博舍

人工智能在军事领域的发展现状及应用前景 人工智能在军工领域的应用有哪些呢

人工智能在军事领域的发展现状及应用前景

因此,俄罗斯为了维护主权和保持国防能力,必须尽快在部分关键领域获得一定优势,或者至少与潜在敌人不相上下,才能部分弥补当前俄罗斯经济的不足以及大量工业领域的技术落后。

阻止将人工智能用于军事目的是不可能的

目前,武器领域的关键方向包括:人工智能,人机交互系统,无人战车和机器人,自主武器,高超音速武器,定向能,甚至还包括民用技术,比如人才管理,就是吸引军人参与创新过程,提升俄罗斯国防部军官和文职人员的创造力。

回到人工智能,它的任务主要包括四个方面:信息任务、战术任务、战略任务和经济任务。人工智能大大提升了对数据的收集和分析能力,使得在处理信息的速度和质量方面取得一定优势。在军事情报领域,将出现更多的可能性和各种信息源,还包括对敌人掩盖真像的可能性。在“虚假新闻”方面,人工智能能够向信息空间投放大量人为制造的数据、假象,这一方面迷惑了敌人,另一方面则增加了政治风险。

即便是目前机器学习领域和人工智能领域已经达成的技术,也对保障国家安全具有巨大的潜力。

现有的图像识别技术能够保证分析卫星地图和雷达数据时的高自动化水平。人工智能能够提升导弹袭击预警系统雷达站的运行效率以及像“树冠”太空目标无线电光学识别系统这样的无线电光学识别系统的信息处理效率。此外,目前卫星微型化以及轨道卫星数量的提升将对快速识别技术出现需求。

利用10米以上波长无线电波电离层空间传播原理或者波长更短无线电波地面绕射传播原理的超地平线雷达,其信息处理系统的任务量更大。这些雷达能够“看见”所有移动目标,其中包括民用技术装备,因此,摆在面前的任务是要在全部获取的数千个甚至数百万图形中识别出军事目标,以及地面和空中的异常活动。这是数量庞大的信息和图形,没有机器的帮助是不可能完成的。此外,军队将获得所谓的“目标数据库”,这将对识别和引导系统具有帮助作用。如果说为应对带红外自动寻的头的便携式防空导弹系统,飞机或者直升机只需要发射假热辐射目标,应对雷达站,只需要释放干扰就已经足够的话,那么,人工智能系统即便不是在导弹里,而是在操作员的手中,它也能完全“看见”飞行器。

其次,超地平线雷达存在与标准“敌-我”雷达识别系统不兼容问题,因此,在分析空情时,人工智能能够起到很大的帮助作用。人工智能同样能够用于对付敌方雷达,研究敌人雷达的运行情况并选择压制无线电信号的方法。

网络空间的运行以及对不断出现的网络威胁的不间断跟踪需要大量的高技术专家。人工智能同样能够分担部分任务,因为人工智能寻找漏洞,编写代码和机器算法的速度要快得多。寻找到的“弱点”数量将非常众多并对人为控制的防御手段构成威胁。那么到时候,网络攻击将变得更加复杂和危险,相关技术落入犯罪分子之手的风险也会剧增。

机器人技术装备和自主武器

自主系统的能力目前还很有限。虽然对“发射后不管”系统已经研究了数十年,但仍然需要人的参与,人需要直接定下使用武器的决心。重型航空技术装备也一样,虽然存在自动驾驶,传感器,自动打开炸弹舱门,导弹引导和目标跟踪系统,仍然需要飞行员,攻击无人机也需要操作员的跟踪。

但普通人与现代军用技术装备的能力相比,只能说是渺小、脆弱和糊涂的有机体,而在定下战斗决心环节,则是最慢的一环。人工智能用于将人从决策体系中完全解放出来,同时也保全了军人的生命。

在战斗条件下,定下决心更快并首先实施打击的一方具有优势,因此,完全自主的系统在未来将获得巨大发展。

此外,已经出现了“反自主性”概念,根据这一概念,人工智能(武器)在遭到袭击但未被摧毁的情况下,能够迅速学习并得出结论,之后对敌人实施致命的最后一击。

战术武器运用人工智能的可能性很多,指的是能够独立寻找目标并定下摧毁决心的无人飞行器,装甲车,导弹艇。

目前,无人机的成本变得越来越低,产量也越来越大。利用人工智能能够将数千架无人机联为一个巨大的可控“蜂群”,用于发起大规模攻击。

截止不久前,洛克马丁公司的F-35第五代战斗机的造价为1亿美元。而高质量的四轴飞行器成本为1000美元。这意味着,美国国防部可以用一架战斗机的价格订购十万架小型无人机。而敌人不可能同时对付得了十万架装满炸药的无人机。

苏联和俄联邦已经能够实现将一次齐射的数枚导弹联为能够相互之间交换目标信息的“狼群”,制定行动战略并独立选择攻击目标。这里指的是P-500“玄武岩”,P-700“花岗岩”和P-1000“火山”反舰导弹系统。我们的技术很有发展前景。

