【听见马克思】人工智能是劳动者的福音吗
人工智能是劳动者的福音吗?
——兼论马克思经济学的当代价值
编者按:为纪念马克思诞辰200周年,光明网策划、录制了通俗理论音频节目《听见马克思》,邀请中共中央党校(国家行政学院)、中国社会科学院、中国人民大学、山东大学、辽宁大学、上海大学、天津师范大学等机构的专家学者,为您讲述伟人故事、探寻伟人足迹、传承精神财富。本期节目由中国人民大学沈尤佳为您讲述《人工智能是劳动者的福音吗?》。
谷歌I/O2018大会上,谷歌公司发布了GoogleAssistant新技术。在现场演示中,GoogleAssistant已经可以与电话对面的人对答如流,连“emmmm”的语气都与真人一样,惟妙惟肖。甚至,GoogleAssistant明白人类的“话里有话”,能按照言外之意去行动。
2014年,高盛投资并开始部署一款由人工智能驱动的交易平台“Kensho”。对冲基金创业公司WalnutAlgorithms从一开始就研究人工智能技术。另一家对冲基金公司BridgewaterAssociates还组建了自己的团队,来打造可自我进行实际操作的人工智能系统。
对冲基金数据服务公司Eurekahedge追踪了23家使用人工智能技术的对冲基金,结果发现,人工智能的表现要优于人类。过去,靠数学模型分析金融市场的物理学家和数学家是对冲基金的宠儿。但是,他们是依靠对历史数据的分析,来创建一个可以预测市场趋势的模型。人工智能也能这样做,而且还能吸取最新的数据,从而持续提升其预测模型。商业智能公司CoalitionDevelopment的报告显示,12家最大投资银行的销售、交易和研究员的平均年薪为50万美元,许多交易员甚至达到百万美元。另一项行业调查结果显示,2015年,5个对冲基金经理的薪水加起来有10亿美元,甚至更高。为何不用人工智能来取代这些交易员呢?
根据美国劳工统计局2017年提供的统计数据,美国有大约380万机动车驾驶员,包括卡车、货车、巴士和出租车司机。美国约有100万人注册成为Uber和Lyft的兼职司机。全球范围内,以开车为生的人超过1亿。靠开车为生的工人很可能在自动驾驶时代中失去饭碗。
人工智能在可预见的未来会全面替代人工吗?人类中的一部分可能连被剥削的价值都没有了吗?
事实上,人工智能与人类的关系,不是掠夺,而是解放,这是马克思经济学早在一个多世纪前就揭示了的,尽管马克思没有直接使用“人工智能”的概念,而是(人类劳动)“时间的节约”。
马克思在《政治经济学批判大纲(草稿)(1857-1858)》指出,如果(自由劳动者的联合的)共同的生产已成为前提,时间的规定当然仍有重要意义……正象单个人的情况一样,社会发展、社会享用和社会活动的全面性,都取决于时间的节省。一切节约归根到底都是时间的节约……真正的经济——节约——是劳动时间的节约(生产费用的最低限度——和降到最低限度)。而这种节约就等于发展生产力。
5月11日,青岛港全自动化集装箱码头迎来运营一周年。一年来,青岛港自动化码头作业效率全球领先。开港运营之初,平均单机装卸效率达到26.1自然箱/每小时(国外同类码头开港效率为13-15自然箱/小时),同年10月提升到30自然箱/每小时(国外同类码头约为20自然箱/每小时,人工码头为25-28自然箱/每小时),较全球同类码头提高50%,已全面超过人工码头。自动化码头迄今经历了一个完整季节周期,完全经受住了大风、雨雪、酷暑、极寒等极端恶劣天气考验。目前,桥吊、ASC(集装箱堆垛机)、AGV(自动导引车)等主要设备的可靠率稳定在99.92%以上,最高达到100%。“汗水经济”变身“智慧经济”——时间的节约就是发展生产力。
就节约时间本身来说,共产主义生产方式和资本主义生产方式并无差别。为了追求利润,资本力图不断降低社会必要劳动支出,即节约时间。但是,与此同时是生产剩余价值的剩余劳动时间的相对和绝对的增加。生产力的发展,只是在它增加工人阶级的剩余劳动时间,而不是减少物质生产的一般劳动时间的时候,对资本主义生产才是重要的;因此,资本主义生产是在对立中运动的。这种对立表现在工人阶级的劳动时间和寄生资产阶级的自由时间的极化作用中,表现在社会上一部分人靠牺牲另一部分人来强制和垄断社会发展(包括这种发展的物质方面和精神方面的利益)……
马克思在这种对抗中揭示了这个历史上进步的、超出资本主义的因素。就是说,由于资本向工人榨取越来越多的剩余劳动时间,因而使人的劳动,使力量的支出缩减到最低限度。这将有利于解放了的劳动,也是使劳动获得解放的条件。这就是说,在资本主义制度框架底下人工智能的出现,其主观出发点是为了更多的剩余价值。客观上却会使人类劳动的支出被缩减到最低限度,从而为劳动的解放创造条件,这是不以资本的意志为转移的。这样就会为这样一些关系创造出物质手段和萌芽,这些关系在一个更高级的社会形态内,使这种剩余劳动能够同一般物质劳动所占用的时间的较显著的缩短结合在一起。也就是说,人类劳动支出的缩减和剩余劳动的最大化,是资本主义社会专制的表征。然而,人类劳动支出的缩减和剩余劳动的缩减却会在共产主义社会同时实现。
