博舍

工信部:我国人工智能核心产业规模超四千亿元 企业数量超三千家 中国人工智能市场规模约为2382亿元的企业是

工信部:我国人工智能核心产业规模超四千亿元 企业数量超三千家

2022年7月26日,工业和信息化部举行“推动制造业高质量发展夯实实体经济根基”新闻发布会。图片来源:工业和信息化部

人民网北京7月26日电(记者申佳平)今日,在工业和信息化部举行的新闻发布会上,工业和信息化部科技司副司长任爱光表示,在各方的共同努力下,我国人工智能与实体经济融合取得积极进展。据测算,我国人工智能核心产业规模超过4000亿元,企业数量超过3000家。

任爱光介绍,我国传统行业转型升级不断加速,培育成长出一批传统行业+AI的典型企业,推广应用一批智能化升级的典型案例,导出形成AI与实体经济融合的新模式、新方法。智能制造领域,智能技术的应用极大提升了产品检测效率和设备利用效率。智慧医疗领域,智能技术有效减轻医护人员工作压力,提高医疗装备的诊断准确性与服务便捷性,目前,国内已获批40余张AI影像医疗器械三类证。

同时智能产业实力持续提升。据测算,我国人工智能核心产业规模超过4000亿元,企业数量超过3000家。智能芯片、开源框架等关键核心技术取得重要突破,智能芯片、终端、机器人等标志性产品的创新能力持续增强。

此外,新型基础设施布局逐步完善,通过以建带用、以用促建,截至6月底,已建成5G基站170万个,培育大型工业互联网平台150家、连接工业设备超过7800万台(套)。全国建成多个算力中心、数据中心等公共服务平台,行业数据集建设数量与质量不断提升。

任爱光表示,人工智能是引领新一轮科技革命和产业变革的战略性技术。工业和信息化部高度重视人工智能产业创新发展,以促进人工智能与实体经济深度融合为主线,重点开展了3方面工作。

一是推进技术创新攻关,以人工智能创新任务揭榜挂帅为抓手,发现和培育优秀企业,竞争产出一批优秀产品,联合国家药监局开展人工智能医疗器械专题揭榜工作,调动行业资源和积极性,构建研发-产业-应用“快车道”。组建智能传感器、智能网联汽车等国家制造业创新中心,加强共性技术研发与产业化。鼓励高校、企业组成联合体开展协同创新。

二是促进赋能应用落地,批复建设8个国家人工智能创新应用先导区建设,部省协同打造人工智能创新发展高地。加强产业技术基础公共服务平台建设,不断提升产业服务能力。积极挖掘并开放一批应用场景,以用促研推动智能技术产品落地应用与迭代。组织开展AI精准赋能中小企业活动,编制《人工智能赋能中小企业技术产品供需目录》,促进智能化转型。

三是打造融通产业生态,建设一批5G基站、工业互联网平台、算力中心等信息基础设施,支持建设并开放行业数据集,夯实产业发展基础。引导鼓励国内开发框架开源开放,推动建立软硬一体、上下游联动的产业生态体系。强化标准引领,加强人工智能标准体系建设,组织编制《国家智能制造标准体系建设指南》,发布30项智能制造国家标准。

(责编:申佳平、吕骞)

分享让更多人看到

IDC:2026年中国人工智能市场总规模预计将超2644亿美元

北京,2023年3月30日——IDC于近日发布了《2023年V1全球人工智能支出指南》(IDCWorldwideArtificialIntelligenceSpendingGuide)。最新预测数据显示,中国人工智能(AI)市场支出规模将在2023年增至147.5亿美元,约占全球总规模十分之一。受疫情、地缘政治及宏观经济等因素的影响,IDC小幅下调了2022年中国AI市场规模,相比2021年增长约为17.9%。长远来看,AI技术的创新迭代驱动了应用场景的进一步落地,以AIGC、数字人、多模态、AI大模型、智能决策为代表的热点为市场带来了更多想象力和可能性。同时,企业对自身“数字化”、“数智化”转型的积极推动催生出对AI技术的多元化需求,为中国AI市场规模的长期增长奠定了基础。IDC预计,2026年中国AI市场将实现264.4亿美元市场规模,2021-2026五年复合增长率(CAGR)将超20%。

Sharetheimage

技术维度

从技术维度来看,AI硬件支出在五年预测期内占比仍将超中国市场总规模的一半,本次预测调低主要是受到了硬件市场的影响。就2022年而言,考虑到疫情、经济形势、供应链等原因,政府、互联网、制造等行业用户和SMB市场的企业用户,对服务器和存储系统的采购均有所放缓。长期而言,随着AI基础设施建设的逐步完善,硬件在中国市场总规模的比重将逐步降低。

AI软件市场在五年预测期内有较大发展潜力,规模和增速在本次预测中均有所上调。得益于人工智能技术的不断进步,模型精度显著提高,AI软件在处理海量、高维、复杂的数据方面表现出更高效率。例如,在自然语言处理方面,AI大模型能够更好地识别语义,从而实现更准确、更自然的对话。在计算机视觉方面,AI大模型能够更好地识别图像和视频,从而实现更高的识别准确率和更广泛的应用场景。IDC预测,AI软件支出规模将在2026年增长至76.9亿美元,约占市场总规模的29%,较2021年提升十个百分点。