美国海军正在研制将无人巡逻艇联成“群”的系统,这就是所谓的CARACaS(机器人代理指挥和感知控制架构)技术。另外,该系统可安装在美海军研究局研制的独立平台上,也可安装在各种小型船只上,将它们变成自主的无人运输工具。CARACaS系统的软件基于美国航空航天局(NASA)为火星车研发的技术。军人在带CARACaS系统便携式设备的帮助下,将能够轻易并迅速地将飞行器,装甲车和快艇变成统一的自动化战斗群。

人工智能在太空的前景更加广阔。可以组建不需要连续监控和从地面指挥中心进行指挥的自主跟踪卫星或者反卫星卫星集团。

将来,在人工智能的帮助下,能够大幅提升特种部队和空降分队的效能。即便规模不大的特种小组在使用无人平台的情况下,也能够以类似的形式控制敌方大片区域,并在自主交互战车的帮助下攻击各种目标,或者阻止敌军分队进入某一区域,以此来扼守主力登陆基地。

基于坦克和装甲输送车(对于俄罗斯来说就是“阿尔马塔”多用途履带式平台)的无人地面作战系统,能够为登陆兵准备登陆场,对敌开火,运送弹药及特种部队必须的设备。

自然会出现一个疑问:这种具备人工大脑的坦克会不会对己方登陆兵开火?答案显而易见:战车拥有“目标数据库”和人脸识别系统的情况下,可以避免这种情况的发生。或者为坦克加装基于普通处理器,能够限制人工智能行动的机器智能,作为能够取代坦克车长、驾驶员和瞄准手定下决心的人工智能的补充,就像负责反射的脊髓不允许人触碰滚烫的武器或者从阳台上跳下去一样。

需要注意的是,现代战争的实施战略要求改变部队的展开方法,而且现代战争将在敌人的全境同时举行:陆地、空中,近地空间,以及信息空间和网络空间,战士自主机器人技术支援系统在近期也将获得发展。有人作战行动向无人作战行动的转变速度将会加快。

军队应当关注并作为近期优先发展方向的是,具备网络支持的自主武器技术,人机协同系统,其中包括定下决心时的人机交互,具备人工智能功能的自主学习系统以及改进的无人系统。

至于机器人本身来说,在可预见的将来,未必会出现人形机器人,机器人多半看起来像火星车一样,或者类似星球大战电影中的R2-D2机器人。小型自主机器人能够成为理想的狙击手,可以在阵地上等待必要且足够长的时间。部分类型的飞行或者爬行机器人能够进入房间,在不被发现的情况下,向目标注入致命性毒剂或者喷撒神经麻痹毒气。

自然还会出现一个疑问:如果黑客侵入人工智能战车,对其进行破坏,甚至让战车向己方军人或者民用目标开火怎么办?答案显而易见:黑客什么也不能破坏,因为人工智能与机器智能和超级计算机不同,能够独立为自己生成行为算法,并非在普通计算机硬盘或者内存上进行稳定存储,而是利用瞬间产生,而后又消失的神经联络链条。

人工智能还有另外一项战略任务,在该项战略任务中,人仍然发挥着自身特殊的作用。俄联邦武装力量总参谋部未来将出现具备超大计算能力的自主战术武器,用于实施“智能”侦察,分析敌人和己方部队行动,寻找最优方案,这意味着军队展开和指挥的战略和方法将发生变化。概念性武器中的人工智能将成为与核武器一样的战略遏制因素,因此创新竞赛将会提速。

21世纪,大国之间的竞争仍在继续,恐怖组织甚至能够召集一整支军队,因此,军事技术装备应当不断进行改进和完善。完全有可能,如果一个国家借助人工智能技术控制对手的全部系统,假想的“第三次世界大战”可能在数秒内就已经结束。关于这一点,需要思考的不仅仅是军人,也包括国家政府。

在国家层面作出决策的政治家也必须了解创新性变化的意义,因为不仅出现了实施新型战争的可能性,还出现了在各国之间挑起现实冲突的可能性。人工智能同样能够被运用到国家管理和巩固政权的方法中,成为内政的工具。人工智能还能够成为国家机关在控制灾难性风险和预防人为灾难时的帮手。

人工智能研究的进步将对经济产生最重大的影响,并可能导致新的工业革命。首选运用人工智能的大国将对其余国家形成信息,甚至军事政治优势。发展人工智能正在成为21世界超级大国的战略任务。与此同时,下面这个问题的答案也很重要:我们在为自己培养什么样的助手——无耻和惨无人道的人工“靡菲斯特”,还是电子版的天使?