同样的人工智能技术的发展,在两种制度下,对人类命运产生两种相反的结果。原因在于两种制度的生产目的截然不同。资本主义的物质生产本质上是剩余价值的生产与再生产,所以,尽管人工智能技术绝大程度上替代了人类劳动,人类的被雇佣的那一部分的工作日却不可能缩减,因为只有保证最大限度的工作日长度才能保证最大限度的剩余价值。然而,人工智能技术毕竟替代掉了愈来愈大部分和绝大部分的人类劳动,所以,这种工作日长度的最大化是以失业人口的最大化为代价的,这就是所谓的“人类的一部分连被剥削的价值也丧失了”。而社会主义的物质生产本质上是一切人的可使用物和一切人的自由发展的生产与再生产。所以,当人工智能技术绝大程度上替代了人类劳动,人类具备劳动能力的每一个体,都拥有为社会而劳动的权力和义务,这是以缩短每一个劳动者的工作日长度为前提基础的,毕竟人类劳动中的简单、单调、重复和繁重的部分在绝大程度上被人工智能所替代。
2016雨果奖最佳“短中篇小说”获奖作品《北京折叠》,把22世纪北京的空间分割为三层,底层5000万人是清洁工和个体户,他们每天的生活时间只有8小时。对应的是《人工智能时代》和《机器危机》的观点:随着人工智能发展,未来机器人必将取代人类。如何解决多余人口?最好的办法是彻底减少这些人的生活时间,比如统统塞到夜里做清洁工——这就是为什么他们的一天只有8小时。
这样的作品和作者似乎未曾接受起码的马克思主义启蒙。
时间节约原则认为,不断节约劳动时间,能使劳动者获得充分的自由时间,作为闲暇时间或从事各种文化和社会活动的时间,从而使劳动者的体力和智力得到全面的发展。这种全面发展的劳动者,在生产中又将进一步节约劳动时间,创造出更多的社会财富,进一步发展生产力。共产主义生产关系中的时间节约的特点是,通过劳动时间的节约为单个人和社会提供了自由时间,自由时间又成为实现生产新目的的物质基础。马克思指出,节约劳动时间等于增加自由时间,即增加使个人得到充分发展的时间,而个人的充分发展又作为最大的生产力反作用于劳动生产力。因此,必须通过节约时间来提高劳动生产力,从而同时扩大个人发展的可能性。
共产主义的社会形态,马克思在《政治经济学批判大纲(草稿)(1857-1858)》对它的描绘是,在这里生产力的自由的、毫无阻碍的、不断进步的和全面的发展本身就是社会的前提,因而是社会再生产的前提。在未来的无阶级社会中,由于生产资料的公有制,生产关系的性质和生产的社会性原则上是一致的。正是这种为社会全体成员谋福利的无限发展,使共产主义生产方式同资本主义生产方式以及以前一切生产方式区别开来。这样,新社会就在自己的社会经济和社会政治的基础上使一种更高的劳动生产率原则成为可能。(光明网记者刘丹)
[责编:李澍]人工智能取代了什么“劳动”,我们是否到了重新定义“劳动”的时候
要理解劳动的价值。人工智能在部分劳动能力方面已经远远地把人类抛在后面,但它们不懂什么是感情和意义,比如智能机器人AlphaGo在赢得了比赛后无法像人一样体会到成功的喜悦。苏联教育家马卡连柯曾指出,“劳动永远是人类生活的基础,是创造人类文化幸福的基础”。人工智能时代的劳动教育更加强调“劳动创造价值”,教育学生通过自己的双手改变生活、改变世界,进而获得精神愉悦,深刻认识劳动创造的价值。要通过劳动培养学生不俗的情趣和超脱的意志,使学生在收获劳动成果的同时,不断丰富创造生活的美感与精神的愉悦,发挥聪明才智展现出劳动创造欲、征服感与成就感,从而“肯定自己”、“感到幸福”。
教育内容更加注重创新性
创新才能永不落后。《人工智能时代的未来职业报告》的研究发现:一项工作如果人可以在五秒钟以内对工作中需要思考和决策的问题作出相应决定,这项工作就有非常大的可能被人工智能技术全部或部分取代。未来大量的重复性、机械性、简单性、危险性的劳动将被人工智能替代,很多服务工作、流程工作和中层管理环节将消失,人工智能社会需要更多新的、深度的、创意性的人才出现。
创意是稀缺资源。面对人工智能时代对劳动者职业技能的新要求,劳动教育不仅要培养学生的劳动能力,更要培养学生自主适应时代变化要求的劳动观念。一是帮助学生认知人工智能时代的职业特点或职业规划与人工智能的关系,引导学生积极运用人工智能提升劳动价值,如成为人工智能的调配管理者、创意设计师,或运用人工智能完成任务的高端策划师等。二是培养学生的择业技能,帮助学生更好地选择自己未来的职业,并尽早开始相应的知识学习和技能训练,以适应极速变化的智能社会。三是帮助学生训练未来职场上的各种能力。例如创造和创新、批判性思维和解决问题、人际沟通和与人合作。这些技能的养成都需要劳动教育的介入来生成和培养。因此,需要劳动教育不断丰富教育内容,围绕未来智能社会所需要的职业技能改进教学方式,以完善学生的技能储备,服务学生的未来职业发展。
创造是基本要求。按照智能社会的分工,机器人会迅速占领劳动标准化领域,人类要做和机器人不一样的事,创造性劳动将占主导地位。为了适应这一发展趋势,劳动教育内容要以技术应用和技术创新为核心,更多地与STEM教育、创客教育和创新教育的最新发展相融合,根据不同学段学生的接受能力来设计劳动教育的梯度结构,逐步增加劳动课程中的技术含量,注重帮助每个学生培养符合个性特征和未来发展需要的技术素养,培养学生的创新意识、创新精神和创新能力,为创新人才的成长奠定基础。例如,依托高校创新创业学院和人工智能学院,健全创新创业教育课程体系,加强创新创业实践基地建设;通过物理实验、业余无线电、人工智能技术的植入带动劳动教育的创新发展,训练学生的动手能力、探究能力、合作能力及运用智能工具的能力,增强学生的想象力和创造力。
教育过程更加强化整体性
