人工智能发展目前面临哪些瓶颈!
0分享至自人类社会进入信息时代以来,发展速度最快,最引人瞩目就是人工智能技术。人工智能是新一轮产业转型的核心动力,它将进一步释放前三次工业革命所积累下来的巨大能量,成为第四次工业革命新的、强有力的引擎;重建生产、分配、交换和消费等经济活动的各个方面。从而形成从宏观到微观的新智能需求,催生出新技术、新产品、新产业和新模式,并推动其发展。目前人工智能正在与各行各业加速融合,促进产业升级,提质增效,由于人工智能的快速发展,已经在全球范围内引发了新一轮技术革命的浪潮。今年9月1日,脑机接口现身2022年世界人工智能大会,意味着人工智能又迎来了新的行业风口,它将我们带入人机共生的时代,未来,几乎所有的个人终端,包括手机、智能穿戴设备都将安装着芯片,使家电、社区、城市因此而变得智能化。人机共生时代的到来,标志着人工智能已经处在一个从狭义AI到通用AI的转折点上,这个转折点的到来,而这个转折点的到来离不开过去10年来,数据、算法、和算力的大爆炸。目前,从全球AI发展趋势来看,中美两国处于明显领先地位,两国AI企业数量占比达到了全球一半以上。虽然中国进入AI领域晚于美国,但发展速度更快,截止2021年,中国人工智能企业在全球占比为24.66%,排名第二。AI2000榜单显示,过去10时间里,人工智能科学最有影响力、最具活力的顶级学者,中国入选人数为222人次,位居第二,占比11.1%;美国为1164人次,超过总人数的一半以上,占比58.2%。中美领先于AI不同领域美国领先的领域包括:AI芯片、算法框架、总体算法及AI应用,而且人工智能多场景落地范围更多。中国领先区域包括:数据优势、AI应用、语义识别和专利数据。过去10年里,中国共申请人工智能专利数达50多万件,约占全球总量的66.54%,领先全球。而美国人工智能专利申请数在全球总量的占比为20.49%,与中国差距较大。人工智能发展目前所面临的瓶颈业界学者把人工智能进展中所遇到的瓶颈归结为以下7个:1、数据瓶颈在当前人工智能的研究过程中,机器的“深度学习”是行业研究的核心,也是人工智能目标实现的最根本途径,而它已成为人工智能发展的瓶颈。人工智能在没有解决学习的基本矛盾之前,最好的人工智能也无法与普通的4岁小孩相匹敌。人工智能主要由大数据驱动,深度学习需要大量的数据,而数据的可获得性、数据质量以及数据标注成本等,是制约人工智能发展的一大因素。尤其是当前数据标注需要大量的人力及成本。不过过去一年来,GPT-3预训练语言模型的推出,已经解决了数据标注所需要大量人力成本的问题。2、泛化瓶颈它是模式识别、计算机视觉、人工智能方法面临的一个共同问题,现有方法在一些实际问题中仍无法取得理想的泛化性能,或者训练好的模型用在变化的环境或领域,其泛化性能就会明显下降。3、能耗瓶颈尽管人的大脑是一个通用的人工智能系统,但是能耗很低(只有20瓦),但在现有计算机上实现人工智能系统,则能耗很高。4、语义鸿沟瓶颈目前人工智能的语言服务大多为简单查询,不涉及语义推理问题,缺乏真正的语言理解能力,必然一些有歧义的自然语言句子,人很容易根据上下文或常思理解其真正含义,计算机却很难理解。5、可解释性瓶颈现有人工智能系统都是知其然,而不知其所以然,其过于依赖训练数据,缺乏深层次数据语义挖掘。实际上,可解释性对于人工智能来说十分重要,人工智能只有知其然并知其所以然,才能实现深层智能。看来只有攻克“深度学习”这个核心难题后,才能突破这一瓶颈。以汽车为例,汽车驾驶者对于汽车的构造、原理等一目了然,但在智能化条件下,人工智能汽车对于驾驶者来说只是一个黑匣子,没有可解释性,仅有方向盘、油门、刹车这样一个应用界面。