如果俄罗斯能够研发出突破性技术,在该方面集中主要精力和资源,那么就能保证在新一轮军事技术发展中保持与美国和中国的平等地位,尤其是当世界领导者发现,自己开始失去权力并成为大国之一时,这也就意味着世界将出现不稳定局势,可能发生冲突,包括军事冲突。

美国为了保持自身优势,将继续激化冲突,早晚会向寻求霸权地位的国家发动按照21世纪全新规则实施的战争。

鉴于俄罗斯经济上的落后以及科学教育多年来的退化,我国在研制新一代导弹,反导导弹,突击系统和防护装备方面的财政、技术能力目前要落后于潜在的敌人,恰恰人工智能将成为我们的盟友,作为对亚历山大三世说过的我们的两个盟友(陆军和海军)的补充。人工智能将成为定下战略决心时的助手,因为任何战略和国防任务都意味着大量的工时、分析和模拟。人工智能将能够分析我方敌人的行动,收集科学信息,寻找先前我们因信息、数据或者跨学科领域科学知识不足而未能解决的复杂工程任务的合理解决方法。人工智能能够获取人类在整个文明存在历史中存储的全部科学、政治、军事等信息,并能够创造性地访问信息,发现隐藏含义,整合知识并帮助我们在核物理,量子化学,生物技术等的进一步发展中取得突破。

人工智能是未来的战略项目,其研发方面的竞争将与20世纪中期的核竞争不相上下,而目前仅解决了数据分析,图像识别和文本翻译等部分任务。重要的是要知道,人工智能不是超级计算机,它是按照完全不同的原理运行的。关于机器技术奇异点和机器人起义的讨论目前还仅仅是科学幻想。

主要的任务还未完成——如何研制出性能与人类大脑相当的计算机。

如何研发人工智能?

计算机和现代机器人根据程序算法运行,也就是根据系列连续的命令。在同一种环境下,算法运行将得出同一个结果。

人工智能是一种机器系统,能够学习,获得并使用客观知识和经验,作出不同的决策(每次都会变得更加合理),制定战略,使用抽象的概念并像人脑一样完成创造性任务。

当工程师和科研人员试图研制出自然界中的类似物体并在机器和机械中实现人们所须要的功能时,他们就会研究标本。

以航空技术装备研制的各个阶段为例。人类从古时候就已近幻想飞行(关于伊卡洛斯和代达罗斯的神话),工程师研究了翅膀以及鸟类和飞鼠的解剖。在中世纪,当时像莱昂纳多·达·芬奇这样杰出的天才尝试制造扑翼机,在文艺复兴时期和20世纪初也一样。虽然现在的飞机与鸟类大不相同,且飞行的方式也不一样,然而,鸟类翅膀的特点是,上表面凸起,下表面平顺,气流通过时能够产生气压差(下方气流速度更快,压力更大),从而产生了升力。工程师正是将这一特性运用到了飞机上,研制了机翼和滑翔机,增加了发动机,人类便获得了飞行的能力。梦想从此实现。飞机还被区分为军用和民用飞机。

人工智能也一样。为了研制人工智能,必须了解人类思考的方式,研究人类大脑的神经生物活动。现代电子显微镜,脑电描记器,X线体层照相机等能够在细胞和分子层面“探察”大脑,了解什么是大脑神经,中枢神经系统生物神经网络的运行方法。

大脑神经的活动

神经元由神经元细胞核、细胞体和特殊的突起构成:数个接受信息的树突和向其它神经元或肌肉细胞传递信号的轴突。每个神经元与其它的神经元通过专门的电和化学信号协同,也就是通过电来刺激细胞。两个神经元之间相连的部位被称为突触。突触是神经元之间信息传递的部位,构成联系。我们的大脑中的神经元超过1千亿,它们相互联系,构成神经网络。突触中的信号借助化学神经介体(氨基酸和各种固有化合物)进行传递,或者通过电信号进行传递,钙离子通过通道蛋白由一个细胞进入另一个细胞。

虽然信号传输机制已经研究得很清楚了,但科研人员和工程师的问题在于,1千亿神经元中的每个神经元与其它神经元形成1000至20000个联接,累积大量的信息,达2-5拍字节,而这一过程伴随着放电现象以及离子和能够加强或削弱信号的复杂分子的参与。重现数十亿细胞组成的网络及数千细胞之间不断出现并消失的联系是不现实的。必须发明另外一种具备自身要素的结构。

人工智能的研发问题之所以迫切,还在于人脑无论如何也不能与计算机相比。大脑不是计算机。大脑中的信息,记忆,经验,图形,声音等并非以字母、数字、音符、图像或者二进制代码的形式存储。大脑中没有中央处理器所需要的存储器,没有能够通过算法提取和处理的物理内存。信息在我们需要的时候,通过神经元联系恢复。大脑中没有软件。大脑是一个能够学习的系统,但与此同时,对于我们来说,认识比记忆要更加容易。我们与外部世界或者想象中的世界有直接关联。我们看到一个物体并认识它。通过产生的图像,我们知道,这是什么物体。但如果我们不能认识一个物体的形状,那么我们就需要记忆额外的东西或者学习新的信息。视觉记忆非常重要,听觉记忆和音乐记忆也一样。当人用上全部记忆类型时,记忆会更快和更有效。重要的是要知道,系统的完整性和大脑的健康需要通过积极活动来维持。

人类正面临一项最复杂的任务,其难度与20世纪核物理发现以及核武器的研制相当。目前,任何一个国家都还没能完成人工智能的研发。只有虚拟生物神经元运行的数学和计算机模型。