不断凸显劳动育人的重要性。党的十九大提出“建设知识型、技能型、创新性劳动者大军,弘扬劳模精神和工匠精神,营造劳动光荣的社会风尚和精益求精的敬业风气”,赋予教育现代化新的使命和任务。劳动教育是中小学素质教育的重要组成部分,不仅要注重教育引导学生热爱劳动、热爱创造、养成自觉劳动的生活习惯,共同营造劳动光荣的社会风尚,也要积极面对人工智能时代的挑战,改革创新传统劳动教育模式,不断完善教育目标、教育内容、实施方案、评价体系,才能担负起培育未来新型劳动者的历史重任。
不断强化课程设计的系统性。一是以问题驱动的项目式课程为依托,促进劳动教育与其他学科课程的聚合,注重运用语文、数学、地理、历史、物理、生物、化学、信息等学科中的劳动教育元素,与德育、智育、体育、美育的有机统整、融合,促进学生的全面发展。二是以技术支撑下的翻转式课程为依托,将人工智能、物联网、大数据处理等内容嵌入课程,提高学生人机协作、人人协作的能力,提升学生的人工智能商数(AIQ)。三是以自主建构的个性化课程为依托,根据不同年龄学生的生理、心理和社会性特征,从实际出发、因地制宜地设计多元化课程,充分利用人工智能技术推动劳动课程学习范式的改变,为每个学生提供个性化、定制化的学习内容、方法,激发学生深层次的学习兴趣。
不断完善教育过程的协同性。劳动教育从原来的“为了获得劳动技能的教育”转变为“通过劳动而获得教育”,即从知识的获得到回归教育本源,重在劳动实践中塑造人格、运用知识和创新创造。一是在家庭中鼓励学生积极开展劳动工具的改进创造,不断提高家庭劳动工具的智能化水平。二是构建家校社劳动教育平台,促进劳动教育向生活渗透、向社区延伸、与家庭互动,使学生在劳动中建立与真实世界的联系,促进与他人之间的交往,完善对自我的认知,形成多方位的劳动教育合力。三是不断整合劳动教育资源,开展人工智能企业参观、人工智能工程师进校园、信息技术职业学校的优质课程共享等活动,充分发挥社会力量参与劳动教育的积极作用。在社区周边的种养殖场、工厂、商场、社区服务中心等运用人工智能技术较多的劳动基地,为学生创造良好的、多样的劳动场所。返回搜狐,查看更多
人工智能时代对人类就业有哪些影响,我们应该如何应对
一、人工智能时代对人类就业的影响
(一)人工智能时代的发展分析
科技发展到今天,人们迎来了全新的智能时代。人工智能技能的出现,预示着人类社会进入了崭新的阶段,只是也对人类就业产生冲击影响,可能引发大规模的失业潮。美国有关学者认为,智能时代的来临,制造出更多的智能机器人,相较于与日俱增的人类劳动力而言,相智能机器人拥有高效、低廉的巨大竞争优势,在未来几近能够替代人类80%的职业岗位。查阅相关资料得知,此学者在其研讨中运用了科学的数据统计分析法,最后得到该项结论。同时美国另一位著名的学者也曾预测,在未来的十五年之内,美国本国将会有23~30%的人类岗位会被人工智能机器人所代替。马克思在其研讨中以具体的案例证明了生产效率的提高主要依靠技能的不时创新和进步。借助互联网资源平台明白到,全球闻名的咨询企业麦肯锡在2017年的汇报文件中指出,大概到了2025年,人工智能技能将会大爆发,相应的市场发展价值可能高达1280亿美元之多,全世界几近一半的事务岗位均会被人工智能所代替。显而易见,在未来的人类社会,目前大多数的事务岗位均会选取智能操作模式,智能技能在未来的发展前景十分巨大,其重要性不容忽视。
(二)人工智能时代与人类职业的关联
若干年后即将全面爆发的人工智能技能问题,会由一小局部人管控与生产智能机器人,并使其逐渐得以全面地应用在日常的生产事务中,从而发挥出良好的作用和功效。对于人类的就业,人工智能技能显然具有潜在的威胁。在未来依旧能够保持较高的竞争能力,不被智能机器人替代的岗位占比不会超过4%。对于人工智能机器人来说,虽然其本身属于从业方,但其仍受人工智能技能的抑制。由此,此种特殊的从业群体会在未来变得越来越庞大,并且逐渐变成固定的社会从业群体。从历史的发展角度来看,历次科学技能革命中受益最大的就是新兴的行业与家当,如果人类可以在这些新兴家当与行业中掌握主动权,熟练运用相关的技能和设备,那么,必然不会面临失业的风险。即当人们学会并熟练应用人工智能技能后,相应的就业压力和失业风险也会逐步降低,所以,对于人工智能时代的来临,需要人类做好相应的思维与技能筹备。
二、人工智能时代下应对失业问题的策略
(一)以政府为主导健全就业服务制度
对于即将全面爆发的人工智能时代,为了规避大规模的失业浪潮的出现,需要政府部门介入,发挥一定的主导作用,有效利用目前存在的相关的就业服务机构,比如:猎头服务公司、互联网招聘公司及其他人力资源管理服务企业等,并且有效健全市场就业服务制度,紧密关注当前的就业市场的动态变化,并积极推进就业市场的信息化改革进程,不时丰富就业服务的具体的管理内容。与此同时,通过有效利用和借鉴智能机器人等先进的技能与相关设备,给予就业者相应的技术培训机会。在构建互联网就业服务平台中,增加专业人才、基础人才及复合型人才等不同层次的招聘岗位设置,融入智能化元素,帮助就业者在第一时间内发现和找到与自身能力相匹配的就业岗位。当然,还能够召开智能技能的人才招聘交流大会,通过对全国范围内的人才需求情况进行分析,创建相应的就业服务数据库。此外,进一步对劳动力的市场加以规范和管控,以便达到提高其总体就业服务能力的最后目的。而在公共就业服务机构中,还要注重对高、中、低等不同层次的岗位人才需求的合理化配置,尤其针对那些具有中、低端劳动能力的就业人IT来说,需要进行科学的培训和教导,为其制定有针对性的未来的职业规划方案,从而做到对以后的职业发展方向心中有数,不再迷茫和失落,不时学习新型的知识和技能,依靠政府部门的扶持力量,获得科学的职业咨询和帮助,确保以后的生活保障[1]。
