牛津大学研究:未来具备哪些资质的人,最不容易被机器取代
▲容易被机器取代的工种举例(英国牛津大学调查)
金融、会计、法律业务(如司法代书人等)的大量上榜十分引人注目。这些职业对专业性以及个人应对能力(酌情判断以及表里如一)要求不高,较容易被机器人取代。
当时,这一结论震惊业界,正是由于这份清单的公开,瑞穗等银行将大刀阔斧地做出改革,大量使用机器人和人工智能代替柜员来办理柜台的简单业务。
被取代概率不足1%的职业仅49种,包括工程师、社会工作者、职业生涯指导老师、分子生物学家等研究人员、婚姻咨询师、护士、康复治疗师、应急总指挥等。
02、具备哪些资质的人,最不容易被机器取代?
焦虑和恐慌没有意义,抛开职业不谈,以下我们来重点探讨,具备哪些资质的人,才有可能不被取代呢?
1.必须具备比机器更高的判断能力
富于智慧、伦理性的洞察力和逻辑推理是人类独具的能力。能够凭借这些能力做出优于机器判断的人才不会被淘汰。
研究指出,702种职业中,诸如人类心理和生理的相关服务,处理极端复杂、紧急的情况等,这些难以用合理性和理论解释的工作是不太容易被机器替代的。
此外,有些职业需要具备「从道德标准衍生出来的价值判断以及感觉、感性、情感、美感」。
近年来,在IT和制造业设计领域一线中,艺术类毕业生们(特别是美术、设计)炙手可热。夺人眼球的Web服务和充满感性的设计,具有超乎逻辑的极高价值。
再极端一点看,艺术家才是真正难以被人工智能代替的职业,或者说,机器永远达不到艺术家的高度。未来的艺术家使用人工智能给社会带来独树一帜的表现与附加值的同时,一步步提升着职业存在感,可谓是最理想的工作。
2.凡事多问「为什么」
牛津大学的研究结论尽管令人沮丧,但我们也不能听天由命,坐以待毙。我们要考虑的是:怎样发挥人类不同于AI的优越性?怎样在各项职业中凸显我们的价值?
目前,AI还不具备自我意识和世界观、人生观、价值观等,它们只能像背剧本一样,执行既定程序,无法拥有真正的目的意识,更无法提出「为什么」这样的问题。这也是目前为止AI的一大硬伤。
因此,不管什么职业、什么岗位,要想不被取代,多问问「为什么」。这是显而易见的。
3.学会回答「为什么」
提出一个「为什么」很容易,但回答一个「为什么」,却有着超乎想象的困难。
挖掘事件背后隐藏的深层原因,并以此预测未来,从根本上提出解决问题的金点子——从目前来看,这是人类独具的技能。
每一个「为什么」背后,都可以有各种层次的不同答案。既可以是具体问题的回答,也可能上升到禅学问答等抽象层面。要想让AI根据常识和对方的反应来巧妙地组织答案,AI研究还有很长的一段路要走。
因此,除了多问「为什么」,还要学会多角度地回答「为什么」,充分利用自己的大脑,才可能有机器无法企及的新发现。
更深层次来讲,上述这些思辨和逻辑能力的源头,都指向一项最核心的关键能力——系统思考能力。
面对未来发展的不确定性,系统思考可以帮助我们站得更高,更立体、多维度地理解更大的图景。我们需要看到更大的系统,才能做出更合理的决策。
不谋万世者,不足谋一时;不谋全局者,不足谋一域。
来源:华章管理
文章系转载,仅代表作者观点,
END
公司简介
▼返回搜狐,查看更多
人工智能时代需培养学生怎样能力
“未来人工智能环境下的课堂,可能是‘双师型’的课堂,人机交互、人机结合将成为主要形态。一堂课可能由一名教师和一个机器人共同来上,布置和批改作业、知识点训练、监督学习、学习情况的分析等工作可能由机器人来完成。”在日前召开的第四次全国数据驱动教育改进专题研讨会上,北京师范大学中国教育创新研究院院长刘坚这样描述人工智能时代的课堂。
人工智能不能代替学习
面对席卷而来、被称为人类“第二次零点革命”的人工智能浪潮,互联网时代的教育界,也不那么淡定了。“因为人工智能不是信息化的延续,技术对教育的影响,正在由‘革新’发展为‘革命’。”中关村学院学术委员会原负责人吕文清说,“高级阶段的人工智能具有类人脑的学习力和思考力,将来还能进化到自适应学习,在这个意义上,人工智能拓展了人的思维。人工智能改变的,不仅是教育的边界和方式,整个教育样态也将面临重塑。”
不过,科大讯飞教育研究院院长孙曙辉认为,人工智能不能代替人的思维,不能代替学习,技术也改变不了教育的本质。因此,在当前热炒人工智能概念的大背景下,一定要认清技术与教育的关系,搞清楚哪些是教育本身的问题,哪些是技术可以解决的问题。
高阶认知能力的重要性将更加凸显
在人工智能时代,学生应该具备怎样的能力,才能适应社会需求,在竞争中立于不败之地?