第一批研究尝试

最常见的模型是能够学习,记忆并重建图形的神经元网络,它可以进行分析并给出答案。美国学者W·麦克卡洛和W·匹茨早在1943年就首先尝试研制人工神经元和机器智能,与N·维纳共同奠定了一门新科学——控制论的基础。之后,在1957年,F·罗森布拉特发明了视感控器——一种使用大脑接受信息的计算机模型。工程师和数学家提出研制一种输入端存在像通过突触向生物神经元树突传输信号的处理器,作为输入设备,然后信号传向相联存储器部位,然后再从该部位传向反应部位。

俄罗斯科学界的贡献

杰出的苏联数学家安德烈·尼古拉耶维奇·科尔莫戈罗夫和弗拉基米尔·伊戈列维奇·阿诺尔德在1957年证明了以下定理:任何多变量连续函数都能够表现为少变量函数有限数组合的形式,这成为构建神经元网络的数学基础。还证明,各种集合或者函数相关元之间的对应关系能够表现为与一定数量输入层“神经元”,更多数量具有一定激活功能的各潜层“神经元”,输出层具有未知激活功能“神经元”直接相联的定值神经网络。而且神经网络还能够调整或者“学习”。

对于不了解数学理论的人来说,这些听起来有些复杂,但这对于回答人工智能能否实现这一问题具有重要意义。

苏联数学家从理论上证实,是的,这是可能的。而在1964年举行的因此以“机器能否思考”为题的辩论中,A·N·科尔莫戈罗夫表示,研制完全建立在数字信息处理和控制机构基础上的,完全意义上的生物是绝对可能的,这符合唯物辩证法的原则。

如果回到大脑的计算机模型,那么可以想象,人脑中有数十亿缓慢运行的处理器,且它们的数量如此之多,使人脑比当今任何超级计算机都要更强。从控制论观点来看就很简单了。人工智能是线路信号和非线性函数和激活算法的总和。借助非线性函数,处理器将输入信号转变为输出信号,并进入下一网格——下一个处理器并继续转化。人工神经元形成层,而神经元网络具备学习,恢复和破坏联系的能力。

理论上,这一切貌似都不复杂,但问题在于,人脑的突触能够放缓信号,能够加强信号,也能够不失真地选通或者完全不作出任何反应,选通或者不选通。这样一来,至少是一个三进制逻辑“+1,0,-1”,因此借助二进制和现在的处理器模拟神经元网格是不太乐观的。俄罗斯在这方面具有一定的经验。三进制逻辑的处理器(trit和trait代替比特和字节)在苏联的导弹-太空技术装备中就已经成功运用。

工程师继续推进并开始研究光信号系统,回到了模拟信号和带内存的系统。如果说电信号能够交互并相互干扰的话,那么光信号不会混乱,因为光子不可能出现交互。或许,光学人工智能系统与苏联80年代研制的东西类似,将能够建立近似合理的神经元网络结构。

量子计算机之路

人工智能研究人员多半会关注量子物理。包含信息并参与信息传输的粒子是分子和原子,虽然它们很微小,但交互还是很明显,人类可能不得不研究大脑量子理论并使用量子计算机来研究人工智能。

而量子计算机的研制是一项工作量特别巨大且非常复杂的任务。

目前,我们离人工智能的实现还很遥远,因为我们还不能完全了解突触的工作方式,信号的传输方法,以及记忆是如何产生的。须要研究出意识的数学和物理模型。未来人类还有很多工作要做,这些工作完成的质量越高,人们活到下个千年的可能性就越大。(全文完)

(平台编辑:黄潇潇)

C2

个人会员:返回搜狐,查看更多

人工智能给军事安全带来的机遇与挑战

1.2提升军事情报分析效率

随着信息技术的发展,人类正在迎来一个“数据爆炸”的时代。目前地球上两年所产生的数据比之前积累的所有数据都要多。瀚如烟海的数据给情报人员带来了极大的困难和挑战,仅凭增加人力不仅耗费大量钱财,问题也得不到根本解决。与此同时,伴随大数据技术和并行计算的发展,人工智能在情报领域日益展现出非凡能力。目前,美军已经敏锐地捕捉到了人工智能在军事情报领域的巨大应用潜力,成立了“算法战跨职能小组”。该小组的首要职能就是利用机器视觉、深度学习等人工智能技术在情报领域开展目标识别和数据分析,提取有效情报,将海量的数据转换为有价值的情报信息,为打击ISIS等恐怖组织提供有力的技术支撑。机器算法的快速、准确、无疲劳等特点使其在大数据分析领域大展身手,展现出远超人类的能力。因此,美国防部联合人工智能中心主任沙纳汉中将就直言不讳地表示,算法就是“世界上最优秀、训练最有素的数据分析师”。

