博舍

人工智能课程论文docx 人工智能与人工生命的联系与区别论文

人工智能课程论文docx

人工智能课程论文.docx

文档编号:24493793上传时间:2023-05-28格式:DOCX页数:12大小:165.92KB

人工智能课程论文

人工智能课程论文

题目:

人工智能:

用科学解密生命与智慧

姓名:

学号:

指导老师:

 

摘要

本文是对人工智能及其应用的一个综述。

首先介绍了人工智能的理论基础以其与人类智能的区别和联系。

然后简要介绍了人工智能的发展现状以及未来趋势,并列举了一些人工智能在生活中的应用。

对人工智能的一个热门分支——神经计算进行了着重介绍,人工神经网络通过模拟人脑的学习机制,将人工智能的重点从符号表示可靠的推理策略问题转化到学习和适应的问题,描述了其在字符识别问题上的实际应用。

 

一,人工智能与人类智能  4

1,  什么是智能?

  4

2,  机器智能不等同于人类智能  5

二,人工智能当前进展  6

三,人工智能在生活中的应用  7

四,人工智能的前沿分支:

神经计算  9

1,  人工神经网络:

从大脑得到灵感  9

2,  神经网络应用实例:

基于Deepautoencoder的字符图像识别  10

五,人工智能未来发展趋势  12

小结  13

参考文献  14

 

一,人工智能与人类智能

人工智能(ArtificialIntelligence,AI)是计算机科学的一个分支,它关心智能行为的自动化。

AI是计算机科学的一部分,因而必须建立在坚实的理论知识之上并应用于计算机科学领域。

它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

1,什么是智能?

虽然大多数人确信看到智能行为是能判断它是智能的,但是似乎没有人能够使“智能”的定义既足够又具体以评估计算机程序的智能性,同时又反映了人类意识的生动性和复杂性。

这样实现一般智能就是塑造特定智能的人工制品。

这些制品通常以诊断、预测或可视化工具实现,能够使得人类使用者完成复杂的任务。

例如:

用语言理解的马尔可夫模型,提供新数学理论的自动推理系统,通过大脑皮层网跟踪信号的动态贝叶斯网络,以及基因表达的数据模式的可视化,等等。

因此,定义人工智能完全领域的问题就变成了定义智能本身的问题:

智能是一种独立的才能,还是一系列独一无二且不相关的能力的总称?

在多大程度上可以说智能是学到的不是预先存在的?

准确的说,学习时发生什么?

什么是创造力?

什么是直觉?

智能是从可观察行为推断出的,还是需要特定内部机制的证据?

在一个生物体的神经组织中,知识是以何种方式表示的?

什么是自觉,它在智能中起着怎样的作用?

另外,有必要按照已知的人类智能模式来设计智能计算机程序吗?

智能实体是不是需要只有在生物中存在的丰富感受和经历?

这一系列的问题很难回答,但这些问题帮助我们勾勒出现代人工智能研究的核心问题以及求解方法。

实际上,人工智能提供了一种独特而强大的工具来精确探索这些问题。

AI为智能理论提供了一种媒介和实验台:

首先用计算机程序语言表达出这些理论,然后在实际计算机上执行来进行测试和验证。

2,机器智能不等同于人类智能

玛丽·雪莱在她的《弗兰肯斯坦》一书的序言中这样写道:

大多是拜伦勋爵和雪莱之间的对话,而我只是一个虔诚、安静的听众。

其中有一次,他们讨论了各种哲学学说,以及有关生命原理的问题,并且谈到这些原理有否可能曾被发现和讨论过。

他们谈及了达尔文博士的实验(我不能确认达尔文博士是否真正做过这个实验,我只是说当时有人讲他做过这样的实验),他把一段蠕虫(vermicelli)储藏在玻璃罐中,在采取了一些特殊方法之后,它开始自发运动。

难道生命不是这样形成的吗?

或许死尸还可能复活;流电电流实验已经让我们看到了这样的迹象:

生命体的组成部分可以被制造、组合并注入活力(Butler1998)。

玛丽·雪莱告诉我们,诸如达尔文的进化论和发现电流这样的科学进步已经使普通民众相信:

自然法则并非奥妙无穷,而是可以被系统分析和理解的。

弗兰肯斯坦的魔鬼并不是“萨满教”咒语或与地狱可怕交易的产物;而是由一个个单独“制造”的部件组装起来的,并且被注入了强大的电能。

尽管19世纪的科学还不足以使人认识到理解和创造一个完全智能主体的意义,但它至少加深了这样的认识:

生命和智慧的奥秘可以被纳入到科学分析中。

也就是说,人可以让机器拥有所谓的“智能”。

[1]

1936年,哲学家阿尔弗雷德·艾耶尔思考心灵哲学问题:

我们怎么知道其他人曾有同样的体验。

在《语言,真理与逻辑》中,艾尔建议有意识的人类及无意识的机器之间的区别。

1950年,图灵发表了一篇划时代的论文,文中预言了创造出具有真正智能的机器的可能性[1]。

 由于注意到“智能”这一概念难以确切定义,他提出了著名的图灵测试:

如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。

这一简化使得图灵能够令人信服地说明“思考的机器”是可能的。

论文中还回答了对这一假说的各种常见质疑。

[2] 图灵测试是人工智能哲学方面第一个严肃的提案。

1952年,在一场BBC广播中,图灵谈到了一个新的具体想法:

让计算机来冒充人。

如果不足70%的人判对,也就是超过30%的裁判误以为在和自己说话的是人而非计算机,那就算作成功了。

2014年6月8日,一台计算机成功让人类相信它是一个13岁的男孩,成为有史以来首台通过图灵测试的计算机。

这被认为是人工智能发展的一个里程碑事件,但专家警告称,这项技术可用于网络犯罪。

[3-5]    。

尽管图灵测试具有直观上的吸引力,图灵测试还是受到了很多无可非议的批评。

其中一个重要的质疑时它偏向于纯粹的符号求解任务。

它并不测试感知技能或要实现手工灵活性所需的能力,而这些都是人类智能的重要组成部分。

另一方面,有人提出图灵测试没有必要把机器智能强行套入人类智能的模具之中。

人工智能或许本就不同于人类智能,我们并不希望一台机器做数学题像人类一样又慢又不准,我们希望的是它自身有点的最大化,比如快速准确的处理数据,长久的存储数据,没有必要模仿人类的认知特征。

但是,人工智能中一部分主要的研究着偏重于研究对人类智能的理解。

人们为智能活动提供了一种原型实例,一些应用(比如诊断理解)通常有意地将模型建立在该领域的权威专家的解决过程上。

更为重要的是,理解人类智能本身就是一个吸引人的、有待研究的科学挑战。

二,人工智能当前进展

1问题的求解

人工智能中的问题解求,就是如何让机器去解决人类会遇到的问题,如何根据某一具体问题找到思考问题并解决这个问题的方法。

目前,人工智能技术已经可以通过计算机程序解决了如何考虑要解决的问题,并能寻求较为准确的解决方案。

2逻辑的推理与定理的证明

人工智能研究中最持久的探究领域之一就是逻辑推理。

有关定理的证明就是让机器证明非数值性的真假。

其中比较重要的是,通过找到合理、准确的方法,集中注意力在大型数据库中的有效事实,关注可信度证明,并在出现新信息时适时修改这些证明。

[2]

3人工智能应用之自然语言的处理

智能的另一表现就是进行自然语言的交流,自然语言处理就是让机器与人类进行无阻碍的沟通,这正是人工智能技术应用于实际领域的典型范例。

目前此领域的主要研究内容是:

如何利用计算机系统以主题和对话情境为基础,生成和理解自然语言。

[3]

4人工智能应用之模式的识别

如何使机器具有感知能力也是智能的表现。

模式的识别是利用人工智能技术开发智能机器的关键,主要是通过计算机用数学技术方法来研究模式的自动处理和判读,让计算机实现“看见”,“听见”等功能。

计算机模式识别的主要特点是速度快,准确率高,效率高,计算机模式识别也为人类认识自身智能提供了有利帮助。

5人工智能应用之智能信息的检索技术

在科学技术飞速发展的今天,人类已进入了“知识爆炸”的时代。

传统检索系统已经满不足了对如今如此数量巨大以及种类繁多的文献检索要求。

人工智能科技持续稳定发展的重要前提就是智能检索模块,可以说,智能信息的检索技术的运用势在必行。

6人工智能应用之专家系统

我们常说的专家系统就是指从人类专家那里获取的知识,并用来解决只有专家才能解决的疑难问题。

这是一种基于知识的系统,从而也被称为知识基系统。

专家系统是人工智能技术中研究最活跃,最有成效的一个领域。

现在的专家系统尤其特殊的模仿了专家在处理故障时的思维方式,其水平有时甚至可以超过人类专家的水平。

7人工智能应用之机器人学

机器人对我们并不陌生,已在多个领域获得了越来越普遍的应用,诸如农业、工业、商业、旅游业、航空和海洋等。

那么,机器人学所研究的问题主要包括从机器人手臂的最佳移动到实现机器人目标的动作序列的规划方法。

机器人和机器人学的研究对人工智能思想的发展都起到了促进作用。

三,人工智能在生活中的应用

●计算机科学

人工智能产生了许多方法解决计算机科学最困难的问题。

它们的许多发明已被主流计算机科学采用,而不认为是AI的一部份。

下面所有内容原在AI实验室发展:

时间分配,介面演绎员,图解用户介面,计算机鼠标,快发展环境,联系表数据结构,自动存储管理,符号程序,功能程序,动态程序,和客观指向程序。

[3]