AI服务市场将会以略低于软件市场的增速进一步扩大规模。其中占主导地位的IT服务领域将在2026年达到32.7亿美元市场规模,较2021年扩大近四倍,五年CAGR接近30%。近年来,AI服务已经成为许多企业使用AI技术的主要方式之一。利用AI服务来处理海量的数据、提高生产力、优化供应链、改善客户体验等。因此,AI服务市场的需求也在不断增长,这也推动了市场规模的扩大。

行业应用

IDC预计,在五年预测期内,AI领域的主要支出仍将来自于专业服务领域的行业用户,紧随其后的是政府和金融行业,三者合计约占市场总量的一半以上。增长最快的行业分别为银行和地方政府,五年CAGR均超23%。具体来看,AI在专业服务领域,可以广泛应用于搜索和推荐、广告营销等,目前ChatGPT已经嵌入必应搜索,带来了更多的智能化和人性化的特性,提升用户的搜索体验和搜索效率,为国内市场提供了新思路。在政府行业,主要应用在公共安全、城市管理和社会服务方面,通过人脸识别和大数据相关技术,识别出潜在的安全风险,此外还可以在办理业务时进行人员核对,提高办事效率。在金融行业主要的应用包括风险管理、欺诈检测、投资分析等,随着数字人的不断进步,金融行业的服务模式也将重塑。

Sharetheimage

应用场景

为了更好的展现市场动态,本次IDC《全球人工智能支出指南》在现有30个应用场景的基础上,新增以下6个应用场景:

自动识别和访问控制AutomatedIdentificationandAccessControl自动检查AutomatedInspection任务处理自动化AutomatedTaskProcessing运营优化OptimisedOperations公共交通调度PublicTransportationScheduling路线规划RoutePlanning

在全部36个应用场景中,IDC预计,增强的智能客服(AugmentedCustomerServiceAgents),销售流程推荐和增强(SalesProcessRecommendationandAugmentation)以及智能业务创新和自动化(SmartBusinessInnovationandAutomation)将会是五年预测期内的焦点场景,并广泛存在于各行业中,超三分之一的市场投资将流向其中。增强的智能客服可以通过AI技术为客户提供个性化的服务,包括智能对话、智能营销等,以提高客户满意度和用户粘性。销售流程推荐和增强可以帮助销售团队更加规范的进行销售方案的输出,在合规的前提下提高销售业绩效率。智能业务创新和自动化可以通过AI技术提高业务流程的自动化程度和智能化水平,包括流程自动化、智能文档管理、数据挖掘和分析等,通过自动化技术赋能企业的效率和创新能力。未来,随着AI技术的不断发展和应用,这些场景也将不断得到优化和升级,为企业带来更多的商业价值。

如需了解更多《全球人工智能支出指南》相关内容,请与IDC中国分析师张雪卿联系,邮箱:xuqzhang@idc.com。

或点击CustomerInsightsQT(idccustomerinsights.com)。

-全文完-

欲了解IDC报告的更多信息,请访问www.idc.com.cn。欲购买报告,请致电+86-10-58891666与IDC中国销售部联系,或发email至frankwang@idc.com。

关于IDC

国际数据公司(IDC)是全球著名的信息技术、电信行业和消费科技咨询、顾问和活动服务专业提供商。IDC在全球拥有超过1300名分析师,为110多个国家的技术和行业发展机遇提供全球化、区域化和本地化的专业视角及服务。IDC的分析和洞察助力IT专业人士、业务主管和投资机构制定基于事实的技术决策,以实现关键业务目标。成立于1964年,IDC是IDG旗下子公司。IDG是全球领先的媒体出版、研究咨询、及会展服务公司。欲了解更多信息,请登录www.idc.com.cn。

-###-

相关咨询,请联系:

王勇,IDC中国副总裁

电话:(+86-10)58891588

电邮:frankwang@idc.com

谢静,IDC中国市场部

电话:(+86-10)58891558

邮箱:mxie@idc.com

扫描微信二维码,关注IDC研究成果,掌握ICT市场脉搏

Sharetheimage

Copythefollowingcodeintoyoursite

CoverageRegionsCovered

China

TopicsCovered

Cognitive/artificialintelligence

艾瑞:2023年中国人工智能行业发展观察

导语:2021年,中国人工智能产业继续大踏步前进,计算机视觉核心产品市场规模接近千亿元,智能语音市场亦保持高速增长。

导语:自2010年人工智能在语音和视觉两个领域产生突破性进展以来,技术突破工业红线就成为社会的共同期待。经过了近年来的高速发展,中国人工智能产品技术已经广泛出现在决定企业产生经济效益的各个环节,推动传统行业启动效率变革、动能转换之路。人工智能作为创业企业标签的属性在变弱,而越来越成为千行百业的经营主体都在积极尝试和运用的生产要素。2021年,中国人工智能产业继续大踏步前进,计算机视觉核心产品市场规模接近千亿元,智能语音市场亦保持高速增长。在未来的发展中,如何像人类一样将多模态信息融合分析、突破依赖数据输入的局限、与知识和常识结合解决高层次问题以及主动感知与适应复杂变化等都将是人工智能技术可期待的下一次拐点。