1.3提升军事网络攻防能力

网络空间已经成为继陆、海、空、天之外的“第五维空间”,是国家利益拓展的新边疆、战略博弈的新领域、军事斗争的新战场。习近平主席在中央网络安全和信息化领导小组第一次会议上指出,“没有网络安全就没有国家安全”。网络攻防是军事安全领域中的重要一环,基于人工智能技术的自动漏洞挖掘可以显著提升军事系统的网络防御能力。目前,网络防御领域存在两大问题:一是网络技术人才短缺;二是当前的网络防御系统面对未知漏洞表现不佳。人工智能的新发展为提升网络防御水平提供了新途径,主要体现在网络系统漏洞自动化检测和自主监视系统等方面。以深度学习为代表的机器学习技术有望使得网络防御系统不仅能从以往的漏洞中学习,而且能在监视数据中不断提升对未知威胁的应对能力。有研究表明,人工智能可以从大量网络数据中筛选出可疑信息,以此增强网络防御能力。比如“蒸馏网络”公司(DistilNetworks)就利用机器学习算法来防御人类难以察觉的高级持续性威胁(APT)网络攻击。目前,美国亚利桑那州立大学的科学家已经研发出了一种能够识别“零日漏洞”的机器学习算法,并能够追踪其在黑客界的流动轨迹。麻省理工学院(MIT)“计算机科学和人工智能”实验室的研究人员也启动了PatternEx研究项目,意在构建一个机器学习系统,预期每天能检查36亿行日志文件,监测85%的网络攻击,并在投入使用时进行自动学习和采取防御措施。美国国防部高级研究计划局正计划将人工智能用于网络防御,重点发展的功能包括在投入使用之前自动检测软件代码漏洞以及通过机器学习探测网络活动中的异常情况等。

1.4为军事训练和培训提供新方式

人工智能为军事训练和培训也提供了新方式。在作战训练领域,人工智能技术与虚拟现实技术相结合能够极大提升模拟软件的逼真度和灵活性,为针对特定战场环境开展大规模仿真训练提供高效手段,真正实现“像训练一样战斗,像战斗一样训练”。首先,通过收集卫星图像、街景数据、甚至是无人机拍摄的三维图像,虚拟现实程序能够在人工智能的帮助下快速、准确地生成以全球任何一处场景为对象的综合训练环境(STE),帮助士兵进行更有针对性的预先演练,提升士兵执行特定任务的能力。其次,人工智能赋能军事训练模拟软件在不降低真实度的情况下快速生成训练环境、设计交战对手,摆脱了以往军事训练耗费大量人力物力布置训练场景的传统模式。再次,人工智能具备的自主性使得模拟军事训练不会以可预测模式进行,士兵必须使用各种设备和不同策略在复杂多样的环境中战斗,有利于提升士兵和指挥官在作战中的应变能力。最后,人工智能通过在模拟对战中与人类反复交手从而迭代学习,系统借助大量复盘模拟可以不断完善应对方法,为参谋人员提供参考借鉴。这一过程类似于与AlphaGo进行围棋对战。换言之,人工智能不仅可以扮演模拟军事训练中人类的强大对手,还可以在每次胜利时向人类传授一种针对这次战役或行动的新策略。除此之外,人工智能在军事训练的其他领域也有着广泛应用。目前,一个名为“神探夏洛克”(SHERLOCK)的智能辅导系统已经被用于美国空军的培训中。这个系统能够为美国空军技术人员提供如何操作电子系统对飞行器进行诊断的培训。同时,南加州大学的信息科学学院已经研制出了一个基于替身的训练程序,能够为派驻海外的军人提供跨文化交流训练。

1.5给军事理论和作战样式创新带来新的启发

诚如恩格斯所言:“一旦技术上的进步可以用于军事目的,他们便立刻几乎强制地,而且往往是违背指挥官的意志而引起作战方式上的改变甚至变革。”技术进步作用于军事领域必然引起作战方式的改变甚至变革,这是恩格斯100多年前就向人们揭示的军事技术发展规律,人工智能技术当然也不例外。总体来看,以人工智能技术为支撑的智能化武器装备较传统武器装备具有突防能力强、持续作战时间长、战术机动性好、训练周期短以及综合成本低等显著优势。智能化无人系统可采用小型化甚至微型化设计,使用复合材料和隐身技术,以隐蔽方式或集群方式接近目标,让敌人难以察觉或无法防范。无人武器系统还可以突破人类生理局限,装备的性能指标和运转时长只需考虑制造材料、各类机械电子设备的承受极限和动力能源的携带量,不但使得系统在机动、承压方面能力得到革命性提升,并且能够实现远距离侦察打击和在目标区域的长时间存在。同样重要的是,与传统武器系统操控训练周期一般长达数年不同,无人系统操控员仅需数月或一年左右的训练即可远程操控“捕食者”“死神”等无人武器参加实战,更多作战人员不必直接踏上战场,有望大大降低战死率和随之而来的社会舆论压力。基于人工智能技术军事化应用的上述特点,近年来美军提出了以算法较量为核心的算法战、无人武器系统蜂群式作战、具有高度自适应性的“马赛克战”等一系列新作战样式。可以预见的是,随着人工智能技术的进一步发展,智能化条件下的军事理论和作战样式创新不会停止。