(二)高校增设相应专业并强化科研力度
智能化信息时代的来临,让很多人面临着失业的风险,为了缓解失业人群的就业压力,培养新型的专业化人才,需要广大高等院校增设相应专业并予以细化、丰富。高等院校需要联合当前智能技能、机器人技能、互联网信息技能等新兴技能的发展现状,大量招聘相关的专业教师人才,并且增加相应课程的设置,完成对现有教学课程体系的重组与优化。例如:高校应该机密关注科技发展动态,开设智能技能发展、机器人技能与应用、物联网、云计算等相应的课程科目,并将每一科目的具体课程内容细化,从相关理论知识、实践应用操作等两个方面入手,制定和设计合理的教材内容,并借助灵活、科学的教学方式,吸引更多的学生,激发其学习的兴趣和热情,达到培养高端智能人才的目的。通过对未来市场的发展趋势和方向的预测与分析,根据未来的人工智能技能和机器人技能所应用的相关家当的具体需要,开设与其紧密相关的电子智能信息技能、智能机器人技能等新型的课程内容显然很有必要。加大相关高等院校和高新企业的合作力度,合理安排学生进入高新企业完成实地的培训和学习任务。由此,能够有效提升高等院校的教学培训效果,为培养高端人才做充足的筹备。由此能够缓解就业压力,并确保社会的稳定、有序发展。与此同时,为了提高高校的教学综合能力,增强其科研水平,需要政府作为主导,大力扶持高等院校,开展新一轮的教育改革。具体来说,一方面,政府部门应该加大对于高等院校的科研扶持力度,为其提供充足的科研经费,并引进更先进的教学设备,建设更多的校园科研基地,聘请行业内的高端人才作为科研项目的研讨负责人,构建一支高水平、高素质的科研人员队伍,从而有效提升高等院校的综合科研实力;另一方面,政府部门应作为主导,积极倡导和激励那些具有高级技术的人才投入高校的科研队伍中。以构建新型的校园科研与创业园区的方式,吸引更多的高端、专业人才,以便为人工智能及机器人技能的应用奠定良好的基础,鼓舞更多的人才学习新型技能和设备的操作技能,为其以后的创业做好筹备。在得到政府部门的相关科研政策补贴与扶持后,有效推进高等院校的科研发展。
(三)开展失业人群心理抚慰服务并完成再就业培训
随着智能时代的来临,更多的人群面临着失业的风险,很多岗位被智能机器人所代替。大量的失业人群,由于心理的不稳定、情绪的失落,对社会的和谐发展造成不良影响,可能引发社会的动乱。所以,基于维护社会稳定,缓解失业人群就业压力的目的,需要一些社会事务者对这局部人群开展心理抚慰,帮助其走出阴霾,重拾信心。一方面,根据自身的情况,制定未来的职业发展规划,经过社会事务者的心理疏导,在智能技能快速发展的环境下,找到符合自己的事务岗位;另一方面,社会事务者通过心理抚慰服务,缓解失业人群心理上的矛盾,以个性化的服务,培养失业者乐观、积极的生活立场,改变当前的生活现状,从生活与事务中获取相应的欢快和满足,从而使内心达到平静,消除对社会的不满情绪,从而保证社会的平安与和谐。
与此同时,针对大量的失业人群,做好再就业培训事务显得十分重要。政府、学校、企业及相关职业培训机构应积极合作,加大失业人群的再就业培训力度,并提高相应的培训质量与效率。联合当前市场就业环境和具体的需求,强化学校、职业培训机构和企业之间的合作,改变人才能力和实际需要严重脱节的不良情况。同时以政府部门为主导,扶持和鼓舞创建更多的职业培训机构,为失业者提供多样化、专业化的培训服务,让失业者经过灵活、高效的培训后,做好自我的职业定位,明确未来的职业规划。在专业的培训机构中,失业者能够根据个人的需要和兴趣爱好,选择相应的培训课程,从而完成再就业任务,增加自身的知识和技术,在市场就业的竞争中占据一定的优势,重新找到符合自己的职业和岗位。
如何帮助推动人工智能发展,个人建议优先考虑这三个要点?人工智能,机器学习和深度学习之间,主要有什么差异?AIvs深度学习vs机器学习,人工智能的12大应用场景
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站
人工智能有什么价值和意义
人工智能有什么价值和意义,人工智能(AI)使机器可以从经验中学习,适应新的输入并执行类似人的任务。您今天听到的大多数AI示例-从下象棋的计算机到自动驾驶汽车-都严重依赖于深度学习和自然语言处理。使用这些技术,可以训练计算机通过处理大量数据并识别数据中的模式来完成特定任务。
,
一、人工智能历史
人工智能一词始创于1956年,但是由于数据量的增加,先进算法以及计算能力和存储能力的提高,人工智能在当今变得越来越流行。
1950年代早期的AI研究探索了诸如解决问题和符号方法之类的主题。1960年代,美国国防部对这种工作产生了兴趣,并开始训练计算机来模仿人类的基本推理。
这项早期工作为我们今天在计算机中看到的自动化和形式推理铺平了道路,包括可以设计为补充和增强人类能力的决策支持系统和智能搜索系统。
好莱坞的电影和科幻小说将AI描绘成占领世界的类人机器人,而AI技术的当前发展并没有那么可怕,甚至还没有那么聪明。取而代之的是,人工智能已经发展为在每个行业提供许多特定的利益。继续阅读有关医疗保健,零售等方面人工智能的现代示例。
二、为什么人工智能很重要?