教育部副部长杜占元在去年12月召开的2017未来教育大会上提出,在机器能够思考的时代,教育应着重培养学生的5种能力,即自主学习能力、提出问题的能力、人际交往的能力、创新思维的能力及筹划未来的能力。
教育部科技发展中心原主任李志民说,今天我们说知识就是力量,讲的是如何学习、记忆和掌握更多的知识,讲究知识的系统性,而在人工智能时代,知识是开放的,随时随地可查找、可检索,因此,记忆知识以及知识的系统性不再像今天这样重要了,学生更需要学习如何从已有的知识中挖掘出新应用、新知识,通过已有知识学习新知识,与之对应的知识结构或学习过程就是思维的训练。
“低阶认知技能的重要性会下降,如记忆、复述、再现等初级信息加工任务将更多地被机器代替,而高阶认知能力的重要性会更加凸显,如识别问题、逻辑推理、意义建构、精致思考、自我指导能力等。”吕文清认为,人工智能时代应重点培养学生的终身学习素养、计算思维素养、设计思维素养和交互思维素养,培养学生5种能力——高阶认知能力、创新能力、联结能力、意义建构能力和元认知能力。终身学习素养,主要基于人工智能时代需要更强大和持续的学习力,强调学会学习和建构不断演进的知识框架;计算思维素养,主要基于学习和理解人工智能,强化思考的逻辑和精致。现在很火的编程课程,主要是培养计算思维;设计思维素养,主要基于人工智能时代学生执行困难任务,需要关注项目设计、任务设计和路径设计等高层次管理,重点引导学生学会选择、学会决策、学会判断;交互思维素养,主要基于人工智能时代学生交往方式的变化,需要高级信息素养、媒体素养、沟通交流和技术伦理,重点引导学生学会开源共享、参与协商、组建社区等,理解复杂的相互关系。高阶认知能力,强调独立思考、逻辑推理、信息加工等;创新能力,强调好奇心、想象力和创新思维、创新人格等;联结能力,强调学会统筹、组织资源、建立联系,特别是包括人工智能在内的多个空间的联结;意义建构能力,强调社会情感、责任意识和高感性、高概念等要素;元认知能力,强调学习自我认知、自我监控和自我指导。
“我认为,没有什么能力是贴有人工智能时代专属标签的。随着时代的发展,人类已有的知识和经验变得不重要,而培养学生的综合素质、高阶思维、创新能力等,这些要求无论在哪个时代都是需要的、共通的、不会过时的。”孙曙辉说。
未来的学习将更加个性化
未来的学习,在哪儿学、跟谁学、怎么学?原有的概念可能都会被颠覆。教育又该如何作出调整,以适应新的时代要求?吕文清认为,人工智能时代对学生的学习目标、学习内容、能力层级甚至心智模式,都提出了新的需求。在教学上,人工智能时代要以“思维教学”为主线,既强调基于认知能力的信息加工、分析综合、逻辑推理等高阶思维的培养,还要增加和突出计算思维、设计思维和交互思维的培养。具体落点上,要强调概念性知识、方法性知识和价值性知识的教学,要注重教原理、教统筹、教大观点、教元认知等不可替代的知识,也就是高阶认知和高阶学习。
人工智能对于当前的教育,不只是颠覆和冲击,也会带来促进和改良。李志民说,人工智能时代的教育管理,无论是宏观层面还是微观层面,都更容易做到精细化,对教师的评价会更加全面而科学;可以根据每个学生的智力程度和思维习惯以及学习方式进行教学,实现真正的个性化学习和因材施教。
据了解,目前许多中小学已开设编程、3D打印技术等与人工智能相关的课程,学生学习兴趣特别浓厚。一些学校还以社团和选修课的形式推进机器人、智能汽车、计算机编程等课程的开设与完善,提升学生信息化素养,促进学科知识融合。
