“人工智能”。
(二)企业管理概述
企业管理是企业发展过程中的必要过程和手段,也是企业保持健康发展的重要基础。总的来说,企业管理就是企业要将自身的生产经营、业务拓展等等活动通过计划、组织、实施、监督、总结等等方式的总和,是企业自身具有综合性和统筹性的管理过程和运营过程。企业管理更加是一个较老的话题,自大有了企业以来,企业管理就是必不可少的研究对象。经过多年的发展,企业管理也经过不断的实践和总结,得到了不断的优化和提升。其中,现代企业管理是符合当下众多企业的管理现状和理念升级的。企业管理的目标是实现经济效益最大化,意在通过更好的进行资源配置而实现企业各种资源使用效率的不断提升,进而促进企业的长期可持续健康发展。
三、人工智能在现代企业管理中的运用分析
(一)打破信息孤岛的智能系统
在人工智能之前的信息化时代,系统化是企业管理发展的重要方向。因此,在企业管理的众多方面都逐步的建立起的系统或者平台,诸如财务系统、OA办公系统等等。相比信息化之前,信息化已经极大的促进了企业内部各个部门或者环节之间的信息流通,也使得各个环节由于系统化和流程化的加持而更加的高效和高质。但是随着而来的缺失各个环节和部门之间的信息被禁锢在自己的系统里面,形成了众多的信息孤岛。这些信息孤岛对于企业的管理决策来说也是极其不利的因素。人工智能的到来,使得企业在众多的系统之上能够架设一个统领的系统或者平台,也就能够很好的解决了信息孤岛的问题。同时,在信息化时代,企业部署众多的系统往往需要实实在在的购进和部署相关的硬件设施,这对于一些中小企业来说在成本上会产生巨大的压力。但是在人工智能时代,由于云计算的飞速发展,企业的众多管理系统部署并不一定需要购买相关的基础硬件,而是可以通过云计算的方式来解决。其实,这也是能够实现上文提到的建立解决信息孤岛的统一平台或者系统的重要原因之一。
(二)人工智能辅助企业管理决策
结合上文所提到的信息孤岛,传统企业在进行管理决策的时候,往往会面临着众多类型或者环节的数据难以形成有效的统一和整合,作为决策支撑的数据在数量和质量上都会呈现出相当的不足。对此,人工智能技术一方面能够通过搭建统一化的系统平台来打破信息孤岛,提升相关数据的统一化和全面化;另一方面,基于人工智能技术,企业能够实现智能化的数据抓取、整理和分析,甚至在一定程度上给出相应的智能决策建议,以供企业的管理者做出管理决策是进行参考。这一切都要得益于人工智能技术中的大数据分析、自然语言处理、机器学习等等核心技术,才能够实现企业管理过程中的众多高效过程。
(三)人工智能代替重复性工作
人工智能包含了诸如机器学习、自然语言处理等几大核心技术,其中的机器人技术是综合视觉处理、听觉处理、数据处理、机器学习等等众多技术的重要体现。也正是这些技术的加持,使得人工智能能够实现在众多的场景中很好的模仿人类的工作方式,以至于能够在一定程度上代替人类而更加高效高质的完成相关工作。例如企业的行政工作,其有一部分具有重复、机械的特性,人工智能技术就能够很容易通过相关技术学习到其内在的关联或者趋势,进而实现自动的模仿,代替人类进行该项工作。同样的道理,对于众多的生产企业来说,车间管理更加具有这类的特点,因此也是现阶段人工智能能够发挥巨大作用的地方。人工智能分担人类的工作,总体来说能够促进工作更加高效高质的完成,让人类的智慧更加集中于创新和创造,更加集中于思维探索层面。
四、人工智能对现代企业管理的挑战
(一)人才管理的挑战
人工智能能够在很多方面协助甚至是带来人类的工作,并且往往能够更加高效和高质的完成该工作。这就给企业的人才管理带来的极大的挑战。一个最为直接的挑战就是企业以后或许不再需要没有创造性和创造能力的员工。简单重复的工作能够有人工智能来完成,那么企业招聘来的人才就主要将精力集中与思维的创造过程中。这对于企业传统的人才观念和管理方式非常不同,会产生很大的冲击。企业以后的人才管理应该更加注重其创造性的培养和提升,而不是像当下一样仅仅集中于流程化和标准化的培养。值得一提的是,这其实不仅仅是对企业管理的挑战,也是对人才自身的挑战。只有很好的适应人工智能时代的发展趋势,才是使得人才自身更好的融入企业的管理工作,赢得企业的发展机遇。
(二)决策管理的挑战
上文已经提及,在人工智能的支撑之下,企业的管理决策会以汇集全面而实时的数据为基础,通过相关的分析方式来作为辅助。总而言之,这种决策方式是一种集中式决策机制。这主要得益于管理界的这样一种思想:我们拥有越多的信息往往能够做出更加科学正确的决策。但是随着而来的挑战就是随着更多的信息被收集整理出来,使得企业所面临着的决策环境会变得异常复杂,至少相比于之前的环境是如此的。这也就给企业管理者在切实的管理决策过程中失误了增加、变动性增大,为企业的健康稳定发展带来一定的冲击。人工智能时代的管理的不确定性急剧增大,使得众多的管理者感到管理工作十分困难和束手无策,或者有一天真的将企业管理决策完全交给人工智能的时候,企业的管理工作也就无法再称之为企业管理了,真不知道这是好还是坏!
(三)管理方式的挑战
当人工智能时代开始到来的时候,众多的研究者或者企业管理者都在探讨和研究:未来的企业管理者或者企业管理工作会不会被人工智能所取代?或者说会在多大程度上被取代?我们认为,人工智能必定会在一定程度上代替管理者的企业管理活动,或者是更加准确地说是协助,而不会完全的代替企业管理者的企业管理工作。对于企业管理来说,其带来的管理方式的挑战是巨大的。例如对于传统的企业管理来说,财务上的三大表是十分重要的基础资料之一,甚至可以说是仅有的可以相对全面的反应企业经营情况的基础资料。但是在人工智能时代,正如德勤所开发的“第四张报表”一样,通过非财务信息的数据化,通过以用户为核心,建立起来涵盖用户、产品、渠道三个维度的企业价值评估体系,为企业管理层的管理工作和相关决策提供重要的补充支撑。诸如类似的冲击和变化还有很多,都将给企业管理的方式发展带来挑战。
五、结语
人工智能的时代发展趋势不可逆转,企业唯有很好的适应和应对才能更好的保持其市场竞争力和长期可持续的发展。同时,企业要正视人工智能在人才、决策等管理方式方面带来的冲击,积极应对和应用,促进自身的稳定发展。
参考文献:
[1]程浩.人工智能的六重关系[J].企业管理,2018(1).