一、2021年中国人工智能发展概述

1.人工智能将成为数字经济时代的核心生产力

数字经济是以数据为关键生产要素、以现代信息网络为重要载体、以数字技术应用为主要特征的经济形态。发展数字经济,微观上可能重塑传统的企业经营模式和经营理念;宏观上,数据作为生产要素的重要性不断提升,将对现有基于要素比较优势而形成的国际分工格局带来影响。近年来,我国数字经济发展迅速,2020年我国数字经济规模为39.2万亿元,占GDP比重达到38.6%,较2019年提升2.4个百分点,对整体经济产值的影响进一步加大。发展数字经济,将打通供应链上下游、产业链的不同环节与服务链的各个节点,通过产业的数字化升级,实现效率变革、动力变革、质量变革,助力新发展格局的形成与发展。2021年3月我国十四五规划纲要出台,提出“打造数字经济新优势”的建设方针并强调了人工智能等新兴数字产业在提高国家竞争力上的重要价值。人工智能作为关键性的新型信息基础设施,被视为拉动我国数字经济发展的新动能。

2.人工智能于各环节提升经济生产活动效能

人工智能技术及产品在企业设计、生产、管理、营销、销售多个环节中均有渗透且成熟度不断提升。同时,随着新技术模型出现、各行业应用场景价值打磨与海量数据积累下的产品效果提升,人工智能应用已从消费、互联网等泛C端领域,向制造、能源、电力等传统行业辐射。以计算机视觉技术主导的人脸识别、光学字符识别(OCR)、商品识别、医学影像识别和以对话式AI技术主导的对话机器人、智能外呼等产品的商业价值已得到市场充分认可;且除感知智能技术外,机器学习、知识图谱、自然语言处理等技术主导的决策智能类产品也在客户触达、管理调度、决策支持等企业业务核心环节体现价值。

3.资本回暖,过会企业二级市场融资通道即将打开

经过2020年新冠疫情的行业洗牌后,2021年以来,资本回暖,资金流入更为成熟的企业(C轮及以后)的同时,也流入了众多A+轮及以前的初创企业,投资者重拾对人工智能创业回报的信心。此外,多家AI企业集中进行IPO使得行业融资实现了跨越,云从科技、旷视科技、格林深瞳、云天励飞均顺利过会,并拟在科创板上市,其人工智能融资即将打开二级市场的通道。

二、中国计算机视觉赛道发展现状及发展趋势

1.市场规模:市场规模接近千亿元,计算机视觉赛道仍是AI商业化主阵地

自人工智能第三次浪潮兴起以来,计算机视觉一直是商业化落地进程最快的赛道,近年来,在深度学习算法的加持与带动下,计算机视觉技术及软硬件产品在泛安防、金融、互联网、医疗、工业、政务等领域得到广泛应用。通过对下游行业需求统计测算,2021年,中国计算机视觉核心产品的市场规模达到990亿元,已接近千亿元大关。此外,与计算机视觉相关的计算机通信设备销售、工程建设、传统业务效益转化等带动相关产业规模超过3000亿元。

2.投融资市场:随着赛道逐渐趋于成熟,投融资热度出现下滑

2017年至2021年11月,计算机视觉类相关融资事件共计282起,涉及融资总金额达820亿元。2018年是计算机视觉赛道的融资爆发期,融资金额高达273亿元。而2019年以来,受疫情影响以及市场饱和度不断提升,赛道融资热度有所降低,融资轮次与金额再未达到2018年的水平。2021年,计算机视觉赛道融资金额下滑至75亿元,但融资次数较2020年明显提升。计算机视觉头部厂商在部分应用领域深耕多年,市场格局趋于稳定,留给初创企业的机会逐渐减少,因此新进入厂商尝试进入工业、医疗等想象空间大且技术成熟度相对较低的市场,预计新一轮的融资热潮有望在未来2-3年到来。

3.发展特征:工业与医疗成为近年来计算机视觉最受关注领域

2017年至2021年11月,国内共有198家计算机视觉企业获得投资,其业务领域遍布公安、交通、金融、工业、医疗等各行各业。近年来,计算机视觉产品技术在工业与医疗领域的应用受到极大关注,制造业是国民经济的支柱,对计算机视觉的使用包括智慧现场安监、智能辅助运输、工业视觉质检以及智能工业机器人等方向,链条长且场景多样,孕育了一批新兴AI企业;医疗领域,以计算机视觉为核心技术的医学影像辅助诊断产品已经由实验室走进各大医院之中,AI医学影像辅助诊断的普及对于减轻医生负担、提升基层医疗机构诊断水平有着重要意义与价值,也是近期资本市场关注的焦点。

4.发展趋势:多模态信息融合分析以及主动感知将是计算机视觉实现飞跃的下个关口

计算机视觉作为商业化程度最高、应用场景最广的人工智能赛道,从技术层面来看,在分类、定位、检测、分割等基本语义感知研究任务上已经取得很好的表现,在真实场景中也能够较好应对实战考验。在未来的发展中,如何像人类一样将多模态信息融合分析、适应三维世界、突破依赖数据输入的局限、与知识和常识结合解决高层次问题以及主动感知与适应复杂变化等都将是计算机视觉技术可期待的下一次拐点。

从未来市场发展来看,通用技术的平台化输出以及公安、金融等具备明确政策支持且产品普及度已经较高的领域目前已基本被互联网巨头、安防头部企业以及AI上市企业或独角兽等玩家占据,市场格局已逐步明朗;而工业、医疗和能源等极具战略意义的新兴领域还拥有极大的发展空间,但对于上述或陷入长审批周期、或限于审慎性难以快速释放需求的行业,计算机视觉企业的主要机遇则在于抢先打通产品进入行业生态圈的渠道和链条,以及谋划通过政府、行业生态圈的核心集团企业等途径,积极参与公共服务平台建设,建立从上向下拓展的先发优势,抢先获得大量训练数据与场景理解,形成产品提升的护城河。