人工智能时代,学生获得知识及能力、素养的提升途径无疑会更多元,其中互联网发挥的作用会更大。而人工智能的应用,会让教师从机械重复的工作中解放出来,去做更有价值的工作。孙曙辉认为,在中小学开设编程等人工智能相关课程,有助于训练学生的思维方式,但主要意义在于普及相关科学知识,并不能帮助学生“赢在起跑线”。目前,很多所谓人工智能的应用,包括一些针对职业人群的人工智能培训,都是炒作概念的“伪人工智能”,人工智能在短期内尚难发展到较为高级的阶段。当前市场上已经出现针对中小学生的打着“人工智能”旗号的相关培训班,家长完全没必要怕“掉队”,在现阶段,保持清醒的头脑,不盲目跟风至关重要。(本报记者汪瑞林)
人工智能时代是什么时代?
工业4.0是2013年的汉诺威工业博览会上德国为提升工业竞争力而提出的一个概念。基于工业发展的不同阶段划分出4个时代,即工业1.0蒸汽机时代、工业2.0电气化时代、工业3.0信息化时代和工业4.0智能化时代。显然,这种划分只表示了工业革命以来工业领域的时代变迁。如果说“蒸汽机”、“电气化”可以表示工业革命内涵,那么“信息化”、“智能化”就远远超出了工业领域。把人工智能时代称为第4次工业革命时代显然是错误的。
在“第4次工业革命”这一错误概念的影响下,对人工智能时代性的理解出现了许多混乱。仅从工业生产力变迁的角度来看,划分成蒸汽机工业革命、电气化工业革命、信息化工业革命、智能化工业革命时代,的确具有一定道理,但是,如果把它泛化,认为人工智能的智能化是第4次工业革命时代,甚至由此衍生出第5次工业革命、第6次科技革命、第N次工业革命的提法,显然模糊了人工智能的知识革命与工业革命的本质差异。我们可以从以下5个方面看看人工智能时代与工业革命时代的本质差异:
(1)社会生产力结构的本质差异
工业革命后形成了资本整合下的社会化大生产,其社会生产力结构是“劳动者+机械化工具”,劳动者在知识基础上驾驭工具;人工智能时代,在半导体微处理基础上诞生了智能化工具,智能化工具超越了生产领域、经济领域,全面影响人类社会生活,并且具有独立的财富生产能力,其生产力结构变成了“管理者+智能化工具”。
(2)生产工具的本质差异
机械化工具与智能化工具有本质差异,前者无自主能力,必须由劳动者驾驭,后者有自主能力,可以在无人介入下自主式工作。工业革命后期虽然出现过可以自主运行的自动化工具,但不具有智能行为,它们与计算机软件控制的智能化工具有本质不同。
(3)体力劳动与脑力劳动替代的本质差异
工业革命后,机械化工具以蒸汽机械(以及后来的内燃机械、电动机械)代替劳动者的体力劳动,而人工智能时代,智能化工具普遍代替了人类的脑力劳动。
(4)知识相关性的本质差异
工业革命时代,“知识就是力量”是著名的时代口号,因为驾驭机械化工具都需要相应的知识,工人、技师、工程师形成了严格的知识与技术等级;在人工智能时代,智能化工具具有智力行为能力,使用者不需要有相应的知识。知识与知识行为分离,成为人工智能时代的重要特点。
(5)从经济变革到社会变革的本质差异
工业革命的主要变革是经济基础;人工智能变革后的数字化社会、区块链的无偏见人工智能、诚信体制建设等,从经济基础延伸至上层建筑。同时,从资本时代到金融时代、从贸易全球化到经济全球化、从两种文化到第3种文化,都表明人工智能时代从经济基础到上层建筑的延伸效应。
3人工智能时代是第3次浪潮时代