1)AI通过数据实现重复学习和发现的自动化。但是,人工智能不同于硬件驱动的机器人自动化。AI不是自动执行手动任务,而是可靠,无疲劳地执行频繁,大量的计算机化任务。对于这种类型的自动化,人工询问对于设置系统并提出正确的问题仍然至关重要。
2)人工智能为现有产品增加了智能。在大多数情况下,不会将AI单独出售。而是,您已经使用的产品将通过AI功能得到改善,就像将Siri作为新一代Apple产品的功能添加一样。自动化,对话平台,机器人和智能机可以与大量数据结合使用,以改善从安全智能到投资分析的各种家庭和工作场所技术。
3)AI通过渐进式学习算法进行调整,以使数据进行编程。人工智能发现数据的结构和规律性,从而使该算法获得技能:该算法成为分类器或预测器。因此,就像该算法可以教自己如何下棋一样,它可以教自己下一个在线推荐什么产品。当给定新数据时,模型会适应。反向传播是一种AI技术,允许在第一个答案不太正确时通过训练和添加数据来调整模型。
4)AI使用具有许多隐藏层的神经网络分析更多和更深的数据。几年前几乎不可能构建具有五个隐藏层的欺诈检测系统。不可思议的计算机功能和大数据改变了这一切。您需要大量数据来训练深度学习模型,因为它们直接从数据中学习。您可以提供的数据越多,它们变得越准确。
5)人工智能通过深度神经网络实现了令人难以置信的准确性,这在以前是不可能的。例如,Alexa,百度搜索和百度相册的交互都是基于深度学习的,并且随着我们使用它们的不断增加,它们将变得越来越准确。在医学领域,来自深度学习,图像分类和对象识别的AI技术现在可以用于以与训练有素的放射科医生相同的准确性在MRI上发现癌症。
6)AI充分利用数据。当算法是自学时,数据本身可以成为知识产权。答案在数据中。您只需要应用AI即可将其淘汰。由于数据的作用现在比以往任何时候都重要,因此可以创造竞争优势。如果您在竞争激烈的行业中拥有最好的数据,即使每个人都在应用类似的技术,那么最好的数据也会取胜。
三、如何使用人工智能
每个行业对AI功能的需求都很高,尤其是可以用于法律援助,专利检索,风险通知和医学研究的问答系统。AI的其他用途包括:
卫生保健
AI应用程序可以提供个性化的医学和X射线读数。私人保健助理可以充当生活教练,提醒您吃药,锻炼身体或保持健康饮食。
零售
AI提供了虚拟购物功能,可提供个性化的建议并与消费者讨论购买选项。人工智能还将改善库存管理和站点布局技术。
制造业
AI可以使用循环网络(一种与序列数据一起使用的特定类型的深度学习网络),分析工厂IoT数据,使其从连接的设备流向预测预期的负载和需求。
银行业
人工智能提高了人类工作的速度,准确性和有效性。在金融机构中,人工智能技术可用于识别哪些交易可能是欺诈性的,采用快速准确的信用评分以及自动执行手动密集型数据管理任务。
四、人类与AI合作
人工智能不能代替我们。它增强了我们的能力,使我们的工作做得更好。由于AI算法的学习方式与人类不同,因此他们对事物的看法也有所不同。他们可以看到逃避我们的关系和模式。这种人类之间的AI合作关系提供了许多机会。它可以:
1)将分析引入当前未充分利用的行业和领域。
2)改善现有分析技术的性能,例如计算机视觉和时间序列分析。
3)打破经济障碍,包括语言和翻译障碍。
4)增强现有能力,使我们的工作做得更好。
5)给我们更好的视野,更好的理解,更好的记忆力等等。
五、使用人工智能有哪些挑战?
人工智能将改变每个行业,但我们必须了解其局限性。
AI的原则局限性在于它从数据中学习。没有其他可以合并知识的方式。这意味着数据中的任何错误都会反映在结果中。并且必须单独添加任何其他预测或分析层。
如今的AI系统已经过培训,可以完成明确定义的任务。玩扑克的系统不能玩单人纸牌或国际象棋。检测欺诈的系统无法驾驶汽车或向您提供法律建议。实际上,检测医疗保健欺诈的AI系统无法准确检测税收欺诈或保修索赔欺诈。
换句话说,这些系统非常非常专业。他们只专注于一项任务,而且行为举止远不及人类。
同样,自学系统也不是自主系统。您在电影和电视中看到的想象中的AI技术仍然是科幻小说。但是可以探测复杂数据以学习并完成特定任务的计算机变得非常普遍。
六、人工智能如何运作
AI通过将大量数据与快速,迭代的处理和智能算法结合在一起来工作,从而使该软件可以自动从数据的模式或特征中学习。人工智能是一个广泛的研究领域,包括许多理论,方法和技术,以及以下主要子领域:
1)机器学习使分析模型构建自动化。它使用来自神经网络,统计学,运筹学和物理学的方法来查找数据中的隐藏见解,而无需明确地为在哪里寻找或得出的结论进行编程。
2)神经网络是一种由相互连接的单元(如神经元)组成的机器学习,该单元通过响应外部输入,在每个单元之间中继信息来处理信息。该过程需要对数据进行多次遍历才能找到连接并从未定义的数据中获取含义。
3)深度学习使用具有多层处理单元的巨大神经网络,利用计算能力的进步和改进的训练技术来学习大量数据中的复杂模式。常见的应用包括图像和语音识别。
4)认知计算是AI的一个子领域,它致力于与机器进行自然的,类似于人的交互。使用AI和认知计算,最终目标是使机器能够通过解释图像和语音的能力来模拟人类过程,然后做出连贯的回应。
5)计算机视觉依赖于模式识别和深度学习来识别图片或视频中的内容。当机器可以处理,分析和理解图像时,它们可以实时捕获图像或视频并解释其周围环境。
6)自然语言处理(NLP)是计算机分析,理解和生成人类语言(包括语音)的能力。NLP的下一个阶段是自然语言交互,它允许人类使用日常的日常语言与计算机进行通信以执行任务。
此外,多种技术可以启用和支持AI:
1)图形处理单元是AI的关键,因为它们提供了迭代处理所需的强大计算能力。训练神经网络需要大数据和计算能力。
2)物联网从连接的设备生成大量数据,其中大部分未经分析。使用AI自动化模型将使我们能够使用更多模型。
3)正在开发先进算法并以新方式进行组合,以更快地,在多个级别上分析更多数据。这种智能处理是识别和预测罕见事件,了解复杂系统并优化独特方案的关键。
4)API或应用程序编程接口,是代码的可移植性软件包使其能够AI功能添加到现有的产品和软件包。他们可以将图像识别功能添加到家庭安全系统中,并可以使用Q&A功能来描述数据,创建标题和标题或在数据中标注出有趣的模式和见解。
总之,AI的目标是提供可以根据输入进行推理并根据输出进行解释的软件。人工智能将提供与人类类似的软件交互,并为特定任务提供决策支持,但它不能替代人类,而且不会很快出现。
摘自:https://www.aaa-cg.com.cn/data/2830.html
人工智能的未来之路
人工智能的未来之路
