开源人工智能语言模型的 10 个正面和负面影响
虽然GPT和PaLM等专有软件占据了市场主导地位,但是仍旧有很多开发人员看到了开源语言模型的价值。由于开源语言模型有很多优点和缺点,并且会对人工智能行业产生积极和消极的影响,因此我们总结了您应该了解和理解的要点。
开源语言模型的5个积极影响开源语言模型集合了来自世界各地的开发人员的意见、评论和用例,通过多方协作,能够更快地推进项目落地。
1、人工智能开发人员使用开源模型节省资源采用专有语言模型需要花费数百万甚至数十亿的资源。以OpenAI为例。BusinessInsider报道称,该公司必须筹集约300亿美元才能有效运营ChatGPT。对于大多数公司来说,获得这么多资金是不可能的。处于早期阶段的科技初创公司即使能达到七位数就已经很幸运了。
考虑到高昂的开销,许多开发人员转而使用开源语言模型。他们通过利用这些系统的架构、神经结构、训练数据、算法、代码实现和训练数据集节省了数百万美元。
2、开源模型可以让进步更快许多技术领导者比较重视社区贡献和协作,因此他们认为开源语言模型比专有语言模型进步得更快。数以百万计的熟练开发人员正在开发开放项目——理论上,他们可以更快地实现无错误、复杂的迭代。
使用开源人工智能也可以更快地弥补知识空白。公司可以分析和利用社区贡献,而不是培训团队寻找错误、测试更新和探索实施。为此,知识共享使用户能够更有效地工作。
3、开发人员将更快地发现漏洞开源语言模型鼓励同行评审和协作社区的积极参与,开发人员可以自由访问代码库更改。由于有如此多的用户分析开放项目,他们可能会更快地发现安全问题、漏洞和系统错误。
同样,错误解决也得到简化。开发人员无需手动解决系统问题,而是可以检查项目的版本控制系统是否有以前的修复。虽然有些条目可能已经过时,然而他们仍然会为研究人员和人工智能培训师提供一个有用的起点。
4、人工智能技术领导者向开源模型学习开源语言模型受益于反馈循环。正反馈循环共享有效的算法、数据集和函数,鼓励开发人员模仿。这个过程为他们节省了大量时间。另请注意,用户随意复制的积极反馈可能会出现错误——错误往往会被忽视。
5、开源人工智能平台在新系统上获得优先权科技公司共享价值数十亿美元的语言系统并不是出于善意。虽然开源许可证授予第三方用户修改和销售系统的自由,但它们也有局限性。经销商经常创造条件来确保他们保留一些权威。所以,你会在开源程序的许可协议中找到这些规则-最终用户很少获得100%的权限。
假设Meta希望控制LLaMA支持的产品。其法律团队可以指定Meta保留投资任何基于其语言模型构建的新系统的权利。但请不要误解——第三方开发商和发行商仍然会达成互惠互利的协议。后者提供价值数十亿美元的技术和系统。与此同时,初创公司和独立开发人员正在探索将它们实现到不同应用程序中的方法。
开源语言模型的5个负面影响开源语言模型本质上是公正的,但人类却不然。具有恶意的消费者、开发者和公司可能会利用这些系统的开放性来谋取个人利益。
1、企业随意加入人工智能竞赛带来的负面影响目前,企业面临着加入人工智能竞赛的巨大压力。随着人工智能系统的普及,许多公司担心如果不采用人工智能,它们就会被淘汰。结果,企业随意地加入了这股潮流,他们将开源语言模型集成到他们的产品中,以便销售产品并跟上竞争,即使它们没有提供任何有价值的东西。
虽然人工智能是一个快速新兴的市场,但是不小心发布复杂但不安全的系统会损害整个行业并损害消费者的安全。开发者应该用人工智能来解决问题,而不是搞营销噱头。
2.、消费者能够接触到他们几乎不了解的技术各种技术工具基于人工智能的变体,从在线图像编辑器到健康监测应用程序。随着人工智能的发展,品牌将不断引入新系统。人工智能模型帮助他们提供更加定制化、以用户为中心的现有平台迭代。
虽然科技行业欢迎创新,但人工智能的快速发展超过了用户教育。消费者正在获得他们几乎不了解的技术。教育的缺乏造成了巨大的知识差距,使公众容易受到网络安全威胁和掠夺性行为的影响。
为此,企业应该像产品开发一样优先考虑培训。他们必须帮助用户了解如何安全、负责任地使用强大的基于人工智能的工具。
3、并非所有开发者都有良好的意图并非每个人都将人工智能工具用于其预期目的。例如,OpenAI开发了ChatGPT来回答工作安全的常识问题并复制自然语言输出,但犯罪分子利用它进行非法活动。自2022年11月AI聊天机器人推出以来,已发生多起ChatGPT诈骗事件。
因此,即使人工智能实验室实施严格的限制,骗子仍然会找到绕过它们的方法。再次以ChatGPT为例。用户通过使用ChatGPT越狱提示来绕过限制并执行禁止的任务。
4、机构可能难以监管开源人工智能监管机构正在努力跟上人工智能的发展步伐,而开源模型的激增只会让监控变得更加困难。人工智能的进步已经超过了监管框架。甚至埃隆·马斯克、比尔·盖茨和萨姆·奥尔特曼等全球科技领袖也呼吁加强人工智能监管。
私营部门和政府部门都必须控制这些系统。否则,恶意者将继续利用它们来违反数据隐私法、实施身份盗窃、诈骗受害者以及其他非法活动。
5.降低进入壁垒会影响质量由于能够在网上找到数千种基于人工智能的工具,因此开源语言模型的激增降低了加入人工智能竞赛的准入门槛。
看到公司采用机器和深度学习可能看起来令人印象深刻,但很少有公司提供任何实际价值。大多数人只是复制竞争对手。随着时间的推移,复杂的语言模型和训练数据集的可访问性可能会使毫无意义的人工智能平台商品化。
开源语言模型对人工智能行业的整体影响虽然开源语言模型使人工智能技术更容易使用,但它们也带来了一些安全风险。开发商应制定更严格的限制。否则,骗子将继续利用这些系统的透明架构。
也就是说,消费者对于人工智能骗局并非完全毫无防御能力。熟悉骗子利用生成式人工智能工具的常见方式并研究警告信号。当然,我们可以通过保持警惕来打击大多数网络犯罪。
原文标题:10PositiveandNegativeImpactsofOpen-SourceAILanguageModels
原文作者:JOSELUANSINGJR.
新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。