[2]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技旬刊,2017(10).
[3]乔泰.下一代企业:人工智能升级企业管理[J].互联网经济,2016(8).
人工智能的创新发展与社会影响
党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明了方向。2018世界人工智能大会9月17日在上海开幕,习总书记致信祝贺并强调指出人工智能发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。深入学习领会习总书记关于人工智能的一系列重要论述,务实推进我国《新一代人工智能发展规划》,有效规避人工智能“鸿沟”,着力收获人工智能“红利”,对建设世界科技强国、实现“两个一百年”的奋斗目标具有重大战略意义。
一、引言
1956年人工智能(ArtificialIntelligence,简称AI)的概念被正式提出,标志着人工智能学科的诞生,其发展目标是赋予机器类人的感知、学习、思考、决策和行动等能力。经过60多年的发展,人工智能已取得突破性进展,在经济社会各领域开始得到广泛应用并形成引领新一轮产业变革之势,推动人类社会进入智能化时代。美国、日本、德国、英国、法国、俄罗斯等国家都制定了发展人工智能的国家战略,我国也于2017年发布了《新一代人工智能发展规划》,发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏等地政府也相继出台推动人工智能发展的相关政策文件,社会各界对人工智能的重大战略意义已形成广泛共识。
跟其他高科技一样,人工智能也是一把双刃剑。如何认识人工智能的社会影响,也有“天使派”和“魔鬼派”之分。“天使派”认为,人工智能领域的科技创新和成果应用取得重大突破,有望引领第四次工业革命,对社会、经济、军事等领域将产生变革性影响,在制造、交通、教育、医疗、服务等方面可以造福人类;“魔鬼派”认为,人工智能是人类的重大威胁,比核武器还危险,有可能引发第三次世界大战。2018年2月,牛津大学、剑桥大学和OpenAI公司等14家机构共同发布题为《人工智能的恶意使用:预测、预防和缓解》的报告,指出人工智能可能给人类社会带来数字安全、物理安全和政治安全等潜在威胁,并给出了一些建议来减少风险。
总体上看,已过花甲之年的人工智能当前的发展具有“四新”特征:以深度学习为代表的人工智能核心技术取得新突破、“智能+”模式的普适应用为经济社会发展注入新动能、人工智能成为世界各国竞相战略布局的新高地、人工智能的广泛应用给人类社会带来法律法规、道德伦理、社会治理等方面一系列的新挑战。因此人工智能这个机遇与挑战并存的新课题引起了全球范围内的广泛关注和高度重视。虽然人工智能未来的创新发展还存在不确定性,但是大家普遍认可人工智能的蓬勃兴起将带来新的社会文明,将推动产业变革,将深刻改变人们的生产生活方式,将是一场影响深远的科技革命。
为了客观认识人工智能的本质内涵和创新发展,本报告在简要介绍人工智能基本概念与发展历程的基础上,着重分析探讨人工智能的发展现状和未来趋势,试图揭示人工智能的真实面貌。很显然,在当下人工智能蓬勃发展的历史浪潮中如何选择中国路径特别值得我们深入思考和探讨。因此,本报告最后就我国人工智能发展态势、存在问题和对策建议也进行了阐述。
二、人工智能的发展历程与启示
1956年夏,麦卡锡(JohnMcCarthy)、明斯基(MarvinMinsky)、罗切斯特(NathanielRochester)和香农(ClaudeShannon)等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能”这一概念,标志着人工智能学科的诞生。人工智能的目标是模拟、延伸和扩展人类智能,探寻智能本质,发展类人智能机器。人工智能充满未知的探索道路曲折起伏,如何描述1956年以来60余年的人工智能发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能60余年的发展历程划分为以下6个阶段:
一是起步发展期:1956年-20世纪60年代初。人工智能概念在1956年首次被提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、LISP表处理语言等,掀起了人工智能发展的第一个高潮。
二是反思发展期:60年代-70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入了低谷。
三是应用发展期:70年代初-80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入了应用发展的新高潮。
四是低迷发展期:80年代中-90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:90年代中-2010年。由于网络技术特别是互联网技术的发展,信息与数据的汇聚不断加速,互联网应用的不断普及加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年IBM深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念,这些都是这一时期的标志性事件。
六是蓬勃发展期:2011年-至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器(GraphicsProcessingUnit,简称GPU)等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越科学与应用之间的“技术鸿沟”,图像分类、语音识别、知识问答、人机对弈、无人驾驶等具有广阔应用前景的人工智能技术突破了从“不能用、不好用”到“可以用”的技术瓶颈,人工智能发展进入爆发式增长的新高潮。
通过总结人工智能发展历程中的经验和教训,我们可以得到以下启示:
(一)尊重学科发展规律是推动学科健康发展的前提。科学技术的发展有其自身的规律,顺其者昌,违其者衰。人工智能学科发展需要基础理论、数据资源、计算平台、应用场景的协同驱动,当条件不具备时很难实现重大突破。
(二)基础研究是学科可持续发展的基石。加拿大多伦多大学杰弗里·辛顿(GeoffreyHinton)教授坚持研究深度神经网络30年,奠定人工智能蓬勃发展的重要理论基础。谷歌的DeepMind团队长期深入研究神经科学启发的人工智能等基础问题,取得了阿尔法狗等一系列重大成果。
(三)应用需求是科技创新的不竭之源。引领学科发展的动力主要来自于科学和需求的双轮驱动。人工智能发展的驱动力除了知识与技术体系内在矛盾外,贴近应用、解决用户需求是创新的最大源泉与动力。比如专家系统人工智能实现了从理论研究走向实际应用的突破,近些年来安防监控、身份识别、无人驾驶、互联网和物联网大数据分析等实际应用需求带动了人工智能的技术突破。
(四)学科交叉是创新突破的“捷径”。人工智能研究涉及信息科学、脑科学、心理科学等,上世纪50年代人工智能的出现本身就是学科交叉的结果。特别是脑认知科学与人工智能的成功结合,带来了人工智能神经网络几十年的持久发展。智能本源、意识本质等一些基本科学问题正在孕育重大突破,对人工智能学科发展具有重要促进作用。
(五)宽容失败应是支持创新的题中应有之义。任何学科的发展都不可能一帆风顺,任何创新目标的实现都不会一蹴而就。人工智能60余载的发展生动地诠释了一门学科创新发展起伏曲折的历程。可以说没有过去发展历程中的“寒冬”就没有今天人工智能发展新的春天。
(六)实事求是设定发展目标是制定学科发展规划的基本原则。达到全方位类人水平的机器智能是人工智能学科宏伟的终极目标,但是需要根据科技和经济社会发展水平来设定合理的阶段性研究目标,否则会有挫败感从而影响学科发展,人工智能发展过程中的几次低谷皆因不切实际的发展目标所致。
三、人工智能的发展现状与影响