三、中国智能语音赛道发展现状及发展趋势

1.市场规模:垂类语音核心产品规模近60亿,AI语音助手算法产值约24亿

智能语音技术可通过声音信号的前端处理、语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)等形成完整的人机语音交互。智能语音技术落地分为三类应用场景,分别为以语音识别、语音合成和语音转写为主的垂类应用、消费级智能硬件中加载的语音助手和ChatBot对话机器人产品。2020年,垂类语音核心产品规模约为58亿,AI语音助手算法产值约为24亿。未来随着疫情催化和产业的数智化转型加速,垂类语音应用在教育、公安和医疗等领域加速场景落地,且智能硬件搭载AI语音助手的功能性定位让其随着智能终端的规模扩大具备强需求增长动能。两类智能语音应用未来增长态势趋显,2021年至2026年的五年CAGR将分别达到21.3%和35.4%。

2.投融资市场:资本市场回归平稳,2021年垂类初创企业较为活跃

2018年至2021年11月,智能语音类相关融资事件共计120起,涉及融资总金额达153亿元。从融资热度来看,智能语音赛道在2018年进入快速发展期,2019年进入融资爆发期,而后进入平稳发展阶段。从融资轮次来看,智能语音企业融资阶段多集中在A+轮及以前和PreB到B+轮,两者占比高达72%。2021年,切分垂类场景的智能语音初创企业较为活跃,新进入厂商纷纷瞄准以医疗、招聘、工业等为代表的智能语音市场,期望获取行业经验和细分场景加成下的竞争性优势。

3.发展特征:智能语音与语义理解、知识图谱、行业应用的创新发展

在技术侧,智能语音行业发展仍然面临着声纹识别的不稳定性、语音识别的鲁棒性以及训练场景的长尾性的落地挑战;而在应用侧,智能语音技术已逐步从纯技术形式应用,转向“语音+AI技术+行业“的创新式发展。受供给侧的业务增长突破和需求侧的客户诉求推动,智能语音技术调用不仅是单纯为转写“人说了什么”或者输出“机器要说什么”,而是正逐步与语义理解、知识图谱等AI技术融合,让使用智能语音技术的机器本体更加具备认知性和行业关联性,结合行业Know和甲方需求输出整体性、结果导向性的实用解决方案。

4.发展趋势:智能语音加速产业落地融合,硬件中语音交互入口的功能性定位带来强需求增长动能

目前,智能语音的语音识别、语音合成和语音转写能力已落地应用在互联网、医疗健康、司法、教育和工业等多行业领域。基于智能语音技术实现文本到语音、语音到文本的快速转换,在各产业应用中实现语音文本的信息同步,让资料整理和信息检索都更加方便快捷,让机器与人类的交互更加快速直接。从规模占比来看,互联网、司法和教育仍占据三大头部应用领域。从业务增长性来看,国家颁布教育“双减”政策,课后服务学生的自主阅读学习给智能语音应用产品带来较大市场;另外在医疗信息化背景下,医疗加速智能应用体系建设,以语音应用为入口切入电子语音病历、导诊机器人、辅助诊断治疗等领域,已从三甲医院逐步向下渗透。未来,消费级硬件所搭载的AI语音算法将成为硬件智能化的基础标配门槛,随着物联网和5G的技术发展,智能硬件带来强大增长动能,AI语音助手的算法产值也将不断升高。

四、中国AI企业典型案例解析

1.易道博识:聚焦文字、人脸与图像识别的AI技术研究与应用开发服务商,以一站式机器学习训练平台为底座,打造高效的AI模型应用

易道博识由来自中科院、清华大学、北京大学等的多名顶尖人工智能专家共同组建,是国家级高新技术企业及专精特新企业,拥有发明专利、实用新型专利50余项,计算机软件著作权35项,商标知识产权30余个。公司致力于人工智能领域的技术研究与应用开发,基于自主研发的赛博(CyberBot)机器学习平台,实现文字识别、人脸识别、图像识别三大核心技术功能,为证券、银行、保险、互联网、汽车金融、地产多个行业量身打造AI+智能OCR识别解决方案,现已与600多家知名企业和机构建立合作。

赛博(CyberBot)学习平台是易道博识自主研发的一站式机器学习训练平台,集智能数据管理、数据标注、模型训练和模型部署应用功能于一身,提供计算机视觉、OCR和NLP等领域数据驱动模型应用的高效解决方案。该平台可有效缓解B端、G端逐渐增长的、从感知到认知多类型的AI应用模型开发、训练到部署的完整需求,输出AI技术服务能力,提高AI应用模型在各行业的渗透速率与价值空间。赛博平台可以根据客户需求整体部署到客户的私有化环境里,实现内部循环,一方面保证了数据安全性,一方面大大降低了编程工作量和使用门槛、节约了AI开发时间、减轻了对专业数据科学家与算法工程师的依赖,按需柔性匹配生产。

