博舍

AI人工智能组成有什么 人工智能的组成有哪些种类呢

AI人工智能组成有什么

智能是无形的。它由-

推理学习解决问题知觉语言智能

下面简要介绍所有组件-

推理

这是一套程序,使我们能够为判断,制定决策和预测提供基础。大致有两种类型-

归纳推理演绎推理它进行具体的观察以作出广泛的一般性陈述。它从一般性陈述开始,考察可能性以达到一个特定的,合乎逻辑的结论。即使所有的前提在陈述中都是真实的,但归纳推理允许结论是错误的。一般来说,如果一类事情是真的,那么这个类的所有成员也是如此。例如 - “Nita是老师,Nita很好学,所以老师都很好学。”例如 - “所有60岁以上的女性都是奶奶,Shalini 已经65岁了,因此 Shalini 是奶奶。”学习-l

学习的能力被人类,动物的特定物种以及AI支持的系统所拥有。学习分类如下-

听觉学习

它通过听力和听力来学习。例如,听录音讲座的学生。

情节学习通过记住人们目睹或经历的一系列事件来学习。这是线性和有序的。

运动学习它通过肌肉的精确运动来学习。例如,挑选对象,写作等

观察学习通过观看和模仿他人来学习。例如,孩子试图通过模仿她的父母来学习。

感性学习它是学习认识到,一个之前已经看到过的刺激。例如,识别和分类对象和情况。

关系学习它涉及在关系属性的基础上学习区分各种刺激,而不是绝对属性。例如,在烹制上次咸的土豆时添加“少量少量”的盐,当因为当时加入一大汤匙盐。

空间学习-通过视觉刺激来学习,如图像,颜色,地图等。例如,一个人可以在实际跟随道路之前在脑海中创建路线图。刺激反应学习-当某种刺激存在时,学习执行特定的行为。例如,一只狗在听到门铃时抬起耳朵。

解决问题人们通过走一条被已知或未知的障碍阻挡的道路,从现在的情况中感知并试图达到期望的解决方案。解决问题还包括决策制定,即从多种选择中选择最合适的替代方案以达到预期目标的过程。

知觉这是获取,解释,选择和组织感官信息的过程。感知假设感知。在人类中,知觉受感觉器官的帮助。在人工智能的领域,感知机制以有意义的方式将传感器获取的数据放在一起。

语言智能这是一个使用,理解,说话和写作口头和书面语言的能力。这在人际交往中很重要。

人工智能常见算法简介

人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?

一、按照模型训练方式不同可以分为监督学习(SupervisedLearning),无监督学习(UnsupervisedLearning)、半监督学习(Semi-supervisedLearning)和强化学习(ReinforcementLearning)四大类。

常见的监督学习算法包含以下几类:(1)人工神经网络(ArtificialNeuralNetwork)类:反向传播(Backpropagation)、波尔兹曼机(BoltzmannMachine)、卷积神经网络(ConvolutionalNeuralNetwork)、Hopfield网络(hopfieldNetwork)、多层感知器(MultilyerPerceptron)、径向基函数网络(RadialBasisFunctionNetwork,RBFN)、受限波尔兹曼机(RestrictedBoltzmannMachine)、回归神经网络(RecurrentNeuralNetwork,RNN)、自组织映射(Self-organizingMap,SOM)、尖峰神经网络(SpikingNeuralNetwork)等。(2)贝叶斯类(Bayesin):朴素贝叶斯(NaiveBayes)、高斯贝叶斯(GaussianNaiveBayes)、多项朴素贝叶斯(MultinomialNaiveBayes)、平均-依赖性评估(AveragedOne-DependenceEstimators,AODE)贝叶斯信念网络(BayesianBeliefNetwork,BBN)、贝叶斯网络(BayesianNetwork,BN)等。(3)决策树(DecisionTree)类:分类和回归树(ClassificationandRegressionTree,CART)、迭代Dichotomiser3(IterativeDichotomiser3,ID3),C4.5算法(C4.5Algorithm)、C5.0算法(C5.0Algorithm)、卡方自动交互检测(Chi-squaredAutomaticInteractionDetection,CHAID)、决策残端(DecisionStump)、ID3算法(ID3Algorithm)、随机森林(RandomForest)、SLIQ(SupervisedLearninginQuest)等。(4)线性分类器(LinearClassifier)类:Fisher的线性判别(Fisher’sLinearDiscriminant)线性回归(LinearRegression)、逻辑回归(LogisticRegression)、多项逻辑回归(MultionmialLogisticRegression)、朴素贝叶斯分类器(NaiveBayesClassifier)、感知(Perception)、支持向量机(SupportVectorMachine)等。

常见的无监督学习类算法包括:(1)人工神经网络(ArtificialNeuralNetwork)类:生成对抗网络(GenerativeAdversarialNetworks,GAN),前馈神经网络(FeedforwardNeuralNetwork)、逻辑学习机(LogicLearningMachine)、自组织映射(Self-organizingMap)等。(2)关联规则学习(AssociationRuleLearning)类:先验算法(AprioriAlgorithm)、Eclat算法(EclatAlgorithm)、FP-Growth算法等。(3)分层聚类算法(HierarchicalClustering):单连锁聚类(Single-linkageClustering),概念聚类(ConceptualClustering)等。(4)聚类分析(Clusteranalysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(FuzzyClustering)、K-means算法、K均值聚类(K-meansClustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。(5)异常检测(Anomalydetection)类:K最邻近(K-nearestNeighbor,KNN)算法,局部异常因子算法(LocalOutlierFactor,LOF)等。

