人工智能的三大局限性
**任何技术都有局限性,AI和人工智能也不例外。其局限有三:检测、功耗和人力。
思科一份最近的调查显示,39%的CISO称其公司依赖自动化推动网络安全工作,另有34%称依赖机器学习,32%报告称高度依赖人工智能(AI)。CISO如此看好AI令人颇为意外,毕竟,除了识别恶意行为,AI在网络安全方面的应用场景似乎也不是很多。
老实说,AI绝对有益于网络安全。随着恶意软件像流感病毒一样不断自我变异,不使用AI几乎不可能发展出恰当的响应策略。银行或信用卡提供商之类的金融机构也可以通过适当训练的AI大幅强化其SIEM系统,提升欺诈检测和预防能力。但AI并非万灵丹,炒作得再多也不是。事实上,与其他任何技术一样,AI也有其局限性。
骗过一次就能畅通无阻:AI可用于欺骗其他AI
这是个大问题。安全人员用AI优化威胁检测的同时,攻击者也在琢磨着用AI规避检测。公司企业用AI以更高的准确率检测攻击,攻击者就用AI来开发更智能、会进化的恶意软件来规避检测。基本上,恶意软件就是用AI来逃过AI检测。恶意软件一旦通过了公司的AI检测关,可以很轻松在公司网络内横向移动而不触发任何警报,公司的AI会将恶意软件的各种探测行为当做统计错误加以排除。而到恶意软件被检出之时,安全防线早已被洞穿,伤害也可能已经造成。
功耗成问题:低功耗设备可能拖不动AI
物联网(IoT)设备通常都是低功耗小数据量的。如果攻击者成功将恶意软件部署到了这一层次,那AI基本就顶不上用了。AI需要大量内存、算力和大数据才可以发挥作用。而IoT设备通常不具备这几个条件,数据必须发送到云进行处理才可以受到AI的响应。而那时,已经太迟。就好像出车祸时车载AI会自动拨打报警电话并报告车辆所处位置,但车祸已经发生的事实改变不了。车辆自动报警可能比等路人帮忙报警要快一点,但仍然无法预防撞车。AI最多有助于在设备完全失控之前检测出有什么不对劲,或者,在最坏的情况下,让你不至于失去整个IoT基础设施。
已知的未知:AI无法分析自己不知道的东西
严格控制的网络上AI运行良好,但现实世界缤纷多彩不受控。AI有四大痛点:影子IT、BYOD项目、SaaS系统、雇员。无论你给AI灌注了多少大数据,都得同时解决这4个痛点,而这是难度大到几乎不可能的任务。总有雇员会通过不安全WiFi网络在个人笔记本电脑上打开公司的Gmail邮件,然后,敏感数据就此流失,AI甚至连知道这一事件的机会都没有。最终,公司自己的应用可以受到AI保护,防止用户误用,但终端用户使用你根本感知不到的设备你是无法防护的。另外,仅提供智能手机App,不提供企业访问控制,更不用说实时日志的云系统,你又怎么引入AI呢?这种情况,企业没有办法成功利用机器学习。
AI确实有所帮助,但它并非游戏规则颠覆者。AI可用于在受控系统中检测恶意软件或攻击者,但难以防止恶意软件被部署在公司系统中,而且除非你确保它能控制你所有终端设备和系统,否则它一点用都没有。网络攻防战一直在继续,只不过,防御者和攻击者都在用与以往不同的武器,而我们的防御只有在恰当部署和管理之下才会有效。
与其将AI当成网络安全救星,不如把精力放在更基本的老问题上:缺乏控制、缺乏监视、缺乏对潜在威胁的理解。只有了解了用户和用户使用的设备,知道用户都会拿这些设备来干什么,然后确保所用系统能切实受到AI的保护,才可以开始部署并训练AI。
人工智能的三大学派:符号主义、连接主义、行为主义
原标题:人工智能的三大学派:符号主义、连接主义、行为主义
目前人工智能的主要学派有下列三家:
(1)符号主义(symbolicism),又称为逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
(2)连接主义(connectionism),又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义(actionism),又称为进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
1.符号主义
认为人工智能源于数理逻辑。数理逻辑从19世纪末起得以迅速发展,到20世纪30年代开始用于描述智能行为。计算机出现后,又在计算机上实现了逻辑演绎系统。其有代表性的成果为启发式程序LT逻辑理论家,它证明了38条数学定理,表明了可以应用计算机研究人的思维过程,模拟人类智能活动。正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法>专家系统>知识工程理论与技术,并在20世纪80年代取得很大发展。符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要的意义。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流派别。这个学派的代表人物有纽厄尔(Newell)、西蒙(Simon)和尼尔逊(Nilsson)等。
2.连接主义