人工智能经过60多年的发展,理论、技术和应用都取得了重要突破,已成为推动新一轮科技和产业革命的驱动力,深刻影响世界经济、政治、军事和社会发展,日益得到各国政府、产业界和学术界的高度关注。从技术维度来看,人工智能技术突破集中在专用智能,但是通用智能发展水平仍处于起步阶段;从产业维度来看,人工智能创新创业如火如荼,技术和商业生态已见雏形;从社会维度来看,世界主要国家纷纷将人工智能上升为国家战略,人工智能社会影响日益凸显。
(一)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定领域的人工智能技术(即专用人工智能)由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,因此形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域,统计学习是专用人工智能走向实用的理论基础。深度学习、强化学习、对抗学习等统计机器学习理论在计算机视觉、语音识别、自然语言理解、人机博弈等方面取得成功应用。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,语音识别系统5.1%的错误率比肩专业速记员,人工智能系统诊断皮肤癌达到专业医生水平,等等。
(二)通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。虽然包括图像识别、语音识别、自动驾驶等在内的专用人工智能领域已取得突破性进展,但是通用智能系统的研究与应用仍然是任重而道远,人工智能总体发展水平仍处于起步阶段。美国国防高级研究计划局(DefenseAdvancedResearchProjectsAgency,简称DARPA)把人工智能发展分为三个阶段:规则智能、统计智能和自主智能,认为当前国际主流人工智能水平仍然处于第二阶段,核心技术依赖于深度学习、强化学习、对抗学习等统计机器学习,AI系统在信息感知(Perceiving)、机器学习(Learning)等智能水平维度进步显著,但是在概念抽象(Abstracting)和推理决策(Reasoning)等方面能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
(三)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,在其2017年的年度开发者大会上,谷歌明确提出发展战略从“MobileFirst”(移动优先)转向“AIFirst”(AI优先);微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿,麦肯锡报告2016年全球人工智能研发投入超300亿美元并处于高速增长,全球知名风投调研机构CBInsights报告显示2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
(四)创新生态布局成为人工智能产业发展的战略高地。信息技术(IT)和产业的发展史就是新老IT巨头抢滩布局IT创新生态的更替史。例如,传统信息产业IT(InformationTechnology)代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网IT(InternetTechnology)代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等,目前智能科技IT(IntelligentTechnology)的产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动AI技术生态的研发布局,全力抢占人工智能相关产业的制高点。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理GPU服务器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。在技术生态方面,人工智能算法、数据、图形处理器(GraphicsProcessingUnit,简称GPU)/张量处理器(TensorProcessingUnit,简称TPU)/神经网络处理器(NeuralnetworkProcessingUnit,NPU)计算、运行/编译/管理等基础软件已有大量开源资源,例如谷歌的TensorFlow第二代人工智能学习系统、脸书的PyTorch深度学习框架、微软的DMTK分布式学习工具包、IBM的SystemML开源机器学习系统等;此外谷歌、IBM、英伟达、英特尔、苹果、华为、中国科学院等积极布局人工智能领域的计算芯片。在人工智能商业和应用生态布局方面,“智能+X”成为创新范式,例如“智能+制造”、“智能+医疗”、“智能+安防”等,人工智能技术向创新性的消费场景和不同行业快速渗透融合并重塑整个社会发展,这是人工智能作为第四次技术革命关键驱动力的最主要表现方式。人工智能商业生态竞争进入白热化,例如智能驾驶汽车领域的参与者既有通用、福特、奔驰、丰田等传统龙头车企,又有互联网造车者如谷歌、特斯拉、优步、苹果、百度等新贵。
(五)人工智能上升为世界主要国家的重大发展战略。人工智能正在成为新一轮产业变革的引擎,必将深刻影响国际产业竞争格局和一个国家的国际竞争力。世界主要发达国家纷纷把发展人工智能作为提升国际竞争力、维护国家安全的重大战略,加紧积极谋划政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。无论是德国的“工业4.0”、美国的“工业互联网”、日本的“超智能社会”、还是我国的“中国制造2025”等重大国家战略,人工智能都是其中的核心关键技术。2017年7月,国务院发布了《新一代人工智能发展规划》,开启了我国人工智能快速创新发展的新征程。
(六)人工智能的社会影响日益凸显。人工智能的社会影响是多元的,既有拉动经济、服务民生、造福社会的正面效应,又可能出现安全失控、法律失准、道德失范、伦理失常、隐私失密等社会问题,以及利用人工智能热点进行投机炒作从而存在泡沫风险。首先,人工智能作为新一轮科技革命和产业变革的核心力量,促进社会生产力的整体跃升,推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域发展积极正面影响。与此同时,我们也要看到人工智能引发的法律、伦理等问题日益凸显,对当下的社会秩序及公共管理体制带来了前所未有的新挑战。例如,2016年欧盟委员会法律事务委员会提交一项将最先进的自动化机器人身份定位为“电子人(electronicpersons)”的动议,2017年沙特阿拉伯授予机器人“索菲亚”公民身份,这些显然冲击了传统的民事主体制度。那么,是否应该赋予人工智能系统法律主体资格?另外在人工智能新时代,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题都需要我们从法律法规、道德伦理、社会管理等多个角度提供解决方案。
由于人工智能与人类智能密切关联且应用前景广阔、专业性很强,容易造成人们的误解,也带来了不少炒作。例如,有些人错误地认为人工智能就是机器学习(深度学习),人工智能与人类智能是零和博弈,人工智能已经达到5岁小孩的水平,人工智能系统的智能水平即将全面超越人类水平,30年内机器人将统治世界,人类将成为人工智能的奴隶,等等。这些错误认识会给人工智能的发展带来不利影响。还有不少人对人工智能预期过高,以为通用智能很快就能实现,只要给机器人发指令就可以干任何事。另外,有意炒作并通过包装人工智能概念来谋取不当利益的现象时有发生。因此,我们有义务向社会大众普及人工智能知识,引导政府、企业和广大民众科学客观地认识和了解人工智能。
四、人工智能的发展趋势与展望