常见的半监督学习类算法包含:生成模型(GenerativeModels)、低密度分离(Low-densitySeparation)、基于图形的方法(Graph-basedMethods)、联合训练(Co-training)等。

常见的强化学习类算法包含:Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(DeepQNetwork)、策略梯度算法(PolicyGradients)、基于模型强化学习(ModelBasedRL)、时序差分学习(TemporalDifferentLearning)等。

常见的深度学习类算法包含:深度信念网络(DeepBeliefMachines)、深度卷积神经网络(DeepConvolutionalNeuralNetworks)、深度递归神经网络(DeepRecurrentNeuralNetwork)、分层时间记忆(HierarchicalTemporalMemory,HTM)、深度波尔兹曼机(DeepBoltzmannMachine,DBM)、栈式自动编码器(StackedAutoencoder)、生成对抗网络(GenerativeAdversarialNetworks)等。

二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-classClassification)、多分类算法(Multi-classClassification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(AnomalyDetection)五种。1.二分类(Two-classClassification)(1)二分类支持向量机(Two-classSVM):适用于数据特征较多、线性模型的场景。(2)二分类平均感知器(Two-classAveragePerceptron):适用于训练时间短、线性模型的场景。(3)二分类逻辑回归(Two-classLogisticRegression):适用于训练时间短、线性模型的场景。(4)二分类贝叶斯点机(Two-classBayesPointMachine):适用于训练时间短、线性模型的场景。(5)二分类决策森林(Two-classDecisionForest):适用于训练时间短、精准的场景。(6)二分类提升决策树(Two-classBoostedDecisionTree):适用于训练时间短、精准度高、内存占用量大的场景(7)二分类决策丛林(Two-classDecisionJungle):适用于训练时间短、精确度高、内存占用量小的场景。(8)二分类局部深度支持向量机(Two-classLocallyDeepSVM):适用于数据特征较多的场景。(9)二分类神经网络(Two-classNeuralNetwork):适用于精准度高、训练时间较长的场景。

解决多分类问题通常适用三种解决方案:第一种,从数据集和适用方法入手,利用二分类器解决多分类问题;第二种,直接使用具备多分类能力的多分类器;第三种,将二分类器改进成为多分类器今儿解决多分类问题。常用的算法:(1)多分类逻辑回归(MulticlassLogisticRegression):适用训练时间短、线性模型的场景。(2)多分类神经网络(MulticlassNeuralNetwork):适用于精准度高、训练时间较长的场景。(3)多分类决策森林(MulticlassDecisionForest):适用于精准度高,训练时间短的场景。(4)多分类决策丛林(MulticlassDecisionJungle):适用于精准度高,内存占用较小的场景。(5)“一对多”多分类(One-vs-allMulticlass):取决于二分类器效果。

回归回归问题通常被用来预测具体的数值而非分类。除了返回的结果不同,其他方法与分类问题类似。我们将定量输出,或者连续变量预测称为回归;将定性输出,或者离散变量预测称为分类。长巾的算法有:(1)排序回归(OrdinalRegression):适用于对数据进行分类排序的场景。(2)泊松回归(PoissionRegression):适用于预测事件次数的场景。(3)快速森林分位数回归(FastForestQuantileRegression):适用于预测分布的场景。(4)线性回归(LinearRegression):适用于训练时间短、线性模型的场景。(5)贝叶斯线性回归(BayesianLinearRegression):适用于线性模型,训练数据量较少的场景。(6)神经网络回归(NeuralNetworkRegression):适用于精准度高、训练时间较长的场景。(7)决策森林回归(DecisionForestRegression):适用于精准度高、训练时间短的场景。(8)提升决策树回归(BoostedDecisionTreeRegression):适用于精确度高、训练时间短、内存占用较大的场景。

聚类聚类的目标是发现数据的潜在规律和结构。聚类通常被用做描述和衡量不同数据源间的相似性,并把数据源分类到不同的簇中。(1)层次聚类(HierarchicalClustering):适用于训练时间短、大数据量的场景。(2)K-means算法:适用于精准度高、训练时间短的场景。(3)模糊聚类FCM算法(FuzzyC-means,FCM):适用于精确度高、训练时间短的场景。(4)SOM神经网络(Self-organizingFeatureMap,SOM):适用于运行时间较长的场景。异常检测异常检测是指对数据中存在的不正常或非典型的分体进行检测和标志,有时也称为偏差检测。异常检测看起来和监督学习问题非常相似,都是分类问题。都是对样本的标签进行预测和判断,但是实际上两者的区别非常大,因为异常检测中的正样本(异常点)非常小。常用的算法有:(1)一分类支持向量机(One-classSVM):适用于数据特征较多的场景。(2)基于PCA的异常检测(PCA-basedAnomalyDetection):适用于训练时间短的场景。

常见的迁移学习类算法包含:归纳式迁移学习(InductiveTransferLearning)、直推式迁移学习(TransductiveTransferLearning)、无监督式迁移学习(UnsupervisedTransferLearning)、传递式迁移学习(TransitiveTransferLearning)等。

算法的适用场景:需要考虑的因素有:(1)数据量的大小、数据质量和数据本身的特点(2)机器学习要解决的具体业务场景中问题的本质是什么?(3)可以接受的计算时间是什么?(4)算法精度要求有多高?