演讲人:刘嘉 演讲地点:清华大学人文清华讲坛 演讲时间:2022年11月
演讲人简介:
刘嘉,麻省理工学院博士,心理学家,长期从事心理学、脑科学与人工智能研究。清华大学基础科学讲席教授、心理学系系主任、清华大学脑与智能实验室首席研究员、北京智源人工智能研究院首席科学家。
人的认知与大脑构造
为什么人如此难以理解?为什么这个世界总是让我们产生很多困惑?这是人类从有文明开始就一直存在的问题,道理其实非常简单。
首先,我们看见的世界只是这个世界中非常小的一部分,我们忽略了绝大部分的东西。
我们在清华做过一个小实验:一位戴黑色渔夫帽的女士在清华问路,在她问路的时候,我们安排一块隔板从戴黑色渔夫帽的女士和被问路的人之间穿过。当板子过来时,原来问路的女士抬着板子走开了,而原来抬板子过来的另一位戴蓝色渔夫帽的女士留了下来,由她继续问路。在7个被问路的人中,只有一个人注意到了提问人的变化。这个小实验的问路场景里,人们其实只看见了世界上非常小的一部分,由于这些是不重要的信息,人们就容易忽略掉这些信息。
但更可能发生的是,人们的认知还会扭曲这个世界。比如图1这一组图里,有两个拼在一起的方块图,一个颜色深一点,一个颜色浅一点,还有一个圆环,它的灰度介于两者之间,圆环左右两半颜色一样。但如果把两个方块图分开,大家一般都会觉得圆环的颜色一边变浅了,一边变深了,事实上,它们的颜色仍是完全一样的。再把这个圆环分开,变成上下移动,这时看见的东西有立体感了,好像是深灰色的东西盖上了一层浅色的毛玻璃,以及浅色的板盖上了深色的毛玻璃。
我们无时无刻不在观察这个世界,但又无时无刻不在扭曲这个世界,这到底是为什么?
这其实取决于我们的视觉系统。假如外部世界存在一个绿苹果,它会以大约100亿比特/秒的信息量进入我们的视网膜,视网膜通过约100万个神经连接,连接到视觉皮层,这个时候我们的信息流就从百亿比特/秒变成600万比特/秒;经过视觉初级皮层加工再传到高级皮层来决定看到的东西是什么时,信息流又变成了100比特/秒。这时信息量衰减了1亿倍。可见,当我们做决策时,我们获得的信息其实是非常有限的,所以我们就需要构造出新的东西,把缺失的信息补上,而我们的大脑就像魔术师一样来弥补这些缺失的信息。这一方面可以解释为什么有很多东西我们看不见——因为传输过程中已经被人脑衰减掉、过滤掉了;同时也可以解释,为什么有的人看见一个绿苹果会认为是红苹果——因为这个重构的过程是创造性的,不是简单复制。正是基于这个构造,我们也可以把一个苹果看成一个梨子,这是我们大脑构造的过程,是一个正常的现象。
人脑重构的意义
为什么我们的大脑不能像摄像机、照相机一样忠实客观地反映物理世界,为什么非要自己来重构这个世界?这样的人脑重构究竟有什么好处?
正如康德所言:“没有感觉支撑的知识是空的,没有知识引导的感觉是瞎的。”这句话的前半句说的是,如果没有外部的输入,我们很难构建自己的心理世界,但我想强调的是下半句“没有知识引导的感觉是瞎的”。如果你不知道你看的是什么东西,那你就等于什么都看不见。这是因为,这个世界是模棱两可的,需要我们去构造,把我们的理解加进去,只有这样我们才能真正知道这个世界究竟发生了什么。
与理解相比,更重要的是创造。当大脑没有被外部信息填满而留下空间时,我们能够在这空间里创造出自己想要创造的东西。正如《小王子》的作者圣·德克旭贝里所言:“一堆岩石在有人对着它思考时就不再是岩石了,它将化身为大教堂。”这就是人类了不起的创造——当我们的祖先跋山涉水来到一片荒原,他们看见的不是一堆乱石,而是未来的家园。所以,在过去的300万年里,人和猴子分开进化,人的大脑体积增加了3倍;但是,这体积并不是平均增加的,增加最大的地方在额叶:与200万年前的祖先能人相比,我们的头骨往前突出,以容纳更大体积的额叶,而强大的额叶使我们能构造出不存在的东西。比如我们的祖先准备去打猎,不用等看见猎物才做出反应,他只需要提前想象狩猎的情景,就可以把一切安排好。如此一来,人可以把未来在脑海里“演”一遍,构建出一个个可能的未来,从而对未来做出行动方案,这是人类能够战胜其他比我们更强大更凶猛的动物,成为万物之灵的关键。这也印证了荀子的一句话:“然则人之所以为人者,非特以二足而无毛也,以其有辨也。”
重构心理世界的知识从何而来
人脑对世界的构造,总是需要先验知识,而先验知识一部分来自基因的烙印。换言之,我们来到这个世界时并不是一块白板,而是带着32亿年的智慧来的,这些智慧就印刻在基因中。
我们曾经用我校心理系女教授和女博士后的照片,做了一个有趣的小实验:如果把她们的脸全部叠加起来,做一张“平均脸”,大家普遍反馈说这张“平均脸”充满两个字:“睿智”。“平均脸”所代表的意思是什么?人脸其实是我们的基因图谱——我们的基因都写在脸上,当我们把脸平均起来之后,得到的是这18位老师平均的基因,平均的基因代表突变很少。而基因一旦突变,大概率是有害的,基因突变越少,说明基因越好,携带遗传性疾病的概率就越低,这就是为什么人们普遍会觉得“平均脸”更好看、更符合我们的审美。
既然脸是我们的基因图谱,对生存来讲如此重要,我们便需要发展出非常强大的看脸能力,即面孔识别。我们研究小组已经通过实验证明,面孔识别能力也写在人类的基因里。我们找了两类双胞胎,一种是同卵双胞胎(由同一个受精卵发育而来),基本上具有100%相同的基因。另外一种是异卵双胞胎(由两个独立的受精卵发育而来),基因遗传物质的平均遗传度大概是50%。通过比较他们在面孔识别上的能力,我们发现同卵双胞胎在面孔识别任务上的相似程度更高,即面孔识别的能力受遗传因素的影响。这一点也可以从我们的另一研究得到验证,即面孔失认症或者大家说的“脸盲”。
在图2显示的这个遗传树里,只要孩子有面孔失认症,他的父母中大概率有一个也是面孔失认症。第二幅图里有一个有趣的三角,三角形底边的两个端点代表的就是同卵双胞胎。当时我们在大学里测试了一个女孩,发现她有面孔失认症,那女孩说她有一个同卵双胞胎姐姐,我们把她姐姐请来一测,发现果然也是面孔失认症。
②
“自尊”对大脑的影响
除了看别人的面孔,我们也常常照镜子看自己。最喜欢照镜子的人据说是纳西索斯,他是古希腊神话里的超级帅哥,对自己的面孔着了迷,每天趴在溪边,通过水的倒影欣赏自己的绝世美颜。心理学由此称这种现象为“纳西索斯情结”,意思是一个人高度自恋,对自己爱到了极致。
其实对自己的爱,对自己面孔的欣赏,背后反映的是一个非常重要的特质,即人类的自尊。自尊是个体对自己的总体态度,人分成高自尊和低自尊两种。
什么是高自尊?这里有四个问题:1.你是否认为你是一个有价值的人?2.你是否认为你拥有很多美好的品质?3.你是否对自己满意?4.你是否对自己持肯定态度?