●金融

银行用人工智能系统组织运作,金融投资和管理财产。

2001年8月在模拟金融贸易竞赛中机器人战胜了人。

金融机构已长久用人工神经网络系统去发觉变化或规范外的要求,银行使用协助顾客服务系统;帮助核对帐目,发行信用卡和恢复密码等。

●医院和医药

医学临床可用人工智能系统组织病床计划;并提供医学信息。

人工神经网络用来做临床诊断决策支持系统。

计算机帮助解析医学图像。

这样系统帮助扫描数据图像,从计算X光断层图发现疾病,典型应用是发现肿块、心脏声音分析。

●重工业

在工业中已普遍应用机器人。

它们常做对人是危险的工作。

全世界日本是利用和生产机器人的先进国;1999年世界范围使用1,700,000台机器人。

●顾客服务

人工智能是自动上线的好助手,可减少操作,使用的主要是自然语言加工系统。

呼叫中心的回答机器也用类似技术,如语言识别软件可使计算机的顾客较好操作。

●运输

汽车的变速箱已使用模糊逻辑控制器。

●运程通讯

许多运程通讯公司正研究管理劳动力的机器;如BT组研究可管20000工程师的机器。

●玩具和游戏

1990年企图用基本人工智能大量为教育和消遣生产民用产品。

现在,大众在生活的许多方面都在应用人工智能技术。

●音乐

技术常会影晌音乐的进步,科学家想用人工智能技术尽量赶上音乐家的活动;现正集中在研究作曲,演奏,音乐理论,声音加工等。

四,人工智能的前沿分支:

神经计算

1,人工神经网络:

从大脑得到灵感

神经计算科学是从信息科学的角度来研究如何加速神经网络模仿和延伸人脑的高级精神活动,如联想、记忆、推理、思维及意识等智能行为。

这涉及到脑科学、认知科学,神经生物学、非线性科学、计算机科学、数学、物理学诸学科的综合集成。

它是综合研究和实现类脑智能信息系统的一个新思想和新策略。

[6]

深度学习的概念源于人工神经网络的研究。

含多隐层的多层感知器就是一种深度学习结构。

深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

一个神经网络的结构示意图如图1所示

图1 神经网络的结构示意图

神经网络将人工智能的重点从符号表示和可靠的推理策略问题转移到学习和适应的问题。

同人和其他动物一样,神经网络是适应世界的一种机制:

经过训练的神经网络结果是通过学识形成的。

这种网络是通过和世界交互形成的,通过经验的不明确痕迹反映出来。

神经网络的这种途径对我们理解智能起了极大的作用。

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。

神经计算机的研究发展很快,已有产品进入市场。

光电结合的神经计算机为人工神经网络的发展提供了良好条件。

神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。

其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。

目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。

2,神经网络应用实例:

基于Deepautoencoder的字符图像识别

深度信念网络(DeepBeliefNetwork,DBN)[7]由GeoffreyHinton在2006年提出。

它是一种生成模型,通过训练其神经元间的权重,我们可以让整个神经网络按照最大概率来生成训练数据。

我们不仅可以使用DBN识别特征、分类数据,还可以用它来生成数据。

DBN由多层神经元构成,这些神经元又分为显性神经元和隐性神经元(以下简称显元和隐元)。

显元用于接受输入,隐元用于提取特征。

因此隐元也有个别名,叫特征检测器 (featuredetectors)。

最顶上的两层间的连接是无向的,组成联合内存 (associativememory)。

较低的其他层之间有连接上下的有向连接。

最底层代表了数据向量 (datavectors),每一个神经元代表数据向量的一维。

DBN是由多层RBM组成的一个神经网络,它既可以被看作一个生成模型,也可以当作判别模型,其训练过程是:

使用非监督贪婪逐层方法去预训练获得权值。

 

训练过程:

 

1.首先充分训练第一个RBM; 

2.固定第一个RBM的权重和偏移量,然后使用其隐性神经元的状态,作为第二个RBM的输入向量; 

3.充分训练第二个RBM后,将第二个RBM堆叠在第一个RBM的上方; 

4.重复以上三个步骤任意多次;   

5.如果训练集中的数据有标签,那么在顶层的RBM训练时,这个RBM的显层中除了显性神经元,还需要有代表分类标签的神经元,一起进行训练:

 

a)假设顶层RBM的显层有500个显性神经元,训练数据的分类一共分成了10类; 

b)那么顶层RBM的显层有510个显性神经元,对每一训练训练数据,相应的标签神经元被打开设为1,而其他的则被关闭设为0。

 

6.DBN被训练好后如下图:

图2训练好的深度信念网络。

图中的绿色部分就是在最顶层RBM中参与训练的标签。

注意调优(FINE-TUNING)过程是一个判别模型 

调优过程(Fine-Tuning):

 

生成模型使用ContrastiveWake-Sleep算法进行调优,其算法过程是:

 

1.除了顶层RBM,其他层RBM的权重被分成向上的认知权重和向下的生成权重; 

2.Wake阶段:

认知过程,通过外界的特征和向上的权重(认知权重)产生每一层的抽象表示(结点状态),并且使用梯度下降修改层间的下行权重(生成权重)。

也就是“如果现实跟我想象的不一样,改变我的权重使得我想象的东西就是这样的”。

 

3.Sleep阶段:

生成过程,通过顶层表示(醒时学得的概念)和向下权重,生成底层的状态,同时修改层间向上的权重。

也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概念”。

 

在附件中提供了程序代码。

实验利用MNIST字符图像,验证该方法的特征提取与识别能力。

五,人工智能未来发展趋势

科学技术是第一生产力,但技术的发展往往是远远超越我们的想象。

就目前的一些前瞻性研究可以看出,未来人工智能技术的发展有如下几大趋势:

1问题求解

问题求解一般包括两种,一种是指解决管理活动中由于意外引起的非预期效应或与预期效应之间的偏差。

正在逐渐发展成为搜索和问题归约这类人工智能的基本技术;另一种问题的求解程序,是把各种数学公式符号汇编在一起。

其性能已达到非常高的水平,并正在被许多工程师和科学家应用,甚至还有些程序能够用经验来改善其性能。

2机器学习

人工智能研究的核心课题之一就是机器学习。

我们知道学习是人类智能的重要特征,那么机器学习就是指机器自动获取知识的过程。

机器学习是机器获取知识的根本途径,也是机器智能的重要标志。

计算机的机器学习主要研究内容为如何让计算机模拟或实现人类的学习能力。

今后机器学习的研究主要是研究人脑思维的过程、人类学习的机理等。

3模式识别

用计算机实现模式(文字、声音、人物、物体等)的自动识别,弥补计算机对外部世界感知能力低下的缺陷,使计算机能够通过感官接受外界信息,识别和理解周围环境。

依然是人工智能技术今后研究的重要方向。

因为模式识别能为人类认识自身智能提供线索,也是开发智能机器的一个最关键的突破口。

目前计算机模式识别系统的研究热点主要为三维景物、活动目标的识别和分析方面。

传统的用统计模式和结构模式的识别方法将会被近年来迅速发展起来的模糊数学模式、人工神经网络模式的方法逐渐取代,特别是神经网络方法在模式识别中取得较大进展。

4专家系统

专家系统是根据某领域中一个或多个专家提供的知识或经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题的智能软件,它是一个具有大量的专门知识与经验的程序系统。

目前各种专家系统已遍布各个专业领域,因此专家系统还将是人工智能应用研究最广泛和最活跃的应用领域之一。

5人工神经网络

人工神经网络,常被简称为神经网络或类神经网络。

是未来人工智能应用的新领域,人工神经网络是指由大量处理单元(神经元)互连而成的网络。

人工神经网络具有很强的自学习能力,主要擅长处理复杂的多维的非线性问题,不但可以解决定量的问题,还可以解决定性的问题,同时人工神经网络还具有大规模并行处理和分布的信息存储能力。

或许未来智能计算机的结构可能就是作为主机的冯?

诺依曼型机与作为智能外围的人工神经网络的结合。

小结

人工智能是一个年轻而充满希望的研究领域,其宗旨是寻找一种有效的方式把智能问题求解、规划和通信技巧应用在更广泛的实际问题中。

人工智能的工作者是工具的制造者。

我们的表示、算法和语言都是一些工具,用来设计和建立那些展现智能行为的机制。

通过实验,我们同时检验了它们解决问题的计算合适性,也检验了我们对智能现象的理解。

然而,人工智能仍有很多尚待解答的问题,需要探索和研究。

 

参考文献

[1]Artificial intelligence - structures and strategies forcomplexproblemsolving(2.ed.)[M].GeorgeF.Luger,2008

[2]杨恒.计算机人工智能技术研究进展和应用分析[J].信息通信,2014,

(1).

[3]杨焱.人工智能技术的发展趋势研究[J].信息与电脑:

理论版,2012,(8).

[4]张钹.近十年人工智能的进展[J].模式识别与人工智能,1995.

[5]张钹,陆玉昌,张再兴.人工智能的发展及面临的问题[J].机器人,1985,(3).

[6]人工神经网络原理及仿真实例(第2版),高隽,机械工业出版社,2007.

[7]Hinton,G.E.andSalakhutdinov,R.R.Reducingthedimensionalityofdatawithneuralnetworks.Science,Vol.313.no.5786,pp.504-507,28July2006.