有了算法,有了被训练的数据(经过预处理过的数据),那么多次训练(考验计算能力的时候到了)后,经过模型评估和算法人员调参后,会获得训练模型。当新的数据输入后,那么我们的训练模型就会给出结果。业务要求的最基础的功能就算实现了。

互联网产品自动化运维是趋势,因为互联网需要快速响应的特性,决定了我们对问题要快速响应、快速修复。人工智能产品也不例外。AI+自动化运维是如何工作的呢?

参考:《人工智能产品经理–AI时代PM修炼手册》作者:张竞宇

人工智能发展现状及应用

导读:

人工智能(ArtificialIntelligence),英文缩写为AI。人工智能被认为是第四次科技革命的核心驱动力,目前许多领域都在探索AI技术的应用,可谓方兴未艾。那么什么是人工智能,它经历了怎样的发展历程,现阶段发展状况如何,它有哪些应用。本篇文章就为大家做个简单分享。同时也会为大家详细介绍一下百度的AI技术体系。

 

本文主要内容:

1.人工智能概念

①智能

②人工智能

2.人工智能的发展

①人工智能的发展历程

②AI是中国的机遇

3.AI与百度

①百度AI的发展历程

②百度AI的技术体系

③百度AI的场景化应用

 

 

1.人工智能概念

1.1智能

谈到人工智能,需要首先理解“智能”一词的具体含义。智能是指人类才具有的一些技能。人在进行各种活动的过程中,从感觉到记忆再到思维产生了智慧,智慧产生了人类本身的行为和语言,行为和语言统称为能力;智慧和能力结合在一起就是人工智能中的智能一词。

比如,人类的语言表达能力就是一种智能(语言智能);人类进行复杂数学运算的能力也是一种智能(数字逻辑智能);人类的交往能力也是一种智能(人际智能),人们对音调、旋律、节奏、音色的感知能力,也是一种智能(音乐智能)。他们都属于智能的范畴。

1.2人工智能

把智能的概念与人的逻辑理解相结合,并应用到机器中,让机器能更好的模拟人的相关职能,这就是人工智能。人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。

人工智能概念,最早可以追溯到上世纪90年代初,这个时候需要提到一位科学家:图灵。

艾伦·麦席森·图灵(英语:AlanMathisonTuring,1912年6月23日—1954年6月7日),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。

图灵最早定义了什么是人工智能,怎样去界定一个机器(或一个设备)是否具备智能。他最早提出了图灵测试(即:一个人在不接触对方的情况下,经过某种特殊的方式和对方进行一系列的问答,如果在某些时间之内,他无法根据这些问题判断对方是人还是计算机,那么我们就认为这台机器具备智能化的思维)。直到2000年左右,才真正有计算机通过了图灵测试,才实现了一个突破。在2014年图灵测试大会上,出现了一个通过图灵测试的机器(或者称为智能聊天的机器人)。这两年人工智能的高速发展,也印证了最早的图灵测试,这也让我们反向看到了图灵在人工智能定义方面做出的突出贡献。

现今,在做图灵测试时,判断这个设备是否具备人工智能,更多的还是从模拟人的角度来考量。但在当前科技背景下,人工智能需要涵盖更广的内容,它不仅仅要模拟人本身的职能,还需要具备一些扩展、替代甚至延伸的职能。

举个例子,在医疗领域,需要经常在实验室进行病毒化验,人处这样的实验环境下会比较危险,经常会出现一些事故,如果能够用机器替代人来做这些实验,这些事故就可以避免。此时,这台机器就不仅仅是在模拟人,而是在替代人,机器本身就具备了替代人的能力。

当前,很多人在担忧:人工智能的发展会不会对人类造成威胁。其实,目前人工智能还处于早期的阶段(或者称之为婴幼儿阶段),我们还处于弱人工智能时代。

当然,随着时间的推移,将来我们可能会把弱人工智能时代推进到强人工智能,甚至再往前推进到超人工智能和智能爆炸时代。但至少目前,我们离这样的时代还有非常远的距离,要实现这样的目标,需要非常多的时间积累,可能要通过几代人甚至十几代人的努力。所以大家不要有过多的担心,人工智能现在更多的还是用于服务人类,用来提高人们的工作效率。

上图引自MIT大学一位教授。

针对人工智能所覆盖的领域,这位教授提出一个观点:“我们要尽可能避免做这些容易“进水”的工作,以免被日后所淘汰掉”。

这张图水平面以下的工作,如存储,计算、甚至象棋活动等,已经被海平面淹没。在海平面边缘的工作,如翻译、驾驶、视觉和音频等,很有可能在未来的一段时间,随着技术的进步也会被淹没。再来看图上高海拔地区的工作,如艺术创新、科学研究,文学创作等,让人工智能替代人类去做这些工作,在现阶段是比较困难的。要让人工智能实现像人一样具备主观能动性,还需要比较长的时间。我们在选择工作,或者在做技术探索的时候,应该从更高的层面布局,而把那些可以被人工智能替代的工作交给计算机去做,这样我们就可以从一些重复性、冗余性的工作中抽离出来,去专门从事创造性的工作(比如艺术创作等)。