同样,手机、数码相机、电视机相比于过去工业时代的电话机、照相机、电子管电视机而言,毫无可解释性,对于使用者来说就是黑匣子,无人去拆解、修理,了解其内部结构。6、可靠性瓶颈现有人工智能系统的一个突出特点是可靠性较差,有些错误识别结果会带来致命后果,例如特斯拉自动驾驶功能不能正确识别反光条件下的卡车,导致发生了致命车祸。可靠性可以说是当前人工智能所面临的第一大技术瓶颈,人眼识别十分稳定,一个图像出现微小变化,人仍能够一眼看出它是什么,而人工智能在图像识别上却显得能力不足。例如在一只狗的照片中加入杂音,机器视觉系统可能会把它识别为飞机。而这一错误识别,会给人工智能在实际应用中造成安全隐患。7、对抗性瓶颈目前人工智能的对抗性较弱,一个无人机群可以轻松完成灯光秀、农林作业等任务,但这些任务都是在自然环境下完成,如果在高对抗性的人为环境中,无人机的性能就难以胜任。例如在电子竞技和战场环境中,无人机的协同作战能力将会受到很大考验,要在对抗中胜出,需要计算机科学、数学等领域的科学家进行深入的强化学习和博弈论研究,让无人机群能够在高对抗环境中自主找到最优策略,这是人工智能未来发展的科研方向。结语事实证明,科学技术是第一生产力,创新是引领社会发展的第一动力,随着AI基础设施的不断完善,我们已经站在人机共生的历史性拐点上,未来10年,人工智能将迎来其发展的黄金期,越来越多的人工智能技术将会从实验室走向实际应用。美国未来学家雷·库兹韦尔曾在《奇点临近》一书中预测,到2045年,人工智能将逼近甚至超越人类智能。无论这个预测能否实现,人工智能未来将会改变我们的生活,这一点是毋庸置疑的。特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.
/阅读下一篇/返回网易首页下载网易新闻客户端人工智能在医疗健康领域的应用及挑战
一、人工智能概述
1.人工智能发展历程
人工智能(ArtificialIntelligence,AI)是对人的意识和思维过程进行模拟并系统应用的一门新兴科学,其发展经历了三次浪潮。1956年,美国Dartmouth大学举行的聚会是人工智能正式诞生的标志,这一时期使用机械化思考方式和逻辑学知识来解决问题,但对复杂的问题束手无策;20世纪80年代,Hopfield神经网络和BT训练算法的提出,使AI再次兴起,出现了语音识别、翻译等计划,但迟迟未进入人们的生活之中;2006年,Hinton提出深度学习技术,并随着互联网的普及和应用,AI在各个领域迅速得到发展和应用。
2.人工智能的基础和要求
人工智能的核心是算法,基础条件是数据及计算能力。因此,可以认为医疗与人工智能结合的关键要素是“算法+有效数据+计算能力”。先进算法能提升数据使用效率。在医疗领域,有效的医疗大数据是人工智能应用的基础,医疗数据的有效性包括三个方面:电子化程度、标准化程度以及共享机制。电子化程度强调数据和病历的供给量;标准化程度强调数据之间的可比性和通用型;共享机制强调数据获取渠道的便利性和合法性。随着互联网的普及,我国各级医疗机构、健康管理机构、行政机构、居民都已普遍了解互联网并链接互联网,给大数据的实现奠定了基础。
3.医疗健康领域对人工智能的需求