 

人工智能与商业应用

商业机构中的领导者对人工智能的商业影响力感到既担忧又兴奋。全球各地的公司正逐渐意识到这一新技术的力量,并开始探索如何应用人工智能提升企业竞争力。

本文基于Efma和德勤联合进行的EMEA(欧洲、中东、非洲三地区)FSI(金融服务业)调查结果,并引用了业内多家公司的见解和案例研究,分析了人工智能的逻辑建模、行业现状以及理解和利用人工智能技术所需要采取的行动。

 

1. 人工智能应用领域

人工智能有三大主要应用领域:认知自动化,认知参与和认知洞察力。

认知自动化

在这一领域,人工智能的主要领域是机器学习,机器人流程自动化(RPA),和其他能够自动化深层领域知识开发的认知工具。我们已经看到人工智能设备自动化了那些传统上需要训练有素的工人才能完成的任务。

手写和字符识别是认知自动化应用的最佳范例,它可以支持高强度、复杂繁琐的办公业务,以帮助企业降低风险和成本。例如,可以使用自然语言处理和OCR技术从文档中提取关键信息。

认知参与

人工智能的下一阶段是认知技术“代理”:系统通过认知技术与人类建立密切关系。

认知系统开启了文本/图像/视频等“非结构化”数据的力量,为银行和客户提供定制化的产品和服务并创造新的收益流。

最常见的例子是语音识别接口,它可以执行语音指令,降低温控器或打开电视频道。同时,也出现了一些使用认知参与的新型应用领域,这些领域需要人工智能接触到更复杂的信息并执行数字化任务。比如接收病人入院,或者推荐产品和服务。

认知洞察力

认知洞察力是指从各种数据流中提取概念和关系,用来生成隐藏在大量“结构化”和“非结构化”数据中的相关答案。

总的来说,认知洞察力可以检测来自多个数据源数据的关键内容和相关联系,从而获得更深入和可操作的洞见。

随着处理数据量的增加,观察和预测的准确性得到了提高。人工智能不仅可以深入了解已经发生的事情,而且还能分析正在发生的事情,以及预测接下来可能发生的事情。这可以帮助商业领袖制定计划,帮助员工提高他们的业绩。例如,在全球呼叫中心,客服人员使用多功能客户支持程序来回答产品提问,接受订单,调查账单问题,并解决客户的其他困扰。

根据斯坦福大学主题为“2030年的人工智能与生活”的调查研究,专家预测人工智能将在以下八大领域发挥重要作用:交通,服务型机器人,医疗,教育,低资源社区,公众安全,就业与工作以及娱乐产业。另一方面,美国劳动部在2016年发布的报告中提到“65%的在校学生未来将被雇佣于现在尚未存在的工作岗位”。这些预测告诉我们,在不久的将来,人工智能技术将与我们的生活产生紧密联系,对工作和生活等多方面造成深远影响。

 

2. 人工智能中的监管问题

接下来的问题是:经济发展和社会各界需要做出哪些准备来迎接人工智能光明的未来?

在2017年初,欧洲议会提出一系列管理人工智能的法规,用来规定相关道德准则,以及人工智能犯错的责任归属问题。

议会调查员MadyDelvax强调了建立一个欧洲机器人监管机构的重要性,该机构将通过提供技术支持来协助政府部门。他还建议起草一份道德行为准则,用以指导机器人工程项目并确定他们的行为责任。

事实上,问责权或法律责任是人工智能争议中的关键问题。自动驾驶汽车的兴起就是最明显的例子,相关各方有必要去定义具体的保险计划,并确定损害赔偿的责任。在未来,智能自动化机器人将被赋予某种“法律人格”。最后Delvaux的报告强调,机器人可能会对社会产生长期影响,政府部门需要密切关注这些趋势,创造新的就业岗位和税收模式。

 

3. 人工智能发展现状

为了了解金融服务行业在人工智能应用方面的现状和前景,Efma和德勤联合进行了一项大型调查,调查范围涉及超过3000人,受访者主要为金融服务公司技术和业务方面的高管,大多受访者表示,新认知技术的应用将增强工作的可控性,并减轻员工的工作负担,而不是将人们的劳动力完全替代。

对于“贵公司在人工智能应用领域处于什么阶段”这一问题,约90%的公司表示已经开始在他们的工作中使用人工智能技术,或正处于对这一新技术的学习中。 

人工智能与设计(4):人工智能对设计的影响

前面通过三篇文章《人工智能的发展和定义》、《面向用户的人工智能系统底层设计》和《人工智能时代下交互设计的改变》介绍了人工智能基础、系统底层设计以及上层应用的设计。本次更新的最后一篇文章关注的是人工智能与设计的关系,这应该是设计师们最想了解的部分;这篇文章是为后期调研人工智能对不同设计领域的影响做个铺垫,欢迎阅读。