2.慧算账:以平台为内部开发管理工具,对外提供AI智慧财税服务,助力客户实现数字化转型

慧算账致力于使用AI工具为中小微企业提供AI智慧财税服务,以改善并解决数字经济背景下国内财税服务市场面临的业务痛点即中小企业需记账报税、但外聘会计成本高,部分代理记账公司数字化程度低且记账服务专业性差等问题。慧算账SaaS财税服务平台集成了记账报税、知识库、智能客服与CRM等模块,采用了RPA的自动化技术与OCR、ML、KG、NLP等AI技术,针对财税服务市场的业务痛点做通用与定制化的应用开发,目前已开发出票据识别、智能记账等应用。从服务模式看,慧算账以SaaS财税服务平台为内部开发管理工具,对外输出AI智慧财税服务与工具,助力记账报税的自动化、释放人力,为中小微企业的数字化与智能化转型提供了便捷灵活的创新型财税服务。

以票据识别与记账、智能会计核算、知识图谱问答为例,慧算账提供了便捷高效的AI智慧财税服务。票据识别方面,可实现自动化的格式统一与图像质量矫正,识别出票据类型(发票、回单、交通票、费用票等),并自动导入数据信息。智能会计核算方面,可自动将文字转化为词向量、实现数据归一,并根据输入信息搭建业务模型,输出指定的结果。知识图谱方面,可自动提取问题中的关键词,更新知识存储,基于知识库回答会计问题,提升记账的专业性。从效果上看,慧算账为下游的中小企业提供的智慧财税服务覆盖数百个科目、近千个业务场景,业务自动化能力超95%,助力客户实现数字化转型;同时,慧算账也为其他代理记账公司提供AI工具,提升其记账服务的数字化与智能化水平。

(本文为艾瑞网独家原创稿件转载请注明出处)

2023年中国面向人工智能的数据治理行业研究报告

原创艾瑞艾瑞咨询

数据治理丨研究报告

核心摘要:

治理需求热潮:企业在数字化转型过程中先建设后治理的常态,使得数据治理愈发受到企业重视,另一方面,新兴技术与应用场景的快速落地,也带领数据治理需求在加速攀升。未来,随着非结构化数据的积累增加与AI应用的数据需求推动,企业对非结构化数据的价值化需求将加速释放,而多源异构数据基础下的数据治理模块也将获得进一步的关注与优化。

治理体系升级:目前传统数据治理体系多停留在结构性数据化治理工作,尚难满足AI应用对数据的高质量要求。企业可吸收传统体系的智慧沉淀,以AI应用数据需求为核心,优化建设“面向人工智能的数据治理”体系,显著提升AI应用的规模化落地效果。依托于数据与AI模型的紧密关联,数据治理与AI应用产品已逐步开展交汇融合,厂商参与更加多元,咨询公司、数据服务提供商和人工智能产品服务商三方阵营构建行业竞合格局。2021年面向人工智能的数据治理市场规模约为40亿元,预计五年后规模将突破百亿。

治理实践洞察:本篇报告选择金融、零售、医疗和工业四大典型行业为切入点,分析呈现各行业的信息化建设阶段与高频高价值的AI应用场景,并基于高频高价值AI应用引发的数据治理需求,对面向人工智能的数据治理体系搭建给到建设指导,同时对数据治理陷阱与发展趋势给到洞察分析:1)企业需避免落入“数据埋点大而全”的治理陷阱;2)供需两侧需共同保证数据治理体系建设后的运营流转;3)企业需建立符合管理现状及发展需求的数据安全治理框架,确保数据全周期的安全与合规;4)联邦学习技术可带来数据安全合规线内的共同富裕;5)数据的“自治与自我进化”成为未来数据处理发展的必由之路,为企业打造“治理+AI”体系的良性循环。

数据:范围界定

信息经济的“货币”,早已不限于数字形式

数据的价值被不断认可,“数据资产化”已经成为了企业发展的重要组成部分。长期以来,数据被理解为以数字形式存储的信息,而目前技术可以测量更多的事件和活动,人们可以收集、存储并分析这些不被视为传统数据的各类信息,如邮件、图片、音视频等。数据可根据其特性及治理方法差异划分为内部数据与外部数据,结构化数据、非结构化数据与半结构化数据,元数据与主数据等。

数据量:爆发式增长

基础设施“扩容”、IoT广泛连接带来的数据量暴涨

数据时代来临,数据量的暴涨为企业数字化提供了基础支撑,大量的业务数据能够被采集、存储并最终创造经济效益。而很多企业在前期的信息化建设中,缺乏统筹规划,为解决当下业务问题而按照垂直的、个性化的业务逻辑独立采购与部署IT系统,导致企业内部形成多个数据孤岛。数据不规范、不一致、难以互联互通成为普遍问题,阻碍企业去充分发挥数据价值。这种先建设后治理的常态,使得数据治理越来越受到企业的普遍重视,另一方面,新兴技术与应用场景的快速落地,也带领数据治理需求在加速攀升。

数据治理:需求释放

治理需求普遍存在,非结构化数据成为价值挖掘的重难点

企业历经数字化转型不同阶段时,需通过数据治理解决数据在生产、管理和使用中的问题,而数据治理的需求与复杂度也会随着企业数字化程度提升而增加。从企业内部的数据类型来看,非结构化数据占企业内数据总量的80%,却仅占整体使用率的30%,长期以来其价值未得到充分有效利用。未来,随着非结构化数据的积累增加与AI应用的数据需求推动,企业对非结构化数据的价值化需求将加速释放,而多源异构数据基础下的数据治理模块也将获得进一步的关注与优化。