认为人工智能源于仿生学,特别是对人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络以后,连接主义才又重新抬头。1986年,鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播(BP)算法。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,伟神经网络计算机走向市场打下基础。现在,对人工神经网络(ANN)的研究热情仍然较高,但研究成果没有像预想的那样好。
3.行为主义
认为人工智能源于控制论。控制论思想早在20世纪40~50年代就成为时代思潮的重要部分,影响了早期的人工智能工作者。维纳(Wiener)和麦克洛克(McCulloch)等人提出的控制论和自组织系统以及钱学森等人提出的工程控制论和生物控制论,影响了许多领域。控制论把神经系统的工作原理与信息理论、控制理论、逻辑以及计算机联系起来。早期的研究工作重点是模拟人在控制过程中的智能行为和作用,如对自寻优、自适应、自镇定、自组织和自学习等控制论系统的研究,并进行“控制论动物”的研制。到20世纪60~70年代,上述这些控制论系统的研究取得一定进展,播下智能控制和智能机器人的种子,并在20世纪80年代诞生了智能控制和智能机器人系统。行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。这一学派的代表作者首推布鲁克斯(Brooks)的六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。返回搜狐,查看更多
责任编辑:
人工智能三大流派
从学术的观点看,人工智能主要分三大学派,分别是符号主义学派、连接主义学派和行为主义学派。在对人工智能进行研究时,可能会按照某一理论或方法展开探讨分析,但在实地落地的项目或产品可能综合应用了多个学派的知识。比如,最近我们为某制造企业提供智能客服系统,其中语音识别、语音合成和语义理解技术等属于连接主义的成果,同时,也使用了知识库等属于符号主义的成果。一、符号主义学派符号主义,又称逻辑主义、心理学派或计算机学派,是一种基于逻辑推理的智能模拟方法,认为人工智能源于数学逻辑,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。该学派认为人类认知和思维的基本单元是符号,智能是符号的表征和运算过程,计算机同样也是一个物理符号系统,因此,符号主义主张(由人)将智能形式化为符号、知识、规则和算法,并用计算机实现符号、知识、规则和算法的表征和计算,从而实现用计算机来模拟人的智能行为。其首个代表性成果是启发式程序LT(逻辑理论家),它证明了38条数学定理,表明了可以应用计算机研究人的思维过程,模拟人类智能活动。此后,符号主义走过了一条启发式算法——专家系统——知识工程的发展道路。专家系统是一种程序,能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。1980年卡内基梅隆大学为数字设备公司设计了一个名为XCON的专家系统,在1986年之前,它每年为公司省下四千万美元。专家系统的能力来自于它们存储的专业知识,知识库系统和知识工程成为了上世纪80年代AI研究的主要方向。专家系统仅限于一个专业细分的知识领域,从而避免了常识问题,其简单的设计又使它能够较为容易地编程实现或修改。专家系统的成功开发与应用,对人工智能走向实际应用具有特别重要的意义,也是符号主义最辉煌的时候。但凡事有利有弊,专家系统仅仅局限于某些特定情景,且知识采集难度大、费用高、使用难度大,在其它领域如机器翻译、语音识别等领域基本上未取得成果。日本、英国、美国在80年代初都曾制订过雄心勃勃的人工智能研发计划,如日本的第五代计算机项目,其目标是造出能够与人对话、翻译语言、解释图像,并且像人一样推理的机器,但直到1991年,这个目标依然未能实现。20世纪80年代末,符号主义学派开始走向式微,日益衰落,其重要原因是:符号主义追求的是如同数学定理般的算法规则,试图将人的思想、行为活动及其结果,抽象化为简洁深入而又包罗万象的规则定理,就像牛顿将世间万物的运动蕴含于三条定理之中。但是,人的大脑是宇宙中最复杂的东西,人的思想无比复杂而又广阔无垠,人类智能也远非逻辑和推理。所以,用符号主义学派理论解决智能问题难度可想而知;另一个重要原因是:人类抽象出的符号,源头是身体对物理世界的感知,人类能够通过符号进行交流,是因为人类拥有类似的身体。计算机只处理符号,就不可能有类人感知,人类可意会而不能言传的“潜智能”,不必或不能形式化为符号,更是计算机不能触及的。要实现类人乃至超人智能,就不能仅仅依靠计算机。1997年5月,名为“深蓝”的IBM超级计算机打败了国际象棋世界冠军卡斯帕罗夫,这一事件在当时也曾轰动世界,其实本质上,“深蓝”就是符号主义在博弈领域的成果。【网图,符号主义代表作——知识库】二、连接主义学派连接主义,又称仿生学派或生理学派,是一种基于神经网络和网络间的连接机制与学习算法的智能模拟方法。连接主义强调智能活动是由大量简单单元通过复杂连接后,并行运行的结果,基本思想是,既然生物智能是由神经网络产生的,那就通过人工方式构造神经网络,再训练人工神经网络产生智能。1943年形式化神经元模型(M-P模型)被提出,从此开启了连接主义学派起伏不平的发展之路。1957年感知器被发明,之后连接主义学派一度沉寂。