如果你对每道问题的回答都是“是”,那么你就是高自尊的人。“自尊”在我们面临困境时能提供极大的帮助。
当一个人长期经受压力和苦难,身体会变得差,心理幸福感会低下,更糟糕的是,认知发展会受损,认知能力会比别人低很多,体现在大脑上就是海马体会受到极大的损伤,而海马体是人学习、记忆、空间导航的中枢。
自尊在压力源和心理世界之间建立起一道牢不可破的防线,它就像勇敢的士兵一样挡在人的心理世界面前,帮人把压力、负性事件挡在外面,让人能够正常、健康地成长。人有两种资本,一种是物质资本,一种是心理资本,自尊自信、理性平和,这些就是心理资本。物质资本富裕的人未必有高自尊,而处境不利的人没有丧失他的自尊与自信时,就很可能在触达低点时再反弹,并达到人生新的高度。
我们所处的物理世界永远是不完美的,总有让人不满意之处,但是每个人可以在一个不完美的物理世界里构建出一个美好的心理世界。为什么?因为我们的大脑就是一个构造体,从物理世界所接收到的信息,经过大脑的工作,可以构建出一个完美的心理世界。这正印证了社会心理学家班杜拉所说的一句话:“人既是环境的产物,也是环境的营造者。”
人的双链进化
人和动物的进化有着本质的区别。动物是按照基因,按照达尔文的进化论,一点点试着生存、前进。人除了有代表着过去的生物基因的演化,还有另外一条演化线,即基于社会基因(Meme)的演化,而这条线带着我们以与动物不一样的方式前进。
生物基因由一些碱基对构成,那社会基因是什么?远古时,我们的祖先中有一位突然因为某种原因能够把火生起来了,一种知识、技能被创造出来,这就相当于基因在突变,一个优秀的基因产生了。会生火的这种技能、知识就像基因一样开始传播给其他人,从一个部落传到其他部落,慢慢地生火就从个人拥有的技能变成人类拥有的技能。渐渐地,人们又开始会制作长矛和其他工具,经过漫长的发展,逐步构建成今天的人类社会。这就是为什么我们一直强调知识、文明是如此重要,而大学就是文明的产房。孟子说过:“人之所以异于禽兽者几希;庶民去之,君子存之。”这里的“几希”就是我们的文明,就是我们在演化过程中所创造所传播的社会基因。
科技发展的主要目的之一,是要让知识的扩散变得更快、更便利。大约在六千年前,人类最早的文字楔形文字在新月地带被发明出来,使得人类的知识技能可以被记录下来,可以被忠实传播。之后的活字印刷,以至今天的电话、电报、互联网等等这一切,使得我们能够更加高效地把知识传播出去,推动文明加速演化。
人类的文明时代大约可以分成三个阶段:第一个阶段是原始文明,大约经历了两百多万年,它的前十万年和后十万年没有什么太大变化。第二个阶段是农业文明,大约经历了四千多年,这个时候人类开始变成文明种族,懂得了一些天文地理知识等等,学会种植庄稼,可以驯服野兽,把它们变成家畜,但发展依然十分缓慢。真正带来巨大变化的是第三个阶段,即工业文明。工业文明从开始诞生到现在,不过是短短三百年;但在这三百年里,变化是如此之快,以至于我们不得不将它再细分成四个阶段,第一个阶段是机械化时代(1760-1840年代),出现了蒸汽机等。第二个阶段是电气化时代(1840-20世纪初),出现了电力等。第三个阶段是自动化时代(1950-21世纪初)。而第四个阶段,就是我们现在所处的信息时代。
人工智能的进展
2002年,我的博士论文答辩题目是《面孔识别的认知神经机制》,在答辩的第二张PPT里我这么写道:“现在最先进的机器识别面孔的正确率只能是随机水平,而人类能够在一秒钟内识别上百张面孔,为什么人类如此伟大,为什么人类如此聪明,为什么机器如此愚笨?”
在2002年,机器识别人脸还可以说是“一塌糊涂”。到了2015年,我作为江苏卫视《最强大脑》的总策划,设计人机大战项目,即机器和人比拼面孔识别,看谁的能力最强。比赛的结果让我震惊:经过十几年的发展,人工智能已经强大到在人脸识别上胜过人类的最强大脑。我当时非常庆幸我的博士论文是在十几年前答辩的;如果我现在这么开题,可能就拿不到博士学位了。
当时除了震惊,还有好奇:人工智能究竟是靠什么来达到和人一样的面孔识别水平,甚至超越人类的水平?