总而言之,人工智能可以帮助军事力量更加精准高效地运转,同时降低人类面临的生命危险。人工智能在无人作战、情报搜集与处理、军事训练、网络攻防、智能化指挥控制决策等军事领域的广泛运用具有“改变游戏规则”的颠覆性潜力,有望重塑战争形态,改写战争规则,推动智能化战争的加速到来。中央军委科技委主任刘国治中将等专家认为,人工智能必将加速军事变革进程,对部队体制编制、作战样式、装备体系和战斗力生成模式等带来根本性变化,甚至会引发一场深刻的军事革命。

人工智能给军事安全带来的风险和挑战

人工智能作为一种科学技术,同样具备“双刃剑”属性。人工智能一方面为人类社会发展进步和维护军事安全提供了新的动力和机遇,另一方面也带来了一系列威胁与挑战。综而观之,人工智能给军事安全带来的威胁和挑战主要有以下几个方面。

2.1人工智能军事应用带来的非预期事故

人工智能的军事应用存在诸多不确定性,容易带来非预期事故的发生。这主要由以下两点原因所致:一是由于人工智能内部的脆弱性问题(internalvulnerbility)。当前,人工智能还停留在弱人工智能阶段,而弱人工智能系统的特点在于它们接受了非常专门的任务训练,例如下棋和识别图像。战争可以说是最复杂的人类活动之一,巨量且不规律的物体运动仿佛为战场环境蒙上了一层“迷雾”,难以看清和预测战争全貌。在这种情况下,系统的应用环境无时无刻都在发生变化,人工智能系统可能将难以适应。因此,当前弱人工智能存在的根本脆弱性(brittleness)很容易损害系统的可靠性。交战双方部署的人工智能系统交互产生复杂联系,这种复杂性远远超出一个或多个弱人工智能系统的分析能力,进一步加剧了系统的脆弱性,发生事故和出错的概率将大大增加。此外,人工智能算法目前还是一个“黑箱”,可解释性不足,人类很难预测它的最终结果,也容易带来很多非预期事故。二是外部的攻击利用问题(externalexploitation)。研究人员已证明,图像识别算法容易受到像素级“毒”数据的影响,从而导致分类问题。针对开源数据训练的算法尤其容易受到这一挑战,因为对手试图对训练数据进行“投毒”,而其他国家又可能将这些“中毒”数据用于军事领域的算法练。目前对抗性数据问题(adversarialdata)已经成为一个非常严峻的挑战。此外,黑客攻击还可能导致在安全网络上训练的算法被利用。当训练数据受到污染和“投毒”,就很可能产生与设计者意图不符的人工智能应用系统,导致算法偏见乃至更多非预期事故的发生。最后,人机协同也是一个很大的难题。无论是强化学习、深度学习,还是专家系统都不足以完全准确地反映人类的直觉、情感等认知能力。人工智能的军事运用是“人—机—环境”综合协同的过程,机器存在可解释性差、学习性弱、缺乏常识等短板,或将放大发生非预期事故乃至战争的风险。

2.2人工智能军备竞赛的风险

与核武器类似,由于人工智能可能对国家安全领域带来革命性影响,世界各国将会考虑制定非常规政策。目前,世界各国(尤其是中、美、俄等军事大国)都认识到人工智能是强化未来国防的关键技术,正在加大人工智能领域的研发力度,并竭力推进人工智能的军事应用,力图把握新一轮军事技术革命的主动权,全球人工智能军备竞赛态势初露端倪。具体而言,美国将人工智能视为第三次抵消战略的核心,建立“算法战跨职能小组”,筹划基于人工智能的算法战。2018年7月,美国防部设立专门的人工智能机构——联合人工智能中心(JAIC),大力推动军事人工智能应用。2019年2月12日,美国防部正式出台美军人工智能战略,并将联合人工智能中心作为推进该战略落地的核心机构。美国2021财年国防授权法案草案中也特别强调对人工智能、5G、高超声速等关键技术进行投资,建议对人工智能投资8.41亿美元,对“自主性”(autonomy)投资17亿美元。这些举措都体现出美国积极推动人工智能军事化、在人工智能领域谋求新式霸权的意图。俄罗斯在这一领域也不甘落后。2017年1月,普京要求建立“自主机器复合体”(AutonomousRoboticComplexs)为军队服务。中国政府则于2017年7月20日出台《新一代人工智能发展规划》,正式将发展人工智能上升到国家战略高度。军事领域也在通过“军民融合”战略加快“军事智能化发展”步伐,“促进人工智能技术军民双向转化,强化新一代人工智能技术对指挥决策、军事推演、国防装备等的有力支撑,推动各类人工智能技术快速嵌入国防创新领域”。

鉴于人工智能强大而泛在的技术本质以及军事领域对于强大技术的强烈需求,人工智能走向军事应用是难以阻挡的趋势,当前各国竞相推动人工智能军事化和发展人工智能武器便是其现实体现。大国间在人工智能领域的军备竞赛将会危及全球战略稳定,对国家安全带来严重威胁,埃隆·马斯克关于人工智能军备竞赛可能引发第三次世界大战的预言并非危言耸听。如同所有军备竞赛一样,人工智能领域的军备竞赛本质上都是无政府状态下安全困境的体现,如果缺乏信任和有效的军备控制措施,这将成为一场“危险的游戏”,直到一方把另一方拖垮或双方共同卷入战争,上演一场智能时代的“零和博弈”。