2.人工智能的发展2.1人工智能的发展历程

我们回顾一下人工智能发展的历程。

人工智能并不是特别新鲜的词,在计算机出现后不久,大家就已经开始探索人工智能的发展了。

1943到1956年这段时间,为人工智能的诞生期,期间有很多人尝试用计算机进行智能化的应用,当然此时不能称为人工智能,只是有类似的概念。

人工智能的分水岭是1956年达特茅斯会议,在本次会议上正式提出了AI这个词。

1956到1974年这段时间,是人工智能发展的黄金时代,是人工智能的第1个高速发展期,通常把这段时间称之为人工智能大发现时代。

1974到1980年这6年的时间里,进入了人工智能发展的第1个低谷,在这个低谷期,出现了非常多的问题,比如计算上的问题、存储上的问题、数据量的问题,这些问题限制了人工智能的发展。

1980到1987年这段时间是人工智能的第2个繁荣期。期间诞生了大量的算法,推动了神经网络的高速发展,同时出现了许多专业的科研人员,发表了许多创造性的论文。

1987到1993年这段时间是人工智能的第2个低谷期,期间有个词叫“AI之冬”。有大量的资本从AI领域撤出,整个AI科研遇到了非常大的财政问题,这是导致”AI之冬”的主要原因。

1993年之后,人工智能又进入到高速发展期,期间出现了许多经典案例,比如1997年IBM公司的深蓝案例,2001年IBM的沃森案例,2016年谷歌AlphaGo案例。这些案例是人工智能在应用层面的体现。

上图概括了人工智能的发展历程。

可以看到,从1956年达特茅斯会议AI这个词诞生,一直发展到现在,人工智能共经历了60多年的跌宕起伏,并不是仅在2016、2017这两年间才出现了人工智能这个概念。

从宏观上看,AI的发展历程经历了三次比较大的起伏。

第1次起伏是从1943年到1956年,首次出现了神经网络这个词,把人工智能推到一个高峰,期间出现了许多大发现。而第1次低谷使人工智能进入到了反思的阶段,人们开始探讨人工智能的应用。

第2次起伏是在上世纪80年代,期间BP算法的出现,神经网络新概念的普及,推动了人工智能又进入第2次高峰和发展。然而从1987年到1993年又进入到了了第2次低谷,这主要因为一些财政原因导致。

第3次起伏从2006年开始,由辛顿提出了深度学习的概念,把神经网络往前推动了一大步,也把人工智能推到了高速发展阶段,尤其是近几年在非结构化领域取得了许多突破(例如在语音与视觉方面),给人工智能进入商业化应用带来许多的基础性技术沉淀。

人工智能为什么会在前面的发展过程里遇到了那么多的坎坷?为什么在最近这几年会进入一个高速发展期?

我们归结了近几年人工智能高速发展的三点原因:

①算力飞跃

人工智能(尤其是深度学习),对底层计算能力的要求非常高。早期的计算受到了极大限制,从CPU发展到了GPU,使得算力几乎能达到几倍甚至十几倍量级的增长。再从GPU到TPU,计算速度能达到15~30倍的增长,使得在算力层面不断取得突破。此外,大量云资源的出现将我们计算的成本压到了最低,我们在处理海量计算的同时,也可以享受比较低的成本。再者,芯片技术的发展,使得端处理能力持续提高,这些都帮助我们在算力层面取得了很大的突破。

②数据井喷

从PC互联网时代到移动互联网时代,再到可穿戴设备的应用,都产生了大量的数据。这两年,每年产生的数据量可以达到50%左右的增长。2017年到2018年,这段时间内基本上每个月产生的数据量可以达到几十个亿的量级,数据量已经非常高。物联网的连接,能帮助我们把更多的数据采集回来,帮助我们在数据层面做更多的积累,这是数据井喷带来的积极影响。

③算法突破

近几年来,从机器学习到深度学习,算法不断取得突破。使得我们可以处理更多的大规模、无监督、多层次等复杂业务。

算法、算力、数据是人工智能的三要素,算力是骨骼,数据是血液和食物,算法就是大脑,三者不断取得突破,才能促进人工智能高速发展。

2.3AI是中国的机遇

人工智能技术的发展也促进了很多产业的发展。中国目前有非常好的历史机遇,不仅仅是在技术上有大量的积累,同时,国家也为人工智能的发展提供了非常好的政策环境。此外,市场空间、资金支持、人才储备,也都为人工智能的发展提供了非常好的条件。

通过上图可以看到,人工智能的研发人才目前还比较短缺。图上数据来源于领英在2017年所做的全球AI人才报告。以2017年的数据来看,全球人工智能专业的人才数量超过190万,在这190万人才中,美国处于第一梯队,有85万+;而中国在人工智能领域的人才积累比较少,从数据上来看,目前国内人工智能方面的专业技术人才可能只有5万+,当然这是2017年的数据,现在可能会有一些增长,但是量级也没有达到我们想象的那么大。

所以从国内目前来看,这约5-10万的AI技术人才,对比AI产业的高速发展需求,两者之间有巨大矛盾。那怎样更好的用这些人才作为突破,把人工智能方面的技术人才储备提高到百万级别。这正是整个百度(包括百度的教育合作与共建,包括百度所有对外输出的体系,包括我们今天所做的课程)所努力的方向,我们期望通过百度的技术赋能,真正的帮助人工智能取得更好的人才积累,真正培养一些在未来对人工智能行业有巨大贡献的专业人才,这是百度现在的定位目标。

AI浪潮已然到来,行业人工智能时代已经到来。目前,人工智能已经大量应用在2c和2b领域,怎么让人工智能跟具体行业有更好的接触,产生更多的积累,是我们正在重点探索的方向。