数据治理:范围界定

数据治理为实现企业数据应用服务的重要环节

数据治理以数据源汇入为伊始,对数据进行清洗加工,并在数据存储、数据计算、数据服务应用等环节予以持续的治理服务,是企业实现数据服务与应用的重要环节。从数据层面来看,数据本身存在着从生产到消亡的生命周期,而数据治理会在数据生命周期的各阶段通过相应工具与方法论进行规范与定义,在企业内部构建出切实有效的数据闭环,使数据发挥出更大的价值。

数据治理:体系架构

结合企业的特点及需求,设计符合企业要求的数据治理架构

虽然业界对数据治理的定义不尽相同,但涉及的数据架构模块大体一致,核心包括数据标准管理、数据集成管理、元数据管理、主数据管理、数据资产管理、数据质量管理、数据模型管理、数据服务与数据安全管理模块。依托于企业对数据治理的侧重点不同,数据治理体系与架构也会根据企业所在的行业特点、经营性质及信息化程度的不同而有所差异。在实际设计时,一方面,企业可参考先进体系框架与行业最佳实践,另一方面,企业也需从实际需求与发展需要出发,设计搭建适合自身情况的数据治理架构。

AI应用规模化

AI技术创新应用大规模落地,带动大数据智能市场蓬勃发展

近年来,随着新技术模型出现、各行业应用场景价值打磨与海量数据积累下的产品效果提升,人工智能应用已从消费、互联网等泛C端领域,向制造、能源、电力等传统行业辐射。各行业企业在设计、采购、生产、管理、营销等经济生产活动主要环节的人工智能技术与应用成熟度在不断提升,加速人工智能在各环节的落地覆盖,逐渐将其与主营业务相结合,以实现产业地位提高或经营效益优化,进一步扩大自身优势。AI技术创新应用的大规模落地,带动了大数据智能市场的蓬勃发展,同样也为底层的数据治理服务注入了市场活力。

大数据智能市场的行业规模

2021年市场规模约为553亿元,金融数据率先得到价值释放

据艾瑞咨询统计测算,2021年涵盖大数据分析预测(机器学习/深度学习模型)、领域知识图谱及NLP应用的大数据智能市场规模约为553亿元,预计2026年市场规模将达到1456亿元,2021-2026CAGR=21.3%。随着市场大数据基础的完善与数据需求的唤醒推动,大数据智能市场的规模将持续走高,但未来在行业理性建设与增量市场逐步完善的大背景下,大数据智能市场增速会出现下降趋势。从细分结构来看中,金融领域的数据价值率先得到释放,市场规模占比高达32%。

大数据智能市场的投融资热度

融资规模稳步提升,事件数量创历史新高

从2011-2021年的投资数量来看,资本市场对大数据智能市场的关注度不断提高,融资事件逐年攀升,2021年大数据智能市场单年投融资数量已高达99起;从2011-2021年的融资轮次来看,C轮及早期投融资事件占比达到50%。受政策的高度支持与技术的成熟推动,大数据智能应用在多行业的成功落地极大地增强了市场与投资者的信心,“大数据智能”标签已成为市场创业与投资的热点,具备市场想象空间与明确使用价值是企业早期吸引投资的关键。

大数据智能产业生态圈

面向人工智能的数据治理:需求传导

人工智能应用引发的数据治理需求

企业在部署AI应用时,数据资源的优劣极大程度决定了AI应用的落地效果。因此,为推进AI应用的高质量落地,开展针对性的数据治理工作为首要且必要的环节。而对于企业本身已搭建的传统数据治理体系,目前多停留在对于结构性数据的治理优化,在数据质量、数据字段丰富度、数据分布和数据实时性等维度尚难满足AI应用对数据的高质量要求。为保证AI应用的高质效落地,企业仍需进行面向人工智能应用的二次数据治理工作。

面向人工智能的数据治理:反复治理

面对反复的治理工作,搭建针对性体系解决重复性环节

数据治理在人工智能项目的实施中花费90%以上的精力,而面对企业的各人工智能项目,在AI数据层面多存在反复治理工作,极大拉低了AI应用的规模化落地效率。借助有效的方法论和实用的工具提高数据治理的效率,是企业管理数据资产与实现AI规模化应用的重要课题。搭建面向人工智能的数据治理体系,可将面向AI应用的数据治理环节流程化、标准化和体系化,降低数据反复准备、特征筛选、模型调优迭代的成本,缩短AI模型的开发构建全流程周期,最终显著提升AI应用的规模化落地效率。

面向人工智能的数据治理:体系搭建

吸收传统体系智慧沉淀,以AI应用数据需求为核心优化建设

面向人工智能的数据治理是传统数据治理体系在以AI应用落地为导向下的体系“升级”。从数据管理维度来看,面向人工智能的数据治理体系仍会根据数据结构化流向、数据资产管理需要、数据安全需求等角度顺应搭建元数据管理、数据资产管理、主数据管理、数据生命周期管理和数据安全隐私管理等组件模块。而在数据治理过程中,则会更强调底层实现多源数据融合、数据采集频率、数据标准建立、数据质量管理,满足AI模型所需数据的规模、质量和时效,以AI应用的数据需求为核心,优化对应模块的体系建设。

面向人工智能的数据治理:数据准备

基于AI模型需求明确数据的特征准备、实时与否和闭环流通

从搭建流程来看,AI模型可大致分为离线训练和上线推理两个阶段。离线训练时,需基于AI模型运行目的确认数据采集来源,选择数据对应的时间间隔和时间节点,让AI能够在离线建模及上线运行后获取真实业务数据,模型训练效果能够保质保量落地。如果模型需要AI数据的实时接入,还需打造批流一体式的产品体系。基于实时数据处理、实时特征开发和实时应用开发等数据架构搭建批流一体的数据产品,将流式数据的接入实时反馈到模型运行输出,使模型结果更加及时准确。另外,AI模型上线后,需达到AI数据的闭环流通,通过打造数据采集和回馈分析的闭环式自学习体系,达到AI模型上线后的持续迭代优化。