2.3扩展威胁军事安全的行为体范围和行为手段

传统上,威胁军事安全的主要行为体是主权国家的军队,但随着网络和人工智能技术的发展,这一行为体范围正在拓展。以网络攻击为例,根据攻防平衡理论,重大军事技术的出现将对攻防平衡产生重大影响,而有的军事技术天然偏向于进攻方。当前,人工智能技术的发展对提升网络攻击能力同样提供了极大机遇。可以预见,人工智能与深度学习的结合有望使得“高级持续威胁”系统成为现实。在这种设想下,网络攻击方能够利用APT系统24小时不间断地主动搜寻防御方的系统漏洞,“耐心”等待对方犯错的那一刻。随着人工智能逐步应用,将有越来越多的物理实体可以成为网络攻击的对象。例如,不法分子可经由网络侵入军用自动驾驶系统,通过篡改代码、植入病毒等方式使得军用无人车失去控制,最终车毁人亡。又比如通过入侵智能军用机器人,控制其攻击己方的人员或装备。同时,人工智能与网络技术结合可能进一步降低网络攻击的门槛。当智能化网络攻击系统研制成功,只要拥有足够多的资金便能有效提升自己的网络攻击能力,而不需要太高的技术要求。因此,未来恐怖分子利用人工智能进行网络攻击或攻击自主系统的算法、网络等,继而诱发军事系统产生故障(如军用无人车、无人机撞击己方人员),或者直接损坏军事物联网实体设备等,都会对军事安全产生很大威胁。

此外,人工智能的发展应用还将催生新的威胁军事安全的方式和手段。人工智能表现出诸多与以往技术不一样的特点,也自然会带来威胁军事安全的新手段,深度伪造(deepfakes)就是其中的典型代表,该技术为煽动敌对国家间的军事冲突提供了新途径。例如,A国雇佣代理黑客使用人工智能技术制作“深度伪造”视频或音频材料,虚构B国密谋针对C国采取先发制人打击,并将这段“深度伪造”材料故意向C国情报部门秘密透露,引发C国的战略误判,迫使其采取对抗手段。B国面对这种情况也将不得不采取措施予以应对,一场由A国借助人工智能技术策划的针对B、C两国的恶意情报欺诈就完成了。当前,“深度伪造”技术的发展速度远超相关的检测识别技术,“开发深度伪造技术的人要比检测它的人多100到1000倍”,这给各国安全部门抵御人工智能增强下的信息欺诈和舆论诱导制造了很多困难。此外,运用人工智能系统的军队也给自身带来了新的弱点,“算法投毒”、对抗性攻击、误导和诱骗机器算法目标等都给军事安全带来了全新挑战。

2.4人工智能产生的跨域安全风险

人工智能在核、网络、太空等领域的跨域军事应用也将给军事安全带来诸多风险。例如,人工智能运用于核武器系统将增加大国核战风险。一方面,人工智能应用于核武器系统可能会强化“先发制人”的核打击动机。核武器是大国战略威慑的基石,人工智能增强下的网络攻击将对核武器的可靠性构成新的威胁,在战时有可能极大削弱国家威慑力、破坏战略稳定。因此,尽管目前人工智能增强下的网络攻击能力的有效性并不确定,危机中仍将大大降低对手间的风险承受能力,增加双方“先发制人”的动机。信息对称是智能化条件下大国间进行良性竞争的基础和保障,但现实情况往往是,在竞争激烈的战略环境中,各国更倾向于以最坏设想来揣测他国意图并以此为假设进行斗争准备,尤其当面对人工智能赋能下的愈加强大的针对核武器系统的网络攻击能力,“先下手为强”确乎成为国家寻求自保的有效手段。另一方面,人工智能技术在核武器系统领域的应用还将压缩决策时间。人工智能增强下的网络攻击几乎发生在瞬间,一旦使核武器系统瘫痪,国家安全将失去重要屏障,给予决策者判断是否使用核武器的压力将激增。尤其在一个国家保持“基于预警发射”(lauch-on-warning)的情况下,核武器系统遭到人工智能增强下的网络攻击时几乎无法进行目标探测并且发出警报,更不可能在短时间内进行攻击溯源和判定责任归属,决策时间压缩和态势判断困难会使决策者承受巨大压力,极有可能造成战略误判,给世界带来灾难。

人工智能与网络的结合会极大提升国家行为体和非国家行为体的网络能力,同时也会催生出一系列新的问题。首先,人工智能技术的网络应用将提升国家行为体的网络攻击能力,可能会加剧网络领域的冲突。如前所述,基于人工智能的APT攻击可使得网络攻击变得更加便利,溯源问题也变得更加困难。与此同时,人工智能的网络应用可能会创造新的缺陷。目前人工智能的主要支撑技术是机器学习,而机器学习需要数据集来训练算法。一旦对方通过网络手段注入“毒数据”(如假数据),则会使得原先的人工智能系统非正常运行,可能带来灾难性后果。其次,由于人工智能算法的机器交互速度远超人类的反应速度,因此一旦将人工智能用于军事领域的网络作战,还有可能带来“闪战”风险,即人类还没来得及完全理解网络空间的战争就已经发生。此外,人工智能在太空领域的应用可能对全球战略稳定和军事安全带来破坏性影响。在人工智能的加持下,传统的反卫星手段将变得更加精准、更具破坏性、更难追溯,从而加大“先发制人”的动机,寻求先发优势。这容易破坏航天国家的军事安全和全球战略稳定,因为攻击卫星尤其是预警卫星往往被视为发动核打击的前兆。