比如百度的搜索引擎,已经融入了很多AI元素。模糊匹配、拍照识图、深度挖掘检索等都应用到了大量的人工智能技术。

再如推荐系统,他会基于个人的一些喜好和历史阅读习惯来给用户做一些内容的推荐和匹配,这是很典型的结合大数据做的精准应用,实际上也属于人工智能的范畴。

再如人脸识别技术、语音技术、智慧交通和无人驾驶等,都是AI技术与行业应用的融合,并且这些技术正在不断取得突破。百度现在L4级别的无人驾驶车已经初步实现了一些小规模的量产,未来会有更多的人将真正的体会到无人驾驶给生活带来的便利。

3.AI与百度

3.1百度AI的发展历程

上图为百度在人工智能领域的发展轨迹,早在2009年,百度就开始尝试探索人工智能相关技术,直到2019年,百度用了近十年的时间布局人工智能。

2009年尝试性布局人工智能,2013年发布IDL,2014年成立硅谷实验室以及百度研究院,2015年首次发布DuerOS,2016年发布百度大脑1.0版本,同年,百度的自动驾驶技术进入试运营状态,2017年是百度人工智能技术高速发展的一年,不仅成立了深度学习国家实验室,同时也成立了硅谷第二实验室以及西雅图实验室,并且Apollo平台开始运行并对外推广,在2018年到2019年,DuerOS和Apollo平台发展到3.0版本,百度大脑发展到5.0版本。经过近十年的发展和积累,百度的人工智能技术目前处于相对领先的位置。

百度在人工智能领域领域取得的进展有目共睹,比如,百度成立了首个国家级AI实验室;2016年被美国《财富》杂志评选为深度学习领域四大巨头之一;百度的刷脸支付、强化学习、自动驾驶等技术入选MIT2017年全球十大突破性技术;在AI领域,百度的中国专利申请超过2000项。

3.2百度AI的技术体系

百度的技术体系非常全面,覆盖了计算体系、大数据技术体系以及人工智能技术体系等,在机器学习、深度学习、区块链、知识图谱、自然语言处理、量子计算等领域均有雄厚的技术积累。这些技术可以按内容划分成三个板块,第一是A板块(即AI技术板块),第二是B板块(即大数据板块),第三是C板块(即云计算板块)。这就是百度在2016年提出的ABC概念。从一开始的1.0版本,发展到如今的3.0版本,代表着百度在人工智能领域的整体布局。在人工智能领域的布局中,百度的探索不仅停留在最核心的技术上,也同时将核心技术与更多的领域相结合,如边缘计算、物联网(InternetofThings,IoT)和区块链等,得到了如ABC+区块链、ABC+DuerOS、ABC+Apollo等对外输出模式,向各行各业提供解决方案。

在A板块中,将百度大脑分成了不同的层次。最底层是算法层,包含机器学习和深度学习算法,使用百度的PaddlePaddle深度学习框架提供算法层的基础支撑;算法层之上为感知层,感知层可分为对声音的感知和对光的感知,其中,对声音的感知主要是语音技术板块,对光的感知主要是图像技术、视频技术、AR/VR等技术板块;在感知层之上是认知层,认知层更多的是处理人类听到和看到的内容,对其进行深度理解,深度理解需要自然语言处理(NLP/NLU)、知识图谱等技术作为支撑,同时也需要积累大量用户画像数据,这些技术能帮助人们快速的理解和分析人类听到和看到的内容,并对内容进行有效的反馈,这是认知层面的技术;在认知层之上是平台层,平台层将底层的内容进行融合、封装,对外提供开放、完整的AI技术,并引入大量的生态合作伙伴,共同探讨人工智能产业的布局。

百度人工智能整体技术体系,最底层是深度学习框架飞桨PaddlePaddle,作为底层计算框架,飞桨PaddlePaddle支撑着上层场景化能力与平台中的全部板块。在场景化能力与平台中,包含了诸多场景大板块,每个大板块下又细分为多个技术板块,比如语音板块包含了语音合成以及语音唤醒等技术板块;计算机视觉技术中的OCR技术,包括传统通用OCR识别,以及垂直领域OCR的识别,可以对30多个OCR识别领域进行精准识别,比如票据识别、证件识别以及文字识别等;在人脸/人体识别板块,同时也会引入图像审核以及图像识别方面的技术;在视频板块,有视频比对技术,视频分类和标注技术,以及视频审核技术;在自然语言处理板块,有机器翻译技术;知识图谱板块,有AR/VR技术。这些板块构成了人工智能体系的技术蓝图。

近两年来,人工智能技术在各行各业中的应用不断加深,实践证明,单一的技术在落地时会受到诸多限制,所以现在人工智能在落地时可能不仅仅用到某一个单独的技术板块,而是需要先把这些板块进行融合,然后再进行实际应用,比如在拍照翻译的应用场景下,既需要用到OCR技术,同时也用到NLP技术。因此在实际应用中,需要综合各个板块的技术,把不同的技术体系和技术内容有机地融合起来,再去解决行业中面临的痛点。

 

3.3百度AI的场景化应用

2014年到2015年期间,在计算机视觉领域的部分场景下,计算机视觉识别准确率已经超过了人眼识别。而利用深度学习技术的计算机听觉识别,在2017年左右也已经超过人耳听力极限。