人工智能经过六十多年的发展突破了算法、算力和算料(数据)等“三算”方面的制约因素,拓展了互联网、物联网等广阔应用场景,开始进入蓬勃发展的黄金时期。从技术维度看,当前人工智能处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有数据、能耗、泛化、可解释性、可靠性、安全性等诸多瓶颈,创新发展空间巨大,从专用到通用智能,从机器智能到人机智能融合,从“人工+智能”到自主智能,后深度学习的新理论体系正在酝酿;从产业和社会发展维度看,人工智能通过对经济和社会各领域渗透融合实现生产力和生产关系的变革,带动人类社会迈向新的文明,人类命运共同体将形成保障人工智能技术安全、可控、可靠发展的理性机制。总体而言,人工智能的春天刚刚开始,创新空间巨大,应用前景广阔。
(一)从专用智能到通用智能。如何实现从狭义或专用人工智能(也称弱人工智能,具备单一领域智能)向通用人工智能(也称强人工智能,具备多领域智能)的跨越式发展,既是下一代人工智能发展的必然趋势,也是国际研究与应用领域的挑战问题。2016年10月美国国家科学技术委员会发布了《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。DeepMind创始人戴密斯·哈萨比斯(DemisHassabis)提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年7月成立了通用人工智能实验室,100多位感知、学习、推理、自然语言理解等方面的科学家参与其中。
(二)从人工智能到人机混合智能。人工智能的一个重要研究方向就是借鉴脑科学和认知科学的研究成果,研究从智能产生机理和本质出发的新型智能计算模型与方法,实现具有脑神经信息处理机制和类人智能行为与智能水平的智能系统。在美国、欧盟、日本等国家和地区纷纷启动的脑计划中,类脑智能已成为核心目标之一。英国工程与自然科学研究理事会EPSRC发布并启动了类脑智能研究计划。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。人机混合智能得到了我国新一代人工智能规划、美国脑计划、脸书(脑机语音文本界面)、特斯拉汽车创始人埃隆·马斯克(人脑芯片嵌入和脑机接口)等的高度关注。
(三)从“人工+智能”到自主智能系统。当前人工智能的研究集中在深度学习,但是深度学习的局限是需要大量人工干预:人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据(非常费时费力)、用户需要人工适配智能系统等。因此已有科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类AI”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低AI人员成本。
(四)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、材料等传统科学的发展。例如,2018年美国麻省理工学院启动的“智能探究计划”(MITIntelligenceQuest)就联合了五大学院进行协同攻关。
(五)人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来十年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,在现有基础上能够提高劳动生产率40%;美、日、英、德、法等12个发达国家(现占全球经济总量的一半)到2035年,年经济增长率平均可以翻一番。2018年麦肯锡的研究报告表明到2030年人工智能新增经济规模将达到13万亿美元。
(六)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出未来五年人工智能提升各行业运转效率,其中教育业提升82%,零售业71%,制造业64%,金融业58%。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
(七)人工智能领域的国际竞争将日趋激烈。“未来谁率先掌握人工智能,谁就能称霸世界”。2018年4月,欧盟委员会计划2018-2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略》重点推动物联网建设和人工智能的应用。世界军事强国已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即提出谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
(八)人工智能的社会学将提上议程。水能载舟,亦能覆舟。任何高科技也都是一把双刃剑。随着人工智能的深入发展和应用的不断普及,其社会影响日益明显。人工智能应用得当、把握有度、管理规范,就能有效控制负面风险。为了确保人工智能的健康可持续发展并确保人工智能的发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,深入分析人工智能对未来经济社会发展的可能影响,制定完善的人工智能法律法规,规避可能风险,确保人工智能的正面效应。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。
五、我国人工智能的发展态势与思考
我国当前人工智能发展的总体态势良好。中国信通院联合高德纳咨询公司(Gartner)于2018年9月发布的《2018世界人工智能产业发展蓝皮书》报告统计,我国(不含港澳台地区)人工智能企业总数位列全球第二(1040家),仅次于美国(2039家)。在人工智能总体水平和应用方面,我国也处于国际前列,发展潜力巨大,有望率先突破成为全球领跑者。但是我们也要清醒地看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
一是高度重视。党和国家高度重视并大力发展人工智能。党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明方向。2016年7月习总书记明确指出,人工智能技术的发展将深刻改变人类社会生活,改变世界,应抓住机遇,在这一高技术领域抢占先机。在党的十九大报告中,习总书记强调“要推动互联网、大数据、人工智能和实体经济深度融合”。在2018年两院院士大会上,习总书记再次强调要“推进互联网、大数据、人工智能同实体经济深度融合,做大做强数字经济”。在2017年和2018年的《政府工作报告》中,李克强总理都提到了要加强新一代人工智能发展。2017年7月,国务院发布了《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动,人工智能将成为今后一段时期的国家重大战略。发改委、工信部、科技部、教育部、中央网信办等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
二是态势喜人。根据2017年爱思唯尔(Elsevier)文献数据库SCOPUS统计结果,我国在人工智能领域发表的论文数量已居世界第一。从2012年开始,我国在人工智能领域新增专利数量已经开始超越美国。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成全球人工智能投融资规模最大国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。近两年,清华大学、北京大学、中国科学院大学、浙江大学、上海交通大学、南京大学等高校纷纷成立人工智能学院。2015年开始的中国人工智能大会(CCAI)已连续成功召开四届、规模不断扩大,人工智能领域的教育、科研与学术活动层出不穷。