最早揭示人工智能时代与工业革命时代具有本质差异的是著名的未来学者阿尔文·托夫勒。1980年,阿尔文·托夫勒推出了《第三次浪潮》一书,该书将人类现代文明史划分为3个浪潮时代。阿尔文·托夫勒在书中写道:“到目前为止,人类经历了两次重大的变化浪潮,每一次都抹杀了早期的文化和文明,以前人不能想象的生活方式取而代之。第1次浪潮—农业革命—经历了几千年才结束。第2次浪潮—工业文明的崛起—只有300年的寿命。今天的历史速度更快,很可能第3次浪潮将横扫历史,在几十年内结束。”他十分明确地将“今天的历史”与工业革命时期相分割。26年之后,他在2006年出版的《财富的革命》一书中,将“今天的历史”定义为“知识经济”时代,即一个知识创造财富的时代。
阿尔文·托夫勒首先清醒地、科学地认识到“今天的历史”的时代特征与时代本质,它与“机器”创造财富的工业文明完全不同,是一个用“知识”创造财富的时代。托夫勒还天才地描绘了人类现代文明发展史,几千年农业文明、几百年工业文明、几十年知识经济文明演化速度的倍增现象。所有这些都集中反映人工智能时代托夫勒的知识革命观。必须从知识的本源出发,用知识的创新原理来探索人工智能时代的奥秘。不幸的是,托夫勒未能揭示知识革命的奥秘,对“知识”充满了无奈与绝望。
4人工智能时代是知识革命时代
托夫勒敏锐地认识到,人工智能时代是知识创造财富的知识革命时代,但是,对“知识经济”的定义以及“知识创造财富”的知识革命论述却显得苍白无力。在后来《财富的革命》一书中,他充满了悲观与无奈。托夫勒说:“尽管对新兴的知识经济有着数千种分析和研究,但是,知识对创造财富的影响却一直被低估了,而且现在仍然在被低估。”他充分认识到知识经济时代的知识主导作用、知识探索的重要性,书中也描述了人们对“知识”的无知、漠视与无奈,他在书中写道:知“识已经成为我们经济和社会环境中变化最快的组成部分之一。”“自从‘知识经济’开始半个世纪以来,关于知识经济背后的‘知识’我们却了解得很少,简直少得让我们感到尴尬。托”夫勒虽然界定了今天的时代是与工业革命完全不同的知识创造财富的时代,但是并没有回答知识如何创造财富。这是人工智能时代知识革命必须回答的问题。
“知识创造财富”贯穿于人类的全部历史进程中。在原始社会,人类在知识基础上打造工具、使用工具,开创了“人+工具”的社会生产力的基本结构。其后,一直延续到农业社会、工业社会以及人工智能社会。只是人工智能社会之前的生产力结构是“(人+知识)+工具”,即劳动者在知识基础上驾驭工具;人工智能的社会生产力结构变成了“人+(知识+工具),”即人类将知识成果转移到智能化工具中,劳动者傻瓜化地使用智能化工具,出现了知识从“人”到“工具”的根本性转移。这就是人工智能时代知识创造财富的本质与知识革命的核心所在。
人们普遍意识到知识在社会生产力中的重要作用,因为没有知识,人类就不会使用工具,也不可能创造工具。然而在经济学家、社会学家、历史学家的视野中,“知识”消失了。他们用“劳动者、劳动资料、劳动对象”的生产力结构观来诠释人类社会发展史。
人类对知识的无知,经济学家对知识的忽视,托夫勒对知识的无奈与无助是有道理的。因为,尽管人类对知识的研究远早于自然科学、社会科学,然而,在自然科学、社会科学充分发展的今天,人类对知识的研究一直停留在两千年前坐而论道的“认识论”、“知识论”的哲学陷阱之中。因为,传统概念中的知识一直是虚无缥缈、捉摸不定、隐含在事物之中的东西。只有到了知识从量变到质变的人工智能时代,知识才走到前台,人们才得以从学科视角重新研究“知识”的本质,它的诞生、发展、演化、基本规律,以及它在人工智能时代的财富革命与知识力量变迁。从人工智能的实践中探索知识革命的奥秘,寻找人类知识起源,演化发展的本质与基本规律,创建科学的“知识学”。