人工智能业务场景化不仅依赖底层的硬件资源,也需要超大规模的标注数据,这是监督学习的特点,所以在人工智能早期研究中,有评论说“有多少人工就有多少智能”,这句话在特定角度来看是具有一定意义的。在监督学习中,训练模型需要庞大的标注数据,再结合GPU强大的数据处理能力去训练特定模型,也就是从算法的层面去做更多的工作,在训练模型的过程中需要发挥人的主观能动性,更好的解决在行业应用中出现的一些痛点,构建出行业专属的模型。

比如,将人体分析技术应用到实际行业场景中时,需要结合人脸识别技术和人体识别技术。可以通过基础手势识别,识别一个人在开车时有没有系安全带、是不是在打电话等。

利用人体分析技术,可以做到行为识别,首先设定特定区域,然后对区域内的人员行为进行识别,比如人群过密、区域越界、人员逆行、徘徊以及吸烟等,在特定场景下,行为识别能够帮助用户避免安全隐患。

自然语言处理有很多相关技术,比如说词法分析、词向量表示、语义相似度、短文本相似度、情感相似度分析等。这些技术用在不同的应用场景下。

在公检法系统应用中,为了避免出现非常严重的问题,如同案不同判,具体解决方案是当诉讼呈递给法官时,根据当前诉讼内容在公检法系统中寻找历史上类似的案件,参考历史类似案件的判决,给法官提供判案依据。

在媒体领域应用中,对基础的财经类新闻,可以由机器进行新闻文章的编写,即机器写作。这些技术都是基于NLP在相应领域做的智能化应用,可以让编辑或记者从重复性的工作中解脱出来。

人工智能从广义上来看,也包括大数据及云计算相关技术,这些技术也都涵盖在百度AI技术体系中。在大数据领域,主要包括数据采集、数据存储、数据分析以及数据可视化等,利用这些技术,我们在进行模型训练的时候,对数据进行科学的管理可以帮助我们提高模型训练效率。

百度AI技术体系也提供算力层面的支持,通过GPU服务器以及FPGA服务器提供的算力,更好的解决应用层面的问题。

百度AI就是这样一个从基础层,到感知层、认知层的完整体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

回顾

本篇文章,我们和大家分享了人工智能的相关概念,人工智能的发展历程,从中也可以看出AI是我们的历史机遇。同时本文也为大家详细介绍了百度的AI技术体系,经过10余年的努力,百度AI已经形成从基础层,到感知层、认知层的完整技术体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

人工智能的8个有用的日常例子

如果你在谷歌上搜索“人工智能”这个词,然后不知怎的就打开了这篇文章,或者用优步(Uber)打车上班,那么你就利用了人工智能。

人工智能影响我们生活的例子不胜枚举。虽然有人将其称为“机器人以邪恶的天才统治世界”的现象,但我们无法否认人工智能通过节省时间、金钱和精力使生活变得轻松。

[[330378]]

术语

人工智能是指机器通过专门设计的算法来理解、分析和学习数据,从而充当人类思维蓝图的现象。人工智能机器能够记住人类的行为模式并根据他们的喜好进行调整。

在我们的讨论过程中,您将遇到与AI密切相关的主要概念是机器学习、深度学习和自然语言处理(NLP)。在继续之前,让我们先了解这些。

机器学习(ML)涉及通过大数据为例向机器教学有关重要概念的知识,大数据需要被构造(以机器语言)以便机器理解。这些都是通过向他们提供正确的算法来完成的。

深度学习(DeepLearning)比ML领先一步,这意味着它通过表示进行学习,但不需要对数据进行结构化以使其有意义。这是由于受人类神经结构启发的人工神经网络。

自然语言处理(NLP)是计算机科学中的一种语言工具。它使机器能够阅读和解释人类语言。NLP允许自动翻译人类语言数据,并使两个使用不同语言的实体(计算机和人类)进行交互。

现在您已经掌握了术语,让我们深入研究人工智能的示例及其工作方式。

8个人工智能的例子

以下列出了您每天可能会遇到的八个人工智能示例,但您可能没有意识到它们的AI方面。

1.谷歌地图和打车应用

地图应用程序如何知道确切的方向、最佳路线,甚至是道路障碍和交通堵塞呢?不久以前,只有GPS(基于卫星的导航系统)被用作出行的导航。但是现在,人工智能被纳入其中,让用户在特定的环境中获得更好的体验。

通过机器学习,app算法会记住建筑的边缘,在工作人员手动识别之后,这些边缘会被输入系统。这允许在地图上添加清晰的建筑视觉效果。另一个特点是识别和理解手写的门牌号的能力,这可以帮助通勤者找到他们想要的房子。没有正式街道标志的地方也可以用它们的轮廓或手写的标签来识别。

该应用程序已被教会理解和识别流量。因此,它推荐了避免路障和拥堵的最佳路线。基于AI的算法还告诉用户到达目的地的确切距离和时间,因为它被教导可以根据交通状况进行计算。用户还可以在到达目的地之前查看其位置的图片。

因此,通过采用类似的AI技术,各种乘车应用也已出现。因此,每当您通过在地图上定位您的位置来从应用程序预订出租车时,它都是这样工作的。

2.人脸检测与识别

当我们拍照时在脸上使用虚拟滤镜和使用人脸识别码解锁手机是人工智能的两个应用,现在已经成为我们日常生活的一部分。前者包含人脸检测,即识别任何人脸。后者使用人脸识别来识别特定的人脸。

这是如何运作的?