人工智能对设计的影响

人工智能的普及是否使设计师失业引起了业界的一股躁动。要回答这问题,应该先弄清楚设计与人工智能的关系,我们可以从本质开始入手。

有人认为设计是为了追求美,和艺术没什么区别;但设计做久了,会有更深刻的理解:设计是为了解决问题。那么设计是什么?在网上看到了一句对设计的定义:设计是有目的的创作行为。这句话解释得非常棒。目的代表主体所追求的目标,创作是把自己的灵感、经验和感觉表达出来。设计是为了解决问题说明设计是为了解决问题的创作方案,设计为了追求美说明设计是为了解决设计对象美感和实用性的问题的创作方案,所以后者属于前者。

艺术是为了将自己的灵感、经验和感觉等主观感受表达出来。设计和艺术的本质在于是否拥有目的;目的是一种观念形态,反映了人对客观事物的实践关系。相比起艺术,设计更多是一种人对客观事物的实践方式,在考虑主观因素的同时也要顾及外界等客观因素。

从定义上来讲,人工智能是使机器代替人类实现认知、识别、分析、决策等功能,其本质是为了让机器帮助人类解决问题。也就是说,人工智能在一定程度上也是一种设计,其目的是为了帮助人类解决问题,创作出与人类思维模式类似甚至超越人类思维模式的解决方案。

问题的复杂程度会直接影响解题人的最终方案,因为人的知识、经验、精力是有限的,很少甚至没有人会长时间都在解决同一个问题。当解题人找不到最优方案时,他们给出的方案具有一定的主观性,甚至有可能错误的。但也有例外的时候,人有神奇的技能-灵感和直觉,它们可以短时间内帮助人类找到解决问题的捷径。

目前的人工智能属于弱人工智能,暂时无法拥有人类的主观能力:灵感、感觉和感受,也没有人类的跨领域推理、抽象类比能力,只能依赖数据和经验来创作或者解决问题。但计算机比人类拥有三个优势:

可以在极短时间内完成超复杂的运算;可以长时间不厌其烦做同一件事,而且不会累;记忆力好,积累的经验可以被随时调用;没有情感等主观因素,比人类更公正客观对待每个方案。

这四个优势可以使计算机在解决超复杂纯智商难题时不断探索新方案,不断积累经验,不断优化方案,通过穷举和对比,找出最佳的方案。人工智能在不同的领域积累的经验增加,它对事物间关系的洞察力也会逐步提高,它也会不断反哺提高自己解决问题的能力。当人工智能的运算能力、分析能力、洞察力超越人类时,人工智能在很多领域提供的解决方案会上优于人类。

设计除了解决问题外,还有对美的理解和创作。美感是对美的体会和感受,它是复杂的,它包含了历史、文化、环境、情感等客观和主观因素,所以不同时代、阶级、民族和地域,有着不同文化修养和个性特征的人对美的定义也不同。不同人之间有着不同程度的美感能力,有些是先天因素影响,取决于个人的感知能力;有些是在社会实践等后天因素训练出来的。

由于弱人工智能缺乏人类的主观感受和推理类比能力,以及缺乏对当代世界和社会的文化和环境的理解能力,所以弱人工智能对美感一无所知。人工智能不懂美感不代表人教不懂会机器生产美感,就像托福和雅思,即使英语不太好看不太懂文章在说什么,只要懂套路,考生也能考出一个还行的成绩。

图片处理应用Prisma通过深度学习将一张图片的风格特征分析出来,毫无保留迁移至另外一张图片。

阿里鲁班系统通过深度学习来量产Banner,设计师将自身的经验知识总结出一些设计手法和风格,再将这些手法归纳出一套设计框架,让机器通过自我学习和调整框架,演绎出更多的设计风格,上亿的Banner通过素材进入该框架后批量拼装而成。

来自微软亚洲研究院的研究员与清华大学美术学院的艺术设计专家让AI接手了繁杂专业的图文排版设计工作,他们提出了一个可计算的自动排版框架原型。该原型通过对一系列关键问题的优化(例如,嵌入在照片中的文字的视觉权重、视觉空间的配重、心理学中的色彩和谐因子、信息在视觉认知和语义理解上的重要性等),把视觉呈现、文字语义、设计原则、认知理解等领域专家的先验知识自然地集成到同一个多媒体计算框架之内,并且开创了“视觉文本版面自动设计”这一新的研究方向。

以上案例说明人工智能即使不懂审美,也可以替代人类生产可被公式化(规范化)的设计。可被公式化的设计说明这些设计是已成熟的,有规律的(模型)、受限制的(参数)、可量产的。如果不想被人工智能的美感设计领先,设计师的美感设计应该是创新的(未成熟未被发现规律的),包含更多元素的(更多复杂参数如历史、文化、环境、情感等等)。

人工智能与设计师的关系

设计是一个用处非常广泛的动词,可以搭配不同名词成为各种专业术语,例如程序设计、架构设计、交互设计、UI设计、建筑设计、材料设计等等。但设计师更多是指处理好人与设计对象之间的关系,提高体验满意度的职业,例如室内设计师是为了提高人在室内的居住质量;服务设计师是为了提高人在服务流程中的满意度;交互设计师是为了解决人与计算机的交流问题;UI设计师是为了升华人与计算机的交流体验。

上文已提到,人工智能在解决超复杂纯智商难题上最终会超越人类,而且可以生产出可被公式化(规范化)的设计,例如符合规范可批量生产的平面设计、符合规范已成熟的网页和移动端交互设计。但对于人工智能,设计师不用过多担心被取代问题,因为设计师的工作是为了提高体验和满意度,体验和满意度都是主观的,这是人工智能很难去衡量的。既然人工智能也是一种设计方案,那么设计师可以利用人工智能这工具创造出什么价值?