面向人工智能的数据治理:数据质量

对应AI应用的高质量要求,唤醒沉睡数据,挖掘核心价值

多源异构数据的质量管理体系可从数据有效性、数据一致性、数据唯一性、数据时序性、数据完备性、数据完整性、数据合理性和数据准确性六个维度建立。其中,传统数据治理体系同样会高度关注数据的有效性、一致性和唯一性,但当数据治理范围扩大到多源异构数据时,需在数据融合过程中对这三个维度进行重新判断。数据时序性是对数据时间维度的质量要求,考虑数据接入的实时性和如何选择数据的时间间隔;数据完备性要求数据需符合多维度字段特征以满足建模,数据完整性则对数据从历史到上线反馈的完整性接入以达到优质闭环;数据合理性和数据准确性则是对数据本身表达的更高质量要求。传统数据治理体系为做数据可视化和数据基本分析应用服务时,不会过多考虑到数据分布是否合理及表达内容是否准确等问题。然而在AI模型开发训练时,数据的合理分布和准确表达极大程度上决定了AI模型的分析决策效果,因此在面向人工智能的数据治理体系中,数据合理性和数据准确性的质量评估是体系需重点关注提升的维度模块。

面向人工智能的数据治理:数据标准

为AI模型开发提供“一致的数据语言”,实现数据复用共享

数据标准是数据治理工作的开展基础,为AI模型开发及应用提供“一致的数据语言”。在面向人工智能的数据治理体系中,数据标准的建立仍是数据实现共享流通、价值挖掘的核心环节。企业根据对应的国家标准、行业标准、地方标准等规范,结合自身情况和业务术语参考,以AI应用需求圈定的数据范围为治理导向,构建相关基础数据标准、指标数据标准和数据模型标准,形成全局统一的数据定义与价值体系。

面向人工智能的数据治理:特征管理

将多源异构数据源转化为机器可理解的“结构化数据”

在圈定AI数据源范围并接入相应数据后,特征管理中台会对数据进行预处理,基于AI应用的数据要求处理缺失值、异常值、重复值和数据格式等问题,而后经过特征工程转化为人工智能模型可理解的结构化数据。在特征化工程环节中,面向人工智能的数据治理体系可浓缩沉淀业务场景中的数据治理和模型开发经验,对AI数据形式进行标准定义,搭建特征管理中台,将特征工程环节标准化、自动化、智能化,快速对接得到可被机器理解的优质结构化数据,投喂给AI模型。

面向人工智能的数据治理:效果优化

显著提升AI应用的规模化落地效果

数智融合产业带来多元厂商参与

数据治理与AI应用开展交汇融合,厂商参与更加丰富多元

依托于数据与AI模型的紧密关联,数据治理与AI应用产品已逐步开展交汇融合,展现“由数据治理到开发AI应用平台/产品”与“AI应用平台/产品开发到面向AI的数据治理”的两路发展方向:1)数据治理厂商在积累数据经验与AI模型理解后,为实现业务拓展而将领域从数据层延伸至AI应用及平台开发层;2)从事AI应用及平台开发的AI厂商,也会在数据治理经验不断丰富的背景下,着手向底层开展面向AI的数据治理业务,依托于自身AI技术与业务理解,让面向AI的数据源更加契合AI应用模型要求以提升模型拟合效果。因此,面向AI的数据治理从业者不仅仅为数据治理厂商,更包括众多AI企业,参与者更加丰富多元。

数智产业生态圈的受益节奏

三方阵营厂商构建行业竞合格局

AI应用的加速落地带来的大量数据治理需求,吸引众多厂商参与其中。从行业厂商类型来看,主要包括咨询公司、数据服务相关提供商和人工智能产品提供商三类。各类厂商根据自身业务特点和切入方式获得差异化的竞争优势,而由于面向人工智能的数据治理服务的参与立足点丰富,厂商之间可能基于同类业务展开竞争,同时在差异化领域进行合作,形成竞争与合作高度共存的行业格局。

数智产业生态圈的参与立足点

“智”为面向人工智能的数据治理服务的核心立足点

面向人工智能的数据治理服务常包含于数据服务、平台能力和数据产品三类采购形式中。第一类,数据服务即以单独的数据治理产品形式出现;第二类,数据平台,主要包括大数据平台、数据中台、数据仓库和AI能力平台等项目;第三类,数据产品,范围限定在应用AI算法的数据产品,可划分为机器学习产品、自然语言理解产品和知识图谱三类AI产品。为保证AI算法模型的优质运行效果,更好地提供预测、决策、推荐和风控等产品功能,需要对算法模型的训练原料,即支持AI应用的底层数据,进行针对性优化治理。如今AI产品需求旺盛,AI开发平台陆续推进AI产品的规模化落地,且AI数据治理效果与最终平台产品交付效果紧密相连,AI应用驱动成为面向人工智能的数据治理服务的核心立足点。