智能机器经常匹配,有时甚至超越的能力。人类婴儿开始识别面部特征,如眼睛、鼻子、嘴唇和脸型。但这并不是一张脸的全部。有太多的因素使人的脸与众不同。智能机器被教导识别面部坐标(x、y、w和h,它们在面部周围形成一个正方形作为感兴趣的区域)、地标(眼睛、鼻子等)和对齐(几何结构)。

人脸识别还被政府机构或机场用于监视和安全。例如,伦敦盖特威克机场(GatwickAirport)在允许乘客登机之前使用面部识别摄像头作为ID检查。

3.文本编辑器或自动更正

当您键入文档时,有一些内置或可下载的自动更正工具,可根据其复杂程度检查拼写错误、语法、可读性和剽窃。

在您流利使用英语之前,一定已经花了一段时间来学习语言。同样,人工智能算法还使用机器学习、深度学习和自然语言处理来识别语言的不正确用法并提出更正建议。

语言学家和计算机科学家一起工作,以教授机器语法,就像在学校一样。机器被提供了大量高质量的语言数据,这些数据以机器可以理解的方式进行组织。因此,即使您不正确地使用单个逗号,编辑器也会将其标记为红色并提示建议。

下次让语言编辑器检查文档时,请知道您使用的是人工智能的许多示例之一。

4.搜索和推荐算法

当您想看自己喜欢的电影或听歌或在网上购物时,您是否注意到建议的内容完全符合您的兴趣?这就是人工智能的功能。

这些智能推荐系统可从您的在线活动中了解您的行为和兴趣,并为您提供类似的内容。通过不断的培训,可以实现个性化的体验。数据在前端(从用户)收集,存储为大数据,并通过机器学习和深度学习进行分析。然后,它可以通过建议来预测您的喜好,而无需进行任何进一步的搜索。

同样,优化的搜索引擎体验是人工智能的另一个示例。通常,我们的热门搜索结果会找到我们想要的答案。怎么发生的?

向质量控制算法提供数据,以识别超越SEO垃圾内容的高质量内容。这有助于根据质量对搜索结果进行升序排列,以获得最佳用户体验。

由于搜索引擎由代码组成,因此自然语言处理技术可以帮助这些应用程序理解人类。实际上,他们还可以通过汇编排名靠前的搜索并预测他们开始键入的查询来预测人们要问的问题。

诸如语音搜索和图像搜索之类的新功能也不断被编程到机器中。如果要查找在商场播放的歌曲,只需将手机放在旁边,音乐识别应用程序就会在几秒钟内告诉您歌曲的内容。在丰富的歌曲数据库中进行筛选后,机器还将告诉您与该歌曲有关的所有详细信息。

5.聊天机器人

作为一个客服,回答问题可能会很费时。一个人工智能的解决方案是使用算法来训练机器,通过聊天机器人来迎合客户的需求。这使得机器能够回答常见问题,并接受和跟踪订单。

聊天机器人被教导通过自然语言处理(NLP)来模仿客户代表的对话风格。高级聊天机器人不再需要特定的输入格式(例如,是/否问题)。他们可以回答需要详细答复的复杂问题。实际上,它们只是人工智能的另一个例子,它们给人的印象是客户代表。

如果您对收到的答复的评价不佳,则机器人会识别出所犯的错误并在下次进行纠正,以确保最大的客户满意度。

6.数字助理

当我们全力以赴时,我们常常求助于数字助理来代表我们执行任务。当您单手开车喝咖啡时,您可能会要求助手给您的妈妈打电话。助理(例如Siri)将访问您的联系人,识别单词“Mom”并拨打电话。

Siri是一个较低层模型的示例,该模型只能在说话时做出响应,而不能给出复杂的答案。最新的数字助理精通人类语言,并集成了高级NLP和ML。他们了解复杂的命令输入并给出令人满意的输出。他们具有自适应能力,可以分析您的喜好、时间表和习惯。这使他们能够以提醒、提示和时间表的形式为您系统化、组织和计划事务。

7.社交媒体

社交媒体的出现为世界提供了一种新的叙事方式,提供了过度的言论自由。然而,这也带来了一些社会弊端,如网络犯罪、网络欺凌和仇恨言论。各种社交媒体应用程序都在使用人工智能的支持来控制这些问题,并为用户提供其他有趣的功能。

AI算法可以发现并迅速删除包含仇恨言论的帖子,速度远比人类快。通过他们以不同语言识别仇恨关键字,短语和符号的能力,这成为可能。这些已被输入到系统中,该系统具有向其词典添加新词的附加功能。深度学习的神经网络架构是该过程的重要组成部分。

表情符号已成为代表各种情感的最佳方式。AI技术也可以理解这种数字语言,因为它可以理解特定文本的含义并提示正确的表情符号作为预测文本的一部分。

社交媒体是人工智能的一个很好的例子,它也能够理解用户产生共鸣的内容并向他们建议相似的内容。面部识别功能还用于社交媒体帐户中,可帮助人们通过自动建议为朋友加标签。智能过滤器可以识别并自动清除垃圾邮件或不需要的邮件。智能回复是用户可以享受的另一个功能。