1.在互联网和移动互联网时代,由于产品用户量大以及技术的限制,产品无法针对每位用户在不同场景下的需求进行设计,所以产品功能只能绝满足大部分用户都有的核心场景;还有每位用户的审美能力的差异,设计师只能考虑用更简洁的设计语言来满足大部分用户的基础审美。在人工智能的帮助下,产品有能力做到根据用户的使用场景和行为分析出用户的当前诉求,并提供相应服务。人工智能为个性化服务提供了基础,个性化服务意味着要考虑更多关于该名用户的特点,包括文化,经历,心理等因素,如何设计能更满足该名用户,这是一个全新的机会和挑战。

2.人工智能为艺术型设计师带来更多机会。进入个性化时代的产品基本满足用户需求,相同类型的产品结构和功能会越来越接近,能为产品带来活力和差异的除了自身的底层技术基础,更多是艺术型设计师的理念和风格,以及自身品牌。就像时尚品牌优衣库和Gucci,单件商品两者的品牌和设计产生所带来的利润差距巨大,人工智能产品也可以做到。

3.人工智能使产品的使用成本降低,信息架构扁平化,整体体验提高;但个性化设计意味着需要考虑更多元素。简单和个性化貌似矛盾,如何保持产品简单可用又能突出个性化,这也是一个全新的机会和挑战。

新的设计对象

计算机的普及和难以使用,催生出交互设计这个术语,交互设计专门解决计算机如何更好地与用户交流互动的问题。交互设计师在设计过程中总结出一个新术语:以用户为中心的设计,在设计时密切关注用户的体验和感受。用户体验设计这个术语逐渐扩散到各行各业,它所带来的价值让各个企业明白提高体验的重要性,并着手优化自家产品服务,到后面也衍生出服务设计等专业术语。

产品体验不好,用户还有其他替代选择,所以大家开始关注用户体验。但现在用户体验设计存在着一个局限性:它设计对象仍然是产品,它只关心用户在使用产品期间的体验,不关心产品对用户其他方面的影响。这是可以理解的,因为企业间之间存在着竞争,以及互通数据分析数据需要非常高的成本。所以产品体验好了最大收益自如是产品和企业,并非用户。

辛向阳教授提出了一个更领先的观点:EX-ExperienceDesign,以用户经历为中心的设计。简单点说,生活中每天发生的琐碎小事不会被记住,例如吃饱睡饱;但特殊的经历会被记住,例如在迪士尼公园的路上突然跑出来一群鸭子,你会记住那次惊喜。UX构建的是每一件小事,EX构建的是用户经历,基础是每件小事之间的联动。EX更多关注全局性,就像迪士尼乐园把控全局体验为游客带来惊喜。EX是个性化服务的基础,它会从多个维度包括用户画像和行为、场景和环境、上下文的理解(上一件事情发生了什么,后面安排的事情)等为用户创造价值。

当设计对象从产品转变到用户经历时,设计师不能只考虑自己的产品体验,还要从全局出发考虑产品与产品之间的联动,考虑不同场景和突发事件时自己的产品如何服务用户。产品从单体变成一块拼图,需要考虑上下左右的关系并兼容,这对设计师来说是一个全新的挑战。

如何设计人工智能产品

人工智能为个性化服务带来新的可能,要想设计一款更友善更像人类的产品,我们先看看人类是怎么交流的。人与人之间的交流分为双向交流和单向交流,双向交流包括了问和答,单向交流包括了指令、陈述和接收信息(单向交流指对方可以给予简单的反馈,甚至不需要提供反馈)。问和指令不太一样。问是因为自己不知道,希望对方能提供相关的完整答案(这里忽略明知故问和反问两种带有目的性的情感交流);指令更多是指上级对下级的指示,他知道对方能做什么,希望对方能帮助自己完成该事情,对方完成后的反馈可能非常简单,一句“OK”“搞定”“对不起,做不到”已经能表达清楚是否完成,其反馈不需要太多内容。陈述的意思是我将信息传达给你就完成了,你可以不给予我反馈,例如演讲、授课、讲述内容等等。接收信息包括了听觉、视觉、触觉,甚至是嗅觉和味觉。