近年来,借助人工智能技术,开展智慧医疗成为医疗领域的热点。2017年7月,国务院印发的《新一代人工智能发展规划》提出,要建立新一代人工智能基础理论体系和关键共性技术体系,加快培养聚集人工智能高端人才。同年12月,工信部印发《促进新一代人工智能产业发展三年行动计划(2018—2020年)》,对医疗人工智能的发展做出了详细的规划,提出要着重在医疗影像辅助诊断系统等领域率先取得突破。2018年,国务院办公厅印发《关于促进“互联网+医疗健康”发展的意见》,明确支持“互联网+医疗保健”的发展,允许依托医疗机构发展互联网医院。事实上,除了医疗影像辅助诊断对AI具有巨大的需求外,辅助诊断、辅助手术、辅助护理、辅助检查、辅助医院管理、辅助挂号、辅助减少计量误差、健康管理、药品研发等医疗健康领域对AI技术都有强大需求。
随着我国人口老龄化程度不断加深,慢性病、癌症发病率逐年上升,以人力为主的各类卫生资源配置不足、分布不均的困境越发突显,AI作为一门综合性极强的交叉学科,将在医疗领域内得到越来越多的应用,并将成为影响医疗行业发展的重要科技手段。
二、医疗人工智能应用现状
目前,人工智能在医疗健康领域已得到了初步的应用,主要集中在辅助影像和病理诊断、辅助护理、辅助随访、基层医生助手、医院智能管理及辅助健康管理等方面。
1.辅助影像和病理诊断
医学影像及病理切片作为结构化数据,是AI应用的绝佳场所。2015年起举办的CAMELYON16挑战赛,比较AI和病理医生在检测乳腺癌患者淋巴结转移病理切片中转移灶的潜力,结果显示AI在诊断模拟中的表现优于病理医师。目前,人工智能辅助影像和病理诊断在国内发展迅速,2006年我国首家独立临床病理诊断专业机构——上海复旦临床病理诊断中心成立,启用数字病理远程会诊平台,免去患者来回奔波。2015年沸腾医疗有限公司以“E诊断医学影像服务平台”为核心,通过“E诊断”医学影像技术专业输出及专业精准的远程医学影像诊疗合作,实现了远程医学影像信息交互的目标。
2.辅助护理
我国台湾医院应用AI产生护理诊断,AI建议的诊断与护士建议的诊断一致百分比高达87%。国外AI已普遍运用于人们的日常生活护理中,日本研究机构Riken开发的机器人Robear,能将病人从床上抬起,帮助行动不便的病人行走、站立等;应用AI开发的机器人能为老年及瘫痪患者提供喂饭、日常照护等服务。澳大利亚养老院用机器人做护工,通过给机器人输入程序,使其可以与老年人一对一交流,消减老年人的苦闷。AI在护理领域的应用,极大减轻了护理人员负担,为患者提供了温暖且有力的服务,是应对老龄化社会的有力帮助。
3.辅助随访
随访是医院常规工作的重要组成部分,然而目前的卫生人力无法满足所有患者的随访需求。AI的发展打破了长期随访在时间和空间上的限制。2017年,海宁市中心医院首次应用AI智能随访助手,采用声纹预测思维算法,语言识别准确率高达97.5%。2018年,上海交通大学医学院附属仁济医院东院日间手术病房正式上线AI随访助手,随访助手可以根据问题模板模拟医生进行电话随访,主要询问患者出院后是否发生呕吐、疼痛、发热、伤口渗血感染等不良情况。随访助手的上线不仅大大提高了随访效率,还确保了随访信息采集的全覆盖及准确性。同时,随访助手可以根据不同的手术种类,制订个性化随访计划,通过终端自动拨打患者电话,模拟人声与患者进行术后随访沟通,并有效采集患者回答的信息。随访结束后,医务人员能清楚地了解每位患者的术后情况。
4.基层医生助手
基层医院在实现“健康中国”战略中有着举足轻重的作用,但目前其服务能力难以满足广大群众的基本需求。AI通过学习海量的专家经验和医学知识,建立深度神经网络,并在临床中不断完善,协助基层医生给群众提供高质量的服务。2017年,科大讯飞和清华大学联合研发的“智医助理”以超过合格线96分的成绩成为全球第一个通过国家执业医师资格考试综合笔试测评的AI机器人,可以辅助基层医生提升诊疗质量和效率。2017年9月,国家在安徽省旌德县首次开展全科医生机器人辅助基层医疗试点,深受基层群众欢迎。