人工智能时代的“知识学原理”走出了“认识论”、知“识论”的陷阱,成为指导实践的新兴科学。不但能有效地诠释人工智能的智能生成机理,还将人们对人工智能的认识从“是什么”的低级阶段提升到“为什么”的高级阶段。由于知识的普遍性,”知识学原理”还将全面诠释人类起源、人类演化的生态体系、工具中的第3种知识、从第2种文化到第3种文化,人类工具起源与智能化工具智能生成机理等众多未解之谜。
5人工智能知识革命的时代特征
人工智能时代,是继农业革命、工业革命后,人类现代社会的第3次浪潮时代。正如托夫勒所说,“很可能第3次浪潮将会横扫历史,生存在这个爆炸性时刻的我们会感受到第3次浪潮对这个时代的全面影响。因”此,了解人工智能的时代特征具有重要意义。
(1)人工智能时代是一个动荡的时代
人类历史呈非线性发展特征,百万年的原始社会、万年的农业社会、几百年的工业社会,以及不到百年的人工智能时代。百万年的原始社会是凝固的,万年的农业社会是缓慢的,几百年的工业社会有了显著的变化,不到百年的人工智能时代则是一个激烈动荡的时代,人们会普遍感受到生存环境与社会生活的全面动荡。
(2)人工智能时代是一个人类体力劳动、脑力劳动全面解放的时代
工业革命的动力机械代替了人类的体力劳动、智力革命的智能化工具代替人类脑力劳动,未来,机器人将养活人类,人类社会将进入一个在少数精英引领下的傻瓜化时代。体现群体智力的人工智能远远超越人类个体智力,人们寄希望于人类智慧驾驭人工智能。
(3)人工智能时代是自然人类的终结时代
不到百年的人工智能时代,众多新兴科技(生物科技、生命科技、基因工程、人工生殖、脑科学、脑机工程等)与强人工智能相结合,必将导致自然人类的终结,人们最终将迎来一个非自然人类的新时代。
(4)人工智能时代是生产力结构彻底革命的时代
人类社会生产力结构一般表达形式是“人+工具”,知识隐含其中,成为社会财富生产能力的基础因素。原始社会、农业社会,人类使用简单工具,财富生产能力的“知识重心”在原始人类;工业社会,机械化工具代替了人类体力劳动,财富生产能力的“知识重心”向工具转移;智力革命时代,智能化工具独立的行为能力,将财富生产能力的“知识重心”彻底转移到工具中,实现了生产力结构彻底变革。
(5)人工智能时代是上层建筑革命的时代
农业革命、工业革命是经济领域的革命。人工智能时代,第3种文化以科技文化对人文文化的全面入侵方式彻底改变了人文文化属性,文化艺术领域不再有纯文化、纯艺术;互联网从信息网、物联网到资源网(区块链)的诚信体系建设、去中心化的智能合约、无偏见的人工智能等,表明人工智能进入到伦理时代,从而掀起了上层建筑的全面革命热潮。
人工智能时代的知识革命改变了一切,因为人类社会的一切事物都与知识相关。
从本质上讲,我们这个时代,是人类在外部以人工方式将“知识”变革到“知识行为能力”(即智力)的革命时代。但迄今为止,我们没能用知识的基本原理准确地诠释人工智能时代,对这个时代的认识尚处于模糊阶段。人们需要从不同视角来阐述我们这个时代。(此文发表在《单片机与嵌入式系统应用》2020年第4期学习园地)
6.嵌入式系统中AI和ML的实际应用
免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。返回搜狐,查看更多