三是差距不小。我国人工智能在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在较大差距。英国牛津大学2018年的一项研究报告指出中国的人工智能发展能力大致为美国的一半水平。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,存在“头重脚轻”的不均衡现象。在Top700全球AI人才中,中国虽然名列第二,但入选人数远远低于占一半数量的美国。据领英《全球AI领域人才报告》统计,截至2017年一季度全球人工智能领域专业技术人才数量超过190万,其中美国超过85万,我国仅超过5万人,排名全球第7位。2018年市场研究顾问公司CompassIntelligence对全球100多家AI计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国制定完善人工智能相关法律法规的进程需要加快,对可能产生的社会影响还缺少深度分析。
四是前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
人类社会已开始迈入智能化时代,人工智能引领社会发展是大势所趋,不可逆转。经历六十余年积累后,人工智能开始进入爆发式增长的红利期。伴随着人工智能自身的创新发展和向经济社会的全面渗透,这个红利期将持续相当长的时期。现在是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧需要深入思考。
(一)树立理性务实的发展理念。围棋人机大战中阿尔法狗战胜李世石后,社会大众误以为人工智能已经无所不能,一些地方政府、社会企业、风险资金因此不切实际一窝蜂发展人工智能产业,一些别有用心的机构则有意炒作并通过包装人工智能概念来谋取不当利益。这种“一拥而上、一哄而散”的跟风行为不利于人工智能的健康可持续发展。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。根据高德纳咨询公司发布的技术发展曲线,当前智能机器人、认知专家顾问、机器学习、自动驾驶等人工智能热门技术与领域正处于期望膨胀期,但是通用人工智能及人工智能的整体发展仍处于初步阶段,人工智能还有很多“不能”,实现机器在任意现实环境的自主智能和通用智能仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此发展人工智能不能以短期牟利为目的,要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,并务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
(二)加强基础扎实的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。在此发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。根据2017年爱思唯尔文献数据库SCOPUS统计结果,尽管我国在人工智能领域发表的论文数量已经排名世界第一,但加权引文影响力则只排名34位。为了客观评价我国在人工智能基础研究方面的整体实力,我们搜索了SCI期刊、神经信息处理系统大会(ConferenceonNeuralInformationProcessingSystems,简称NIPS)等主流人工智能学术会议关于通用智能、深度学习、类脑智能、脑智融合、人机博弈等关键词的论文统计情况,可以清楚看到在人工智能前沿方向中国与美国相比基础实力存在巨大差距:在高质量论文数量方面(按中科院划定的SCI一区论文标准统计),美国是中国的5.34倍(1325:248);在人才储备方面(SCI论文通讯作者),美国是中国的2.12倍(4804:2267)。
我国应对标国际最高水平,建设面向未来的人工智能基础科学研究中心,重点发展原创性、基础性、前瞻性、突破性的人工智能科学。应该鼓励科研人员瞄准人工智能学科前沿方向开展引领性原创科学研究,通过人工智能与脑认知、神经科学、心理学等学科的交叉融合,重点聚焦人工智能领域的重大基础性科学问题,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
(三)构建自主可控的创新生态。美国谷歌、IBM、微软、脸书等企业在AI芯片、服务器、操作系统、开源算法、云服务、无人驾驶等方面积极构建创新生态、抢占创新高地,已经在国际人工智能产业格局中占据先机。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。美国对中兴通讯发禁令一事充分说明自主可控“核高基”技术的重要性,我国应该吸取在核心电子器件、高端通用芯片及基础软件方面依赖进口的教训,避免重蹈覆辙,着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如军民融合、产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。
另外,我们需要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过标准实施加速人工智能驱动经济社会转型升级的进程。
(四)建立协同高效的创新体系。我国经济社会转型升级对人工智能有重大需求,但是单一的创新主体很难实现政策、市场、技术、应用等方面的全面突破。目前我国学术界、产业界、行业部门在人工智能发展方面各自为政的倾向比较明显,数据资源开放共享不够,缺少对行业资源的有效整合。相比而言,美国已经形成了全社会、全场景、全生态协同互动的人工智能协同创新体系,军民融合和产学研结合都做得很好。我国应在体制机制方面进一步改革创新,建立“军、政、产、学、研、用”一体的人工智能协同创新体系。例如,国家进行顶层设计和战略规划,举全国优势力量设立军事智能的研发和应用平台,提供“人工智能+X”行业融合、打破行业壁垒和行政障碍的激励政策;科技龙头企业引领技术创新生态建设,突破人工智能的重大技术瓶颈;高校科研机构进行人才培养和原始创新,着力构建公共数据资源与技术平台,共同建设若干标杆性的应用创新场景,推动成熟人工智能技术在城市、医疗、金融、文化、农业、交通、能源、物流、制造、安全、服务、教育等领域的深度应用,建设低成本高效益广范围的普惠型智能社会。
(五)加快创新人才的教育培养。发展人工智能关键在人才,中高端人才短缺已经成为我国人工智能做大做强的主要瓶颈。另外,我国社会大众的人工智能科技素养也需要进一步提升,每一个人都需要去适应人工智能时代的科技浪潮。在加强人工智能领军人才培养引进的同时,要面向技术创新和产业发展多层次培养人工智能创新创业人才。《新一代人工智能发展规划》提出逐步开展全民智能教育项目,在中小学阶段设置人工智能课程。目前人工智能科普活动受到各地学校的欢迎,但是缺少通俗易懂的高质量人工智能科普教材、寓教于乐的实验设备和器材、开放共享的教学互动资源平台。国家相关部门应高度重视人工智能教育领域的基础性工作,增加投入,组织优势力量,加强高水平人工智能教育内容和资源平台建设,加快人工智能专业的教学师资培训,从教材、教具、教师等多个环节全面保障我国人工智能教育工作的开展。
(六)推动共担共享的全球治理。人工智能将重塑全球政治和经济格局,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能将进一步拉大发达国家和发展中国家的生产力发展水平差距。美国、日本、德国等通过人工智能和机器人的技术突破和广泛应用弥补他们的人力成本劣势,希望制造业从新兴国家回流发达国家。目前看,我国是发展中国家阵容中唯一有望成为全球人工智能竞争中的领跑者,应采取不同于一些国家的“经济垄断主义、技术保护主义、贸易霸凌主义”路线,尽快布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合国家“一带一路”战略,向亚洲、非洲、南美等经济欠发达地区输出高水平、低成本的“中国智造”成果、提供人工智能时代的中国方案,为让人工智能时代的“智能红利”普惠人类命运共同体做出中国贡献!