5.医院智能管理
人工智能技术在医院的应用,能提高医院为患者提供正确治疗方案的精准性,减少了患者的不必要支出,并且能合理地为患者安排治疗计划。澳门仁伯爵综合医院应用AI技术,在电子处方系统内设置安全警示,确保用药规范,防止滥用抗生素等药物。美国IBM公司应用机器学习方法,自动读取患者电子病历相关信息,得出辅助诊断信息,实现医疗辅助诊断。
6.辅助健康管理
传统的健康管理技术在信息的获取、处理和应用上相对落后,将AI应用于健康管理,通过对健康数据实时采集、分析和处理,评估疾病风险,给出个性化、精准化的基本管理方案和后续治疗方案,能有效降低疾病发病率和患病率。健康管理机构可以通过手机APP或智能可穿戴设备,检测用户的血压、血糖、心率等指标,进行慢性病管理。国外Welltok公司利用“CaféWell健康优化平台”,管理用户健康,包括压力管理、营养控制以及糖尿病护理等,并在用户保持健康生活习惯时给予奖励。同时,为用户提供更灵活、全方位的健康促进方案,包括阶段性临床护理、长期保持最佳健康状态等多个方面。
三、人工智能存在的问题和挑战
目前,人工智能+健康医疗正在起步阶段,要保证AI在医疗健康领域应用的深入发展,仍有许多亟需解决的问题和挑战。
1.监管缺失
目前,国内尚未出台相关法律法规对AI进行监管,而作为AI的基础医疗大数据也没有完善的法律条文来规范,对数据的隐私保护、责任规范、安全性等没有明确的法律指示。AI在医疗健康领域应用的质量标准、准入体系、评估体系尚是空白,无法对AI数据和算法进行有效验证和评价,不利于监管,阻碍了AI产品在医疗健康领域的应用和发展。
2.数据质量
高质量的医疗数据对提升AI在医疗健康领域应用的准确性有着至关重要的作用,尽管我国医院的数据庞大,但大部分是非结构化数据,不能发挥出“大数据”挖掘的价值。由于疾病的复杂性,数据维度、特性各不相同,质量参差不齐,如将数据细分到每种疾病,可利用的样本量很少。同时, AI的深度学习需要使用大规模规范化数据进行训练,细微的数据误差会对AI发展产生负面影响。我国当前医院与医院、院内科系互不相连,没有统一标准的临床结构化病历报告,医生手写病历不规范,临床用药、检查等细节缺失,患者离开医院后失访率较高等各种原因,造成医疗数据错漏、数据质量低下。
3.伦理问题
AI产品做出的医疗决策是通过机器学习大量的医疗数据模拟医生做出的,大规模医疗数据在使用过程中会有泄露的风险,对个人隐私造成影响。决策是基于算法,而算法在分析数据过程中也会获得类似于人类偏见的思想,导致出现算法歧视的不良后果。算法歧视将带来一系列伦理问题,是AI不可回避的挑战。
4.医保支付
AI应用于医疗健康领域,最核心的问题是谁来买单,因此医保覆盖是一个绕不开的话题。如果由患者自费,那么市场就会缩小,AI产业无法向前发展,也很难证明AI在医疗领域的有效价值。目前,公立医院医保报销压力较大,将AI产品纳入医保,医保报销的资金压力将会激增。同时,互联网医疗由于其特殊的属性,还面临异地结算的难题。
5.人才匮乏
目前,既懂医疗又懂AI技术的复合型、战略型人才极其短缺,其中10年以上资深人才尤为缺乏。同时,医务人员对AI的接纳度不足,部分医务人员甚至对AI抱有抵触心理。AI技术的使用需要对医务人员进行专业化规范培训,在此背景下,建立完善的人才培养和人才引进机制是重中之重。
四、讨论与建议