1982年霍普菲尔德网络、1985年受限玻尔兹曼机、1986多层感知器被陆续发明,1986年反向传播法解决了多层感知器的训练问题,1987年卷积神经网络开始被用于语音识别。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下基础。1989年反向传播和神经网络被用于识别银行手写支票的数字,首次实现了人工神经网络的商业化应用。与符号主义学派强调对人类逻辑推理的模拟不同,连接主义学派强调对人类大脑的直接模拟。如果说神经网络模型是对大脑结构和机制的模拟,那么连接主义的各种机器学习方法就是对大脑学习和训练机制的模拟。学习和训练是需要有内容的,数据就是机器学习、训练的内容。连接主义学派可谓是生逢其时,在其深度学习理论取得了系列的突破后,人类进入互联网和大数据的时代。互联网产生了大量的数据,包括海量行为数据、图像数据、内容文本数据等。这些数据分别为智能推荐、图像处理、自然语言处理技术发展做出卓著的贡献。当然,仅有数据也不够,2004年后大数据技术框架的行成和图形处理器(GPU)发展使得深度学习所需要的算力得到满足。在人工智能的算法、算力、数据三要素齐备后,连接主义学派就开始大放光彩了。2009年多层神经网络在语音识别方面取得了重大突破,2011年苹果工作将Siri整合到iPhone4中,2012年谷歌研发的无人驾驶汽车开始路测,2016年DeepMind击败围棋冠军李世石,2018年DeepMind的Alphafold破解了出现了50年之久的蛋白质分子折叠问题。近年来,连接主义学派在人工智能领域取得了辉煌成绩,以至于现在业界大佬所谈论的人工智能基本上都是指连接主义学派的技术,相对而言,符号主义被称作传统的人工智能。虽然连接主义在当下如此强势,但可能阻碍它未来发展的隐患已悄然浮现。连接主义以仿生学为基础,但现在的发展严重受到了脑科学的制约。虽然以连接主义为基础的AI应用规模在不断壮大,但其理论基础依旧是上世纪80年代创立的深度神经网络算法,这主要是由于人类对于大脑的认知依旧停留在神经元这一层次。正因如此,目前也不明确什么样的网络能够产生预期的智能水准,因此大量的探索最终失败。【网图,大数据用途之一】三、行为主义学派行为主义,又称进化主义或控制论学派,是一种基于“感知——行动”的行为智能模拟方法,思想来源是进化论和控制论。其原理为控制论以及感知——动作型控制系统。该学派认为:智能取决于感知和行为,取决于对外界复杂环境的适应,而不是表示和推理,不同的行为表现出不同的功能和不同的控制结构。生物智能是自然进化的产物,生物通过与环境及其他生物之间的相互作用,从而发展出越来越强的智能,人工智能也可以沿这个途径发展。行为主义对传统人工智能进行了批评和否定,提出了无须知识表示和无须推理的智能行为观点。相比于智能是什么,行为主义对如何实现智能行为更感兴趣。在行为主义者眼中,只要机器能够具有和智能生物相同的表现,那它就是智能的。这一学派的代表作首推六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。另外,著名的研究成果还有波士顿动力机器人和波士顿大狗。你可以在网上搜到它们各种炫酷的视频,包括完成体操动作,踹都踹不倒,稳定性、移动性、灵活性都极具亮点。他们的智慧并非来源于自上而下的大脑控制中枢,而是来源于自下而上的肢体与环境的互动。行为主义学派在诞生之初就具有很强的目的性,这也导致它的优劣都很明显。其主要优势便在于行为主义重视结果,或者说机器自身的表现,实用性很强。行为主义在攻克一个难点后就能迅速将其投入实际应用。例如机器学会躲避障碍,就可应用于星际无人探险车和扫地机器人等等。不过也许正是因为过于重视表现形式,行为主义侧重于应用技术的发展,无法如同其他两个学派一般,在某个重要理论获得突破后,迎来爆发式增长。这或许也是行为主义无法与连接主义抗衡的主要原因之一。【网图,行为主义的代表作——波士顿大狗】四、总结综上所述,我们可以简略地认为符号主义研究抽象思维,连接主义研究形象思维,而行为主义研究感知思维。符号主义注重数学可解释性;连接主义偏向于仿人脑模型;行为主义偏向于应用和身体模拟。从共同性方面来说,算法、算力和数据是人工智能的三大核心要素,无论哪个学派,这三者都是其创造价值和取得成功的必备条件。行为主义有一个显著不同点是它有一个智能的“载体”,比如上文所说到的“机器狗”的身体,而符号主义和连接主义则无类似“载体”(当然你也可以认为其“载体”就是计算机,只不过计算机不能感知环境)。人类具有智能不仅仅是因为人有大脑,并且能够保持持续学习。机器要想更“智能”,也需要不断学习。符号主义靠人工赋予机器智能,连接主义是靠机器自行习得智能,行为主义在与环境的作用和反馈中获得智能。连接主义和行为主义都使用强化学习方法进行训练。三者之间的长处与短板都很明显,意味着彼此之间可以扬长补短,共同合作创造更强大的强大的人工智能。比如说将连接主义的“大脑”安装在行为主义的“身体”上,使机器人不但能够对环境做出本能的反应,还能够思考和推理。再比如,是否用可以符号主义的方法将人类的智能尽可能地赋予机器,再按连接主义的学习方法进行训练?这也许可以缩短获得更强机器智能的时间。相信随着人工智能研究的不断深入,这三大学派会融合贯通,可共同为人工智能的实际应用发挥作用,也会为人工智能的理论找到最终答案。