(七)制定科学合理的法律法规。要想实实在在收获人工智能带来的红利,首先应保证其安全、可控、可靠发展。美国和欧洲等发达国家和地区十分重视人工智能领域的法律法规问题。美国白宫多次组织这方面的研讨会、咨询会;特斯拉等产业巨头牵头成立OpenAI等机构,旨在以有利于整个人类的方式促进和发展友好的人工智能;科研人员自发签署23条“阿西洛马人工智能原则”,意图在规范人工智能科研及应用等方面抢占先机。我国在人工智能领域的法律法规制定及风险管控方面相对滞后,这种滞后局面与我国现阶段人工智能发展的整体形势不相适应,并可能成为我国人工智能下一步创新发展的一大掣肘。因此,有必要大力加强人工智能领域的立法研究,制定相应的法律法规,建立健全公开透明的人工智能监管体系,构建人工智能创新发展的良好法规环境。
(八)加强和鼓励人工智能社会学研究。人工智能的社会影响将是深远的、全方位的。我们当未雨绸缪,从国家安全、社会治理、就业结构、伦理道德、隐私保护等多个维度系统深入研究人工智能可能的影响,制定合理可行的应对措施,确保人工智能的正面效应。应大力加强人工智能领域的科普工作,打造科技与伦理的高效对话机制和沟通平台,消除社会大众对人工智能的误解与恐慌,为人工智能的发展营造理性务实、积极健康的社会氛围。
六、结束语
人工智能经过60多年的发展,进入了创新突破的战略机遇期和产业应用的红利收获期,必将对生产力和产业结构以及国际格局产生革命性影响,并推动人类进入普惠型智能社会。但是,我们需要清醒看到通用人工智能及人工智能的整体发展仍处于初级阶段,人工智能不是万能,人工智能还有很多“不能”。我们应当采取理性务实的发展路径,扎实推进基础研究、技术生态、人才培养、法律规范等方面的工作,在开放中创新,在创新中发展,全速跑赢智能时代,着力建设人工智能科技强国!
(主讲人系中国科学院院士)
大数据与人工智能驱动下的人力资源管理转型变革!
过去,企业在人才招聘无论是简历筛选还是人才面试过程中都更多地取决于招聘者的直觉和经验来判断应聘者是否匹配应聘岗位。
而目前人工智能的算法和数据分析可以帮助招聘者填补招聘中的猜测部分,提供应聘者客观的数据资料,以帮助招聘人员做出科学的录用决策。通过人工智能可以帮助企业寻找到更合适企业、工作中更愉快、工作更长的员工。
另一方面,大数据分析和人工智能可以帮助预测应聘者未来的工作表现,提高了招聘的准确性。
根据大数据、人工智能以及区块链技术,员工的求职简历、面试表现、工作绩效、工作能力、离职情况、诚信记录等一系列工作和社交行为将在网络数据中留下痕迹,人工智能可以筛选出数以百万计的非结构化数据快速理解,通过使用机器学习和适应性在线评估和游戏来预测特定角色的工作表现。
在智能化招聘运用上,人工智能能帮助企业预测应聘者在获聘后是否具有最佳生产力的算法进行精准招聘,缩短员工的招聘周期,提高招聘效率。
三、大数据和人工智能驱动的多样化培训方式
人工资源管理的核心功能——员工培训开发,正在被大数据和人工智能所改变。
首先,大数据和人工智能帮助识别和缩小受训人员的学习差距。通过文本数据分析、情绪数据分析、传感器数据分析可以帮助企业分析绩效优秀员工的胜任力特征,识别差距分析员工培训需求,提供针对性的职业培训计划。
其次,大数据和人工智能提供多样化学习形式。目前大数据和人工智能驱动的学习形式较为多样化,比如“自适应”在线学习、“微学习”、“慕课”学习。
员工培训可以借助增强现实和虚拟现实技术增强体验。通过简单的电话沟通,员工就可以观看到相关视频,甚至可以与虚拟现实中员工进行双向对话。
利用增强现实和虚拟现实技术将公司的物理位置或工作空间变为现实的能力,使得满足每个学习者个性化、针对性的需求变得更加容易,显著地帮助员工改善工作体验。
四、大数据和人工智能驱动的“过程导向”绩效管理
大数据和人工智能使企业绩效管理从过去的结果导向转化为更加注重过程导向的绩效管理,能实施追踪和指导员工的绩效行为。
人工智能给予员工及时的反馈和指导,能真正发挥绩效辅导的作用,帮助员工提高绩效,而不是为考核而考核。
通过大数据和人工智能的计算机识别、深度学习等功能及时收集到大量的员工绩效行为数据,并对员工及时反馈和辅导。
过去绩效评价过程中更多需要管理者观察、收集员工日常工作中的相关行为数据,不可避免地在评价员工工作行为和态度时带有一定的认知性偏差,而基于大数据和人工智能的绩效评价,能为管理者提供更客观的数据,同时对考核决策进行分析,帮助管理者进行正确评价。
通过跟踪员工活动数据,管理者可以准确地发现员工的工作行为表现,并利用这些数据信息识别出哪些员工绩效行为优秀,哪些员工需要在工作过程中给予帮助,及时给予员工行为过程反馈,发挥企业和员工的双向沟通,企业正向导向和激励作用。
五、大数据和人工智能驱动的个性化薪酬福利
大数据和人工智能化下的人力资源管理能为员工提供多样化、个性化的薪酬福利,能及时有效地满足员工个性化的需求。
通过文本数据分析、情绪数据分析或者音频和视频数据分析,管理者能够了解员工的工作情绪和态度,同时还能够深层次地了解背后的真相。
人工智能的深度学习能更深入地了解员工期望与价值诉求,从而可以为员工实施更准确的外在薪酬体系和内在薪酬体系,使薪酬激励内容多样化、个性化。