面向人工智能的数据治理:市场规模

2021年市场规模约为40亿元,预计五年后规模突破百亿

2021年中国面向人工智能的数据治理市场规模约为40亿元。受数据平台服务、数据治理服务和AI应用建设的需求推动影响,面向人工智能的数据治理市场规模将持续上升,2026年突破百亿,达105亿元,2021-2026CAGR=21.3%。2021年,中国数据治理市场规模约为121亿元。作为数据服务的基础工作,中国数据治理市场规模将保持上扬态势,预计2026年市场规模达到294亿元,2021-2026CAGR=19.5%。从发展曲线来看,中国数据治理与面向人工智能的数据治理市场规模增长均处于良性区间,共同巩固相关治理产业生态圈的向好形势。

面向人工智能的数据治理:时机路径

契合客户的数据基础和AI应用需求的多元化选择

从数据基础的维度划分,可将企业分为数据原生企业与非数据原生企业。数据原生企业往往不需要信息化、数字化转型,所要做的即为让数据共享流通的规范式管理。非数据原生企业天然缺乏以软件和数据平台为核心的数字世界入口,往往要进行企业的数字化转型,需通过数字化转型程度与数据治理阶段判断非数据原生企业的数据基础优劣。面对不同企业类型,可结合企业数据基础与AI应用需求,为面向人工智能的数据治理的体系搭建提供契合路径,完成企业数据体系的进一步升级。

数据埋点的大而全陷阱

抓大放小,从核心数据着手

数据埋点是指针对特定用户行为或事件进行捕获,处理和发送的相关技术及其实施过程,是数据治理中范围圈定的一环。出于对投资回报的考虑,客户往往倾向于做一个覆盖全业务和技术域的、大而全的数据治理项目,将每个数据都纳入到数据治理的范围中,这就导致进行数据埋点时放纵提需,埋点需求爆炸,给后续的数据治理和数据分析带来隐患。为避免数据埋点的大而全陷阱,企业应该做到抓大放小,谨记2/8原则——80%的问题产生于20%的系统和数据——从最核心的系统、最重要的数据、最容易产生问题的地方开始着手做数据治理。

数据治理体系的流转运营

沟通、组织、聚焦、文化

为能充分发挥数据治理的价值、避免一次性数据治理,供需两侧要齐心协力,共同、持续、优质地运营数据治理体系。数据治理是系统性工程,是由上至下指导,由下而上推进的体系工作。因此,供给侧企业与需求侧厂商,在体系运营和建设方面需形成共识,具备明确的目标、合理的组织、严格的监管、完善的系统,这样才能使数据治理工作得到保障,达到体系的流转运营。

关注数据治理中的安全合规性

完善数据安全治理框架,确保数据安全合规

数据泄露事件在大数据时代层出不穷,随着行业新网络形态、新技术以及新应用场景的发展,新的数据类型、数据生产方式、数据处理方式和终端形式不断涌现,数据安全挑战也随之加剧。国家已出台各级各行业的法律法规及配套文件,不断加大数据安全与隐私保护的监管力度。对此,企业需建立符合企业管理现状及发展需求的数据安全治理框架,数据在采集、存储、传输、处理上均有对应的执行管理依据,做到挖掘数据资产、发挥数据价值的同时,确保数据全周期的安全与合规。

联邦学习带来数据治理升华

治理升华,数据安全合规线内的共同富裕

在数据治理及准备过程中,企业一方面需要尽可能全面的获取数据以扩充训练样本规模,另一方面出于隐私与安全的相关要求不能随意收集、融合和使用数据进行AI处理。为解决以上难题,联邦学习技术应运而生。联邦学习的建模原理为基于分布在多个设备上的数据集构建机器学习模型,通过安全多方计算、差别隐私、同态加密等技术为模型提供隐私保证以防数据泄露。因此,联邦学习可有效打通企业间的数据孤岛,并将数据可用而不可见,在满足数据安全合规的基础上,通过连通协同发挥出数据的更高价值。目前,联邦学习技术已成为大数据智能厂商的核心开拓方向,率先在金融、医疗和政务等领域展开应用。

数据的“自治与自我进化”

将数据治理流程化、自动化、智能化

数据规模的指数级增长给数据治理工作带来巨大压力,传统人工方式做数据的清洗、分辨与调优使治理工作耗时冗长,带来高昂的人力成本,且愈发难以满足智能应用对数据在规模量与质量的高要求,传统的人工数据治理工作已变得捉襟见肘。如今,人工智能和RPA等技术手段已被逐渐应用于数据治理的模型管理、质量管理、资产管理、元数据管理等模块,最终实现数据系统的“自治与自我进化”。总体来看,前沿技术手段应用可以让数据治理工作趋于流程化、自动化与智能化,同时让数据变得可扩展、更负责可溯、更可信,已然成为未来数据管理发展的必由之路。

打造“治理+AI”体系的良性循环

相互关联,互为依托,共同促进人工智能应用的内外发展

面向人工智能的数据治理充分利用机器学习技术,将数据治理环节自动化、智能化,可极大提升数据治理工作效率,同时基于自然语言理解和知识图谱挖掘关联非结构化数据的应用价值,解决数据质量管理的传统难题,使治理后的数据更加契合AI应用的要求,从效率和质量双侧推进AI模型的落地应用。同时,AI应用落地效果的显著优化也会给企业带来更多智能化转型信心,让其加大相关AI项目的预算投入,进一步推进了相关治理体系建设,打造“治理+AI”的良性循环。

原标题:《2022年中国面向人工智能的数据治理行业研究报告》

阅读原文

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