结语

总体国家安全观强调,发展是安全的基础和目的,安全是发展的条件和保障,二者要同步推进,不可偏废。既要善于运用发展成果夯实国家安全的实力基础,又要善于塑造有利于经济社会发展的安全环境,以发展促安全、以安全保发展。因此,维护人工智能时代的军事安全并不代表放弃人工智能的发展,反而要大力推动其应用,使其成为维护军事安全的重要手段和支撑,并注重化解风险。如今,我国正处在由大向强发展的关键时期,人工智能有望成为驱动新一轮工业革命和军事革命的核心技术。因此,我们需要抢抓此次重大历史机遇,积极推动人工智能的研发和军事应用,推动军事智能化建设稳步发展,为建设世界一流军队增添科技支撑。

在当今时代,没有谁是一座孤岛,人工智能对于军事安全领域的影响是全球性的,因此推动人工智能领域的国际安全治理、构建人类命运共同体就显得尤为重要。由于人工智能的迅猛发展,目前对于智能武器尤其是致命性自主武器系统的相关法律法规还并不完善,各国在如何应对这些问题方面也没有明确的方法、举措和共识,但这些问题确关人类社会的未来前景和国际体系稳定。为了维护我国的军事安全以及整体的国家安全利益,应当推动人工智能技术治理尤其是安全领域的全球治理,在人工智能的军事应用边界(如是否应当将其用于核武器指挥系统)、致命性自主武器系统军备控制等领域开展共同磋商,在打击运用人工智能进行恐怖犯罪等领域进行合作,构建人工智能时代的安全共同体和人类命运共同体,维护国家军事安全和人类和平福祉。

免责声明:本文转自信息安全与通信保密杂志社,原作者文力浩,龙坤。文章内容系原作者个人观点,本公众号转载仅为分享、传达不同观点,如有任何异议,欢迎联系我们!

推荐阅读

2021年上半年世界前沿科技发展态势

2021年上半年世界前沿科技发展态势——信息领域

2021年上半年世界前沿科技发展态势——生物领域

2021年上半年世界前沿科技发展态势——能源领域

2021年上半年世界前沿科技发展态势——新材料领域

2021年上半年世界前沿科技发展态势——先进制造领域

2021年上半年世界前沿科技发展态势——航空领域

2021年上半年世界前沿科技发展态势——航天领域

2021年上半年世界前沿科技发展态势——海洋领域

转自丨信息安全与通信保密杂志社

作者丨文力浩,龙坤

编辑丨郑实

研究所简介

国际技术经济研究所(IITE)成立于1985年11月,是隶属于国务院发展研究中心的非营利性研究机构,主要职能是研究我国经济、科技社会发展中的重大政策性、战略性、前瞻性问题,跟踪和分析世界科技、经济发展态势,为中央和有关部委提供决策咨询服务。“全球技术地图”为国际技术经济研究所官方微信账号,致力于向公众传递前沿技术资讯和科技创新洞见。

地址:北京市海淀区小南庄20号楼A座

电话:010-82635522

微信:iite_er返回搜狐,查看更多

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能的十大应用(无人驾驶丨人脸识别丨医学图像处理)

导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。这篇文章,希望对你职业生涯选择会有帮助。

 如果你想学习入门人工智能AI,可以来我建的人工智能学习群:[672948930],群里有我整理的一份关于pytorch、python基础,图像处理opencv自然语言处理、机器学习、数学基础等资源库,想学习人工智能或者转行到高薪资行业的,大学生都非常实用,无任何套路免费提供!还可以扫码加VX领取人工智能200G学习资料大礼包哦!

 

01无人驾驶汽车

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。

美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。

2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。

Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。

2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。

近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。

02人脸识别

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。

2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;

2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

03机器翻译

机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。

随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。

04声纹识别

生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。

声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。

相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。

同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。

目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。

05智能客服机器人

智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。

当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。

智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。

随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。

而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。

06智能外呼机器人

智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。

在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。

从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。

基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。

07智能音箱

智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。

支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。

在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。

08个性化推荐

个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。

个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。

个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。

09医学图像处理

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

10图像搜索

图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。

该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。

 

   如果你想学习入门人工智能AI,可以来我建的人工智能学习群:[672948930],群里有我整理的一份关于pytorch、python基础,图像处理opencv自然语言处理、机器学习、数学基础等资源库,想学习人工智能或者转行到高薪资行业的,大学生都非常实用,无任何套路免费提供!还可以扫码加VX领取人工智能200G学习资料大礼包哦!

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