在员工福利方面,企业可以基于广泛信息源,发掘员工在物质、精神、生理、心理等方面的需求,从而改变千人一面的传统福利模式,对不同员工实施差异化福利措施。另外,企业人力资源管理团队可以通过人工智能为员工提供良好的心理健康服务福利。
六、大数据和人工智能驱动的科学化的员工离职风险识别
人工智能能预测员工流失潜在风险。根据大数据多维数据仓库功能及智能机器人的算法和深度学习,进行数据建模,提高大数据时代的人力资源分析效率,及时掌握员工的工作和情绪动态,帮助企业构建人才流失的预警机制。
人工智能中机器学习可以收集员工出勤异常行为、团队疏离情况、使用办公设备频率、客户建立和维护情况、绩效表现、电子邮件以及社交媒体等工作行为数据,并结合员工的个性、职业发展规律、行业发展情况等数据指标建立数据库,智能机器人再通过算法和深度学习功能来分析挖掘员工书写文字背后的潜在情绪状态,从而预测员工未来离职的倾向,以此帮助人力资源经理对员工离职进行沟通和干预,以期更好地提高管理效率,留住企业优秀人才。
七、大数据和人工智能驱动的具有洞察力的员工关系管理
员工关系管理是人力资源管理重要的工作内容,也是影响员工行为态度、工作效率和执行能力的关键因素,做好员工管理可以使员工心理上获得满足感,有利于提高其工作意愿和积极性,必须引起管理者高度的关注。
员工关系管理主要集中在如何培养和提升员工组织忠诚度、敬业度和工作满意度三个层面上。
过去对员工忠诚度、敬业度、工作满意度的了解主要通过沟通访谈或填写冗长调查问卷方式进行,当调查对象不配合,其准确度不会理想,且不能找到员工不满意、低忠诚行为和低敬业态度的潜在原因。
而大数据和人工智能技术可以为企业员工关系管理提供前所未有的洞察力,特别对员工工作中真实情绪和行为态度分析。
通过分析和挖掘员工电子邮件、社交媒体、内部网贴等文本数据来了解和分析员工正在书写文字背后的情绪和态度,这种数据分析甚至可以代替员工的满意度调查。
数据分析以及人工智能技术中机器人的算法和学习未来还能进一步帮助企业了解员工真实的想法和感受,甚至能解读出员工正在做什么或不关心什么,未来会有什么行为反应,从而帮助管理者识别和发现员工的潜在心理行为变化,及时采取措施解决。
管理者要将大数据和人工智能技术下的关系管理视为一种有效提升员工满意度、忠诚度的管理工具,而不是对员工个人言论进行监督或窥探,通过引导而非惩罚的方式改善员工负面情绪。
人工智能对人力资源管理的影响
一、实现效用最大化
1.加快数据处理能力。
利用人工智能进行人才招聘,运用大数据进行关键词分析,快速完成简历筛选、数据处理,搭建了一个人和岗位的智慧型桥梁,提高了人才招聘效率。
人工智能可以通过对员工的工作状况、能力、经历进行调查,最大程度的发现员工的潜在能力,找到该员工最合适的岗位与工作场所,并为其制定合适的职业生涯计划。
2.降低成本。
在现有人力资源行业中,人都是一个很重要的因素,很多中小企业并不愿意花费大量金钱去雇佣专业HR进行人事招聘。
并且将人工智能运用到人事管理中,将一些重复、基础性的工作交由机器处理,大大降低人员费用的同时,让HR更好的着眼于企业未来的发展。
3.利用技术进行人才培育。
一个企业要想继续发展进步,就需要不断培育新型人才,利用人的智慧去进行企业建设,提出新的发展理念。
将岗位要求录入到人工智能中,数据云端结合每个员工的特长、能力等制定合适的培养方案,“因材施教”,从而最大程度发挥每一位员工的作用,增加员工自豪感和成就感。
二、促进企业发展
1.规范人才选拔。
以大数据和云计算为基础的人工智能通过大量不断扩充与实时更新的有关人力资源管理相关信息,根据企业相关条件与标准,可以筛选出相应的信息资料,生成面试方案;并且可以根据这些资料做出适合该公司的岗位分析,为评估提供最好的选择方案。
同时,按照指令和程序设定的“面试官”即使面对上千名面试者也依旧能公平公正的为公司做出最好的决策,减少人工主观色彩,避免失误,为优质人才选拔提供更好的平台。
2.优化组织结构。
传统管理观念中决策往往是由高层管理者处理大量数据、报表,短时间高强度情况下做出的,不仅浪费管理者资源,质量也得不到保证。
跟随时代发展脚步,管理者需充分汲取和运用新兴管理模式和方法,改变传统的管理观念。
而人工智能平台则可以为公司提供更先进的人力资源规划、管理决策以及危险预警和解决方案等人力无法做到的全面科学的资料,优化了组织结构,有效的将人力资源用在更适合的位置。
3.完善及改进制度。
企业的绩效考核、薪酬管理、培训激励等机制与员工绩效表现、工作满意度、能动性等密切相关,如何制定科学并适合企业的各种制度成为企业管理的核心。
人工智能对数据进行科学处理,精准对比与分析,得出科学结果,为内部管理提供强有力的依托。
通过人工智能平台,结合企业自身实际情况,构建完善的管理制度,不仅提升员工个人素质水平,激发员工创意和激情,也促进企业的良性发展。
总结
随着大数据、云计算的广泛应用,AI技术从最初的数据处理、图像识别做到人机交互、同声传译、自然语言处理甚至会完成很多人不可能完成的事情。
人类的未来必定是与人工智能和谐共处,共同发展的,人力资源管理应该及时搭上人工智能这趟通往云时代的高速列车,实现数字化转型,为人力资源服务开辟新的途径。
(本文部分资料来源于互联网整理,如有侵权,请联系删除!)