1.加强行业指导和监管
政府部门应尽快出台人工智能相关法律法规,加强对人工智能的监管,通过强化监管,加强对数据的保护,防止数据泄露导致居民隐私受损,甚至危害国家安全。同时,还应建立AI在医疗健康领域应用的标准规范,保障AI产品的质量。此外,政府部门应明确AI在医疗健康领域的定位,明确医生不会被AI取代,AI只是帮助医生进行临床诊疗,方便患者获得高质量的医疗服务,医生仍对诊断结果负主要责任。政府部门应理性看待新一轮的AI浪潮,提升居民对AI的接纳度,积极引导居民、资本和相关机构按更加合理的速度和方向发展医疗AI。
2.加强核心技术人才培养
面对AI人才匮乏的严峻形势,政府要加强人工智能领域专业建设,培养AI算法和技术方面的优秀人才。推进“新工科”建设,形成“人工智能+X”复合专业培养新模式,推动AI领域国家级精品在线课程建设。同时,建立人工智能学院、研究院或交叉研究中心,引导高校通过增量支持和存量调整,加大对人工智能领域核心人才的培养力度。在职业院校大数据、信息管理相关专业中增加人工智能相关内容,培养人工智能应用领域技术人才。另外,要加强对医务人员使用AI的技能培训,保证AI产品能更好地服务于临床实践。
3.夯实数据基础
IBM公司用于辅助医生设计癌症治疗方案的AI产品沃森,由于使用的不是真实患者的数据训练沃森,沃森开出了不合适且危险的治疗方案。可见,数据的质量和数量是AI竞争的核心所在,目前互联网的基础体系已初步健全,但仍存在许多虚假数据,这与脱离统计模型的桎梏、用全数据即真实数据直接分析的大数据初衷相悖。因此,应打破医疗机构、政府部门的数据壁垒,建立数据共享机制,促进不同机构之间、地区之间的数据联网,形成真正的大数据。由于医疗健康数据种类繁多、标准不统一,应加快医疗数据电子化、标准化的进程,形成规范化AI数据集,夯实AI应用的数据基础。同时,加强信息隐私保护建设,研究数据脱敏技术,保障医疗数据可以实时、准确地进行流通,避免数据泄露的风险。
4.深度推进互联网应用
目前,我国东部地区医疗健康机构已具备互联网基础,但部分中西部地区尚有欠缺,而这些地区由于经济水平较低、医疗水平较差,对远程医疗、人工诊疗助手等AI需求强烈,建议国家有侧重地对中西部地区互联网建设给予政策倾斜,促进互联网应用的全面发展。加强基层医疗机构互联网应用,引导优质的医疗资源下沉至基层,实现资源共享,提高医疗服务水平,推动分级诊疗制度。
五、小结
人工智能的记忆力和计算能力远优于人脑,且可扩充脑容量、延伸脑功能、增强脑负荷,能够成为基层医生的智囊、三甲医院医生的秘书,弥补卫生人力资源不足。目前,我国人工智能尚处于起步阶段,仅具有计算智能,“人工智能+医疗健康”应用的领域将会越来越广,尤其适合社区,通过早发现、早诊断、早治疗,有针对性地进行人群健康干预,降低后续的医疗成本。在医院管理方面,AI可简化行政管理和临床医疗管理流程;在影像诊断领域,AI可快速阅读成像,进行分析和诊断;在医疗资源方面,AI能解决昂贵的剂量误差问题;在诊疗方面,AI可为特定病种初诊,进行辅助手术。总之,AI将在人类生命健康全周期中发挥更大的作用,但真正用于卫生健康的核心领域可能还需一个漫长的过程。
作者:金春林、何达,上海市卫生和健康发展研究中心(上海市医学科学技术情报研究所)。
新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
作者:徐云峰
catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]