社交媒体行业的一些未来计划包括使用人工智能通过分析发布和消费的内容来识别心理健康问题,例如自杀倾向。这可以转发给心理健康医生。

8.电子支付

银行现在正在利用人工智能通过简化支付流程来便利客户。

通过观察用户的信用卡支出模式来检测欺诈的方式也是人工智能的一个示例。例如,算法知道用户X购买哪种产品,何时何地购买产品以及价格落在什么价格区间。当有一些不正常的活动不适合用户个人资料时,系统会立即提醒用户X。

总结

人工智能算法超越了人类的能力,可以节省时间,从而使科学家们可以将精力投入到其他更重要的发现中。

我们已经讨论过的人工智能示例不仅可以作为娱乐的来源,而且还提供了我们已变得如此依赖的无数实用程序。人工智能领域仍处于新生阶段,还有更多的发明将更精确地复制人类的能力。

 

 

工业机器人主要由哪些组成

随着中国制造业转型步伐的加快,机器人的使用越来越频繁,作为工厂里的技术工程师必需了解机器人的相关技术,那么通用机器人由什么部件组成呢?

机器人作为一个系统,它由如下部件构成:

机械手或移动车:这是机器人的主体部分,由连杆,活动关节以及其它结构部件构成,使机器人达到空间的某一位置。如果没有其它部件,仅机械手本身并不是机器人。

末端执行器:连接在机械手最后一个关节上的部件,它一般用来抓取物体,与其他机构连接并执行需要的任务。机器人制造上一般不设计或出售末端执行器,多数情况下,他们只提供一个简单的抓持器。末端执行器安装在机器人上以完成给定环境中的任务,如焊接,喷漆,涂胶以及零件装卸等就是少数几个可能需要机器人来完成的任务。通常,末端执行器的动作由机器人控制器直接控制,或将机器人控制器的信号传至末端执行器自身的控制装置(如PLC)。

工业机器人由哪些主要部件组成呢?

驱动器:驱动器是机械手的“肌肉”。常见的驱动器有伺服电机,步进电机,气缸及液压缸等,也还有一些用于某些特殊场合的新型驱动器,它们将在第6章进行讨论。驱动器受控制器的控制。

传感器:传感器用来收集机器人内部状态的信息或用来与外部环境进行通信。机器人控制器需要知道每个连杆的位置才能知道机器人的总体构型。人即使在完全黑暗中也会知道胳膊和腿在哪里,这是因为肌腱内的中枢神经系统中的神经传感器将信息反馈给了人的大脑。大脑利用这些信息来测定肌肉伸缩程度进而确定胳膊和腿的状态。对于机器人,集成在机器人内的传感器将每一个关节和连杆的信息发送给控制器,于是控制器就能决定机器人的构型。机器人常配有许多外部传感器,例如视觉系统,触觉传感器,语言合成器等,以使机器人能与外界进行通信。

控制器:机器人控制器从计算机获取数据,控制驱动器的动作,并与传感器反馈信息一起协调机器人的运动。假如要机器人从箱柜里取出一个零件,它的第一个关节角度必须为35°,如果第一关节尚未达到这一角度,控制器就会发出一个信号到驱动器(输送电流到电动机),使驱动器运动,然后通过关节上的反馈传感器(电位器或编码器等)测量关节角度的变化,当关节达到预定角度时,停止发送控制信号。对于更复杂的机器人,机器人的运动速度和力也由控制器控制。机器人控制器与人的小脑十分相似,虽然小脑的功能没有人的大脑功能强大,但它却控制着人的运动。

处理器:处理器是机器人的大脑,用来计算机器人关节的运动,确定每个关节应移动多少和多远才能达到预定的速度和位置,并且监督控制器与传感器协调动作。处理器通常就是一台计算机(专用)。它也需要拥有操作系统,程序和像监视器那样的外部设备等。

软件:用于机器人的软件大致有三块。第一块是操作系统,用来操作计算机。第二块是机器人软件,它根据机器人运动方程计算每一个关节的动作,然后将这些信息传送到控制器,这种软件有多种级别,从机器语言到现代机器人使用的高级语言不等。第三块是例行程序集合和应用程序,它们是为了使用机器人外部设备而开发的(例如视觉通用程序),或者是为了执行特定任务而开发的。

机器人在其工作区域内可以达到的最大距离。器人可按任意的姿态达到其工作区域内的许多点(这些点称为灵巧点)。然而,对于其他一些接近于机器人运动范围的极限线,则不能任意指定其姿态(这些点称为非灵巧点)。说明:运动范围是机器人关节长度和其构型的函数。

精度:精度是指机器人到达指定点的精确程度说明:它与驱动器的分辨率以及反馈装置有关。大多数工业机器人具有0.001英寸或更高的精度。

重复精度:重复精度是指如果动作重复多次,机器人到达同样位置的精确程度。举例:假设驱动机器人到达同一点100次,由于许多因素会影响机器人的位置精度,机器人不可能每次都能准确地到达同一点,但应在以该点为圆心的一个圆区范围内。该圆的半径是由一系列重复动作形成的,这个半径即为重复精度。说明:重复精度比精度更为重要,如果一个机器人定位不够精确,通常会显示一固定的误差,这个误差是可以预测的,因此可以通过编程予以校正。举例:假设一个机器人总是向右偏离0.01mm,那么可以规定所有的位置点都向左偏移0.01mm英寸,这样就消除了偏差。说明:如果误差是随机的,那它就无法预测,因此也就无法消除。重负精度限定了这种随机误差的范围,通常通过一定次数地重复运行机器人来测定。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