随着信息的增加,当信息超过人类的记忆容量时,人类通过交流获取信息的效率变慢,他们开始将信息通过刻画的方式记录保存下来,到后面逐渐出现了书籍。随着技术的发展,人类获取信息的方式也在逐渐增加,收音机、电视、电脑、手机逐渐出现在我们的生活中,我们先来看看人与媒介交流信息时有什么不同,再来推断人工智能能做什么。(这里的人更多是指接收信息,并非发送信息例如写书、写文章的人)

从表格可以推断出,人工智能要做到与人正常交流需要在问、答、指令、接收信息四个方面有所深造。问更多是指人通过语音、文字等对话方式提出问题(语音是最快最直接的表达方式),计算机理解问题后给出正确完整的答案。答更多是指计算机需要通过如传感器、用户事件监听等隐形手段获取更多的用户数据。指令更多是指用户通过语音和界面发出指令,计算机接收并理解指令后完成一系列的操作。接收信息更多是指人给出问题和指令后,计算机如何提供正确的答案和反馈。

如果牵扯到辈分、利益等关系,人类之间的交流务必产生情感上的交流,在交流时最能表达情感和态度的是态度和语气,人和机器交流也毫不例外。人工智能需要学会与人类交流时,根据不同场景和对话内容采用合适的态度和语气。在交流中,机器更多承担的是下级以及朋友的角色,直白点就是要你干嘛你就干嘛(准确性);要你干嘛就赶紧做(即时性);说你不对就得改(自我学习和修正);不能顶嘴(礼貌);尽管我对你很苛刻,你也要对我像好朋友一样(性格一致,需要人物设定)。

结合交流方式和情感表达,设计一款面向用户的人工智能产品时需要注意以下几点:

人物设定:为了避免在交流中过于死板或者态度语气时常变化过大(态度语气时常变化过大叫精神分裂),设计师应该针对不同用户群体为人工智能赋予不同角色与性格。例如针对二次元宅男群体,赋予人工智能傲娇、元气、电波女等性格;针对成熟女性群体,赋予人工智能温柔的管家角色;尽量不要赋予人工智能老板、父母、老师等角色,因为指令他们干活时,会让人类感觉到突兀。准确性和即时性:需要听懂用户的问题和指令并立刻给出准确的答案或反馈。准确性和即时性是人工智能的最基础能力之一,多次回答错误显得人工智能很蠢,用户会逐渐对人工智能失去信心和信任。在技术不成熟的时候,可以引入天然呆、冒失女等具有智商不高但又很懂卖萌的角色性格弥补技术上的缺陷,这样可以通过打情感牌减少用户愤怒甚至失望的情绪。自我学习与修正:当人工智能不知道答案和操作时,除了给出抱歉的反馈外,更多需要的是通过自我学习能力来修正自己的数据库,避免多次惹恼用户。礼貌:及时回复、不重复说话、不反驳、不打断用户的说话和操作都属于礼貌问题,就像人类一样,有礼貌的人工智能才会受用户欢迎。

做设计时需要考虑更多数据的交互,关于人工智能底层数据设计请阅读第二章的《下一代人工智能助理》和《人工智能数据仓库》。在设计架构时需要考虑更多产品上下游之间的联动,以及通过接入通用型API和组件完善人工智能的数据库,关于移动端信息架构设计、通用API和组件请阅读第三章的《流的设计》和《新型API和组件》。对话是人工智能的基础,更多对话体验设计请阅读《GoogleActionsDesign》。人工智能为个性化设计提供了基础,设计师需要考虑更多场景下的个性化服务,也可以引入更多风格的个性化设计,彰显出用户的魅力。

推荐阅读

1、解密:用人工智能“攻占”俄罗斯的爆款滤镜Prisma

https://www.leiphone.com/news/201607/9plguMzClDnUNoK2.html

2、设计与AI的现在:设计了1.7亿个banner的阿里鲁班

https://zhuanlan.zhihu.com/p/26563244

3、MSRA获ACMTOMM2017最佳论文:让AI接手繁杂专业的图文排版设计工作

https://www.leiphone.com/news/201708/npFKzTJQuxKyCaNJ.html

4、辛向阳谈体验的EPI框架,FromUXto EX

https://v.qq.com/x/page/w0180apdy2a.html

5、Actions_on_Google_Design翻译by腾讯MXD

http://mxd.tencent.com/weixin/doc/Actions_on_Google_Design.pdf

以上是本轮更新的最后一篇文章。后续会调研人工智能时代下不同设计领域的新机遇和挑战,敬请期待。

相关阅读

人工智能与设计(1):人工智能的发展和定义

人工智能与设计(2):面向用户的人工智能系统底层设计

人工智能与设计(3):人工智能时代下交互设计的改变

 

作者:薛志荣(微信公众号:薛志荣),百度交互设计师,二年级生

本文由@薛志荣原创发布于人人都是产品经理。未经许可,禁止转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