关于仁云
仁云是国内领先的数字化人力资本解决方案服务商,2013年成立于上海,获得用友战略投资,核心团队具有20+年HR管理数字化建设经验。
仁云始终坚持以科技创新,为客户搭建核心人力、人力共享、人才管理和人力资本分析平台,以实现全渠道覆盖员工选、用、育、留等全应用场景的HR共享服务运营体系,从而降本增效、提升体验,助力大中型企业HR管理数智化转型升级。
仁云产品
返回搜狐,查看更多
人工智能对企业管理的影响
近来,关于AI(人工智能)的各方讨论总是不绝于耳――阿尔法狗连胜中国围棋第一人柯洁,牛津校友的尤瓦尔?赫拉利(YuvalNoahHarari)围绕AI著成的新书《未来简史》畅销全球,牛津大学更有研究表示全球发达国家中将有47%的工作在未来25年内受AI影响而消失。今年五月,赛德商学院管理实践副教授乔纳森?特雷弗(JonathanTrevor)在《金融时报》上发表文章,探讨了人工智能的发展为社会决策者和企业管理层造成的巨大影响。
人工智能对企业管理的影响
人工智能企业管理
以下是人工智能将在未来帮助企业沟通的一些见解:
人工智能将分析所称呼的“数字呼吸”、“生活网络”的数字化景观,并报告准确的预测力、实时更新和趋势评估。让你的想象力自由驰骋。如果每天每时每刻都有这种深度的信息,你会怎么做?人工智能将通过虚拟和增强现实应用的创新方式向目标受众(甚至是微目标受众)传递新闻。编辑、分析师和员工将能够从舒适的办公室里“走进”会议室,体验新闻发布会、简报或信息会议。人工智能将能够更快地响应危机,将预设参数作为以人为中心的应急计划的一部分。人工智能机器人将被设定为帮助危机沟通的领导者,而且他们不会在激烈的危机中被情绪所左右。人工智能将成为一种新概念,称为基于身份的公司通信。其精确度将令人印象深刻,每个人都可以进行个性化的通讯。人工智能将能够告知公司通信人员在未来问题上的不一致、冲突和预测。人工智能还将帮助揭露谎言和识别欺骗。由于社会大众对营销自动化的过度饱和,一个公司的声誉在未来的5-10年里将比现在更有意义。人工智能将使企业通信成为日常工作的一部分,直接与机器进行通信。想把信息分发给机器人其实这有点激进,但它即将到来,也许比你想象的要快,而且机器人不会像《星球大战》里的R2-D2那样。
下面让我们重点解读人工智能在2018年对企业的十大影响。
一、AI民主化推动更多企业使用AI
人类一直致力于开发对全社会具有长期积极影响的人工智能,我们最近一两年看到类似OpenAI非营利机构的成立,以及微软、Facebook、Google、Amazon所提倡的AI民主化,无不是希望降低企业使用人工智能的门槛,虽然这其中可能夹杂着大公司希望利用自身人工智能平台的“私活”,但不可否认的是,人工智能的技术壁垒正在逐渐打破,中小企业以及个人开发展正在享受人工智能生态所带来的好处,大规模可以使用的成熟的人工智能工具和框架,将极大地推动人工智能在各类企业中的使用。
二、公司招聘和培训体系将改变
毫无疑问,企业为了更好地利用好人工智能技术,必定会招聘各种专业人才,比如数学、算法或者技术专家。甚至,一些大型企业可能会增加CAO(首席人工智能官)这样的高级职位,并将人工智能纳入到公司整体战略之中。
考虑到企业的运营将来与人工智能密切相关,企业的培训体系也面临着一次变革,员工接受培训,与机器配合高效工作的时候,使之将会发挥最大作用,与人工智能有效配合工作的技能一定会成为企业未来培训的重中之重。OrchestrateCOOSayerMartin就表示,人工智能能够消除很多重复性的体力劳动,提升员工的关注度和行动效率,比如与客户的互动、销售项目跟进以及提升客户满意度等等。
三、面向客户的角色和流程将大幅得益于人工智能
在企业中,人工智能将会对面向客户的角色和流程(如销售和营销)方面将产生最大的影响,市场营销和销售人员将充分利用人工智能产品更好地了解客户及其行为,并能够快速制定出个性化的营销方案。OrchestrateCOOSayerMartin就表示,人工智能能够大幅降低重复性的体力劳动,让员工更加专注业务核心,并大幅提升效率,例如与客户的互动,营销客户的跟进以及客户满意度的提升等。
四、智能助手将成为企业的必备
在智能助手方面,金融、零售以及媒体这些需要面向大量消费者的企业将视其为必备。2018年,将会有越来越多企业为其产品添加聊天机器人,以创造更多更好的互动体验。此外,基于人工智能的语音助手也将逐步进入到这些企业后端,帮助后台工作人员减轻负担,提升工作效率。
五、企业将利用人工智能改进用户体验
用户体验也是被认为可以利用人工智能大幅改进的领域,例如,在零售领域,通过人工智能技术可以大幅提升购物、支付等体验。不仅仅如此,对于那些低代码和无代码的应用而言,使用人工智能来帮助应用开发工具了解使用模式,以便自动适应其特定角色。这为最终用户打造了一个更流畅的体验,并帮助自动量身定制合适的功能集合,从而最终提高生产力,降低安全风险或者合规风险。
六、人工智能将帮助企业消除偏见
过去,企业决策通常会带有一定的感情或者外部偏见,从而让业务行动受到潜在的干扰。现在,人工智能可以帮助企业在各种业务决策中尽量减少情感或者外部偏见的干扰,人工智能和人配合决策会让决策和行动更加高效。
例如,在晋升环节或者招聘业务中,人工智能可以帮助消除有意识和无意识的偏见,让企业更加收益。
七、人工智能用于网络安全保障
企业的网络安全专业人士将会聚焦在新型的网络攻击,而人工智能将会是新的网络安全保障技术,它防御复杂的黑客行为并提供更多保护。当前,很多数据欺骗技术产品是自动化,可以通过欺骗攻击者,发现攻击者并主动将其击退,从而实现对高级攻击的检测、分析和防御。
将人类智能与天生能够不断适应并变得更加智能的技术相结合,为迄今为止大多数网络安全技术缺乏的防御者提供了竞争优势。企业采用人工智能技术,最终可以适度降低风险,并更有效地保护最重要的数字资产和实物资产的完整性、机密性和可用性。
八、需要防范黑客利用人工智能制造的攻击
人工智能不仅仅是企业提升效率的工具,也可能沦为黑客手中制造攻击的武器。2018年,黑客有可能利用人工智能技术制造出更多的网络安全威胁。
这些网络安全可能是一些有针对性的攻击,不仅仅是针对AI设备,目标甚至可能是AI算法,例如,向提供人工智能的云服务植入恶意代码,或者向机器人等智能设备提供错误信息等等,这些潜在网络安全威胁的确不容忽视,也是企业在2018年可能面临的一大挑战。
九、人工智能将进一步改造企业
数字化转型推动企业向数字化、智能化方向转变,人工智能将进一步推动企业转型,在2018年,我们会看到很多行业将前所未有的方式实施人工智能,改造企业的营销、服务、制造等环节,这种改造不仅仅是业务流程的改造,还有组织结构以及业务内容的改造。
虽然无论是数字化转型还是人工智能,目前都有炒作泡沫,企业要想发挥人工智能全部潜力仍然有较长的路要走,但这种趋势已经不可阻挡。
十、人工智能将创造新的岗位
虽然关于人工智能威胁论已经铺天盖地,比如取代司机、医生、律师等职业等等,但人工智能在消灭一些职业的同时,也在创造一些新的岗位,甚至有专家表示人工智能将会增加工作而不是取代人类工作。根据Gartner的统计,到2020年人工智能有望创造230万个就业岗位,同时仅消除180万个就业机会。不仅如此,随着企业智能化能力的提升,很多软件和应用都将得到大幅增强,实际上使人类更高效、更有效和更准确。