我们建立了一个人工神经网络,训练它去识别性别,即区别是男性还是女性,它的正确率能达到100%。这个神经网络究竟是靠什么把男性和女性区分开?我们找了一张中性面孔,就是把男性和女性面孔求平均,给它加上随机噪音,然后“喂给”人工神经网络,它有时候会判断这个图是一个女性,而这个面孔加上其他噪音,则会被判断为男性。于是,完全一样的底图,加上不同的噪音,就会得到一组被人工神经网络认为是女性的图和一组被认为是男性的图。当把这组被认为是女性的图中的中性面孔去掉,只留下噪音时,这些噪音叠加起来,我们得到的就不再是随机噪音,而是人工神经网络用于识别女性的内部表征。同样,我们也可以得到男性面孔在这个神经网络中的内部表征。进一步,我们把两者相减,就得到了人工神经网络用以区分男性和女性的模式。在这个模式里,可以看到,眼睛、眉弓、鼻子、人中是它认为的区分男性和女性的关键特征。而这些关键特征,的确是我们人类用于区分男性和女性的关键特征,它们的相似度达到了0.73,这是非常高的相关度。但是,自始至终,我们并没有告诉过这个人工神经网络:你应该用什么方式去识别男性和女性;只是要让它做这件事情,它就会产生跟人类类似的内部表征、认知操作,从而完成性别判断。也就是说,人工智能在这个过程中呈现出和人类一样的心理世界。
在那一刻我开始意识到,生物过去的进化都是一条单线,基于碳基的方式运行。但是当人类创造出人工智能之后,人类文明就很可能不再是平滑向前,接下来或许会出现一种革命性的跃迁,可能在文明的进化中出现奇点。
为什么这么说呢?我们来看人类和人工智能的三大区别。
第一,算力。人类的大脑通常重3.5斤左右,虽然只占我们体重的2%,但消耗了我们身体25%以上的能量,因此它是一个耗能大户,已经达到了我们身体能够支撑的极限。所以,人类的大脑看起来已经到了进化极限,再给一千年、一万年,人类的大脑很可能不会变得更大,聪明程度也不会增加。但是对于人工智能来说,一块CPU不够可以再加一块CPU,一块硬盘不够可以再加一块硬盘,理论上它有无限的算力和无限的存储能力。
第二,寿命。人的寿命是有限的,再伟大的思想也有停止的一刻。但人工智能的寿命是无限的,CPU烧了可以换块CPU,电线断了再换根电线就行。
最关键的,是人工智能的无尽可能。对于人类而言,一般来说有两种知识,一种是可以描述的明知识,比如牛顿定律。一种是可以感受但难以描述的默知识,比如骑自行车的知识。此外还有第三种知识,是人类所没有而机器拥有的,即暗知识,它不可感受,不可描述,不可表达,它是存在于海量数据中万世万物之间的联系,数量极其巨大,人类无法理解。
2016年,AlphaGo击败了人类围棋顶尖高手之一李世石。当时世界围棋积分排名第一的围棋手柯洁说:“我们人类下了2000年围棋,连门都没入。”棋圣聂卫平说:“我们应该让阿老师(AlphaGo)来教我们下棋。”这不是他们谦虚,而是事实。一个人不吃不喝一辈子所下的围棋最多也就是10万盘,而从人类发明围棋到现在,累计总共下了大约3000万盘围棋。而围棋的空间有多大呢?一个格子可以有三种状态,放白棋、放黑棋或者不放,而棋盘总共有19×19个格子,所以它的状态总共有319×19种,大约等于10172,这比整个宇宙中的原子数量还要多。相对于如此庞大的围棋空间,人类的两千多年探索,只是这个空间里一个微不足道的小点,而大部分空间还是一片黑暗。AlphaGo之所以比人类更加强大,并不是它比人类聪明,而是因为它探索了更大的空间,因此找到了更多下法而已。牛顿曾说:“我就像在海边玩耍的小孩,偶尔拾到美丽的贝壳,就高兴不已。但面对真理海洋,我仍一无所知。”现在看来,这不是牛顿谦虚,而是实情。
再看一下艺术。目前人工智能已经可以制作达到专业水平的绘画(图3、图4)和音乐。此外,律师、医生、税务师、咨询师等需要非常专业的知识的“金领”职业,也逐渐出现了人工智能的身影,看起来很可能有一天会被人工智能取代。神经网络之父、深度学习的创始人杰弗里·辛顿(Geoffrey Hinton)接受麻省理工学院的《Tech Review》采访时说:“将来深度学习可以做任何事情。”
③
④
人工智能与类人智能的巨大差距
人工智能真的已经无所不能吗?心理学家考验了当时最先进的人工神经网络模型GPT-3。他们认为之所以GPT-3显得非常聪明,是因为问了它智能的问题。假设问它一些很“弱智”的问题,它会怎么回答?他们问它:“我的腿上有几只眼睛?”这个连没有上过学的小孩都能正确回答的问题却难倒了GPT-3,它回答说:“你的腿上有两只眼睛。”这表明它并不理解眼睛是什么,它只是在做关联而已——人有两只眼睛,腿是人的一部分,所以它认为腿上应该有两只眼睛。这个例子充分印证了爱因斯坦名言:“任何傻瓜都知道,关键在于理解。”GPT-3知道但并不理解眼睛究竟是什么,而理解,恰是我们人类真正了解这个世界、能在这个世界里自由徜徉的关键。
杰弗里·辛顿显然也意识到了这个问题,他表示,我们可以进一步发展人工智能,当一个人工智能能够准确描述一个场景,它就是理解了。真是这样么?假设有这么一个场景:有个人从柱子上狠狠摔了下来,摔倒在地。如果让人工智能来描述这个场景,它会说一个人从柱子上掉下来了。而我们对这个场景还有一个很重要的反应——“疼”。这个区别体现了人类具有一种特别重要的能力,即共情:别人遭受了苦难我能感同身受,而这种感受是自动的。共情不是一种奢侈品,而是一种必需品,因为当一个孩子没有这种感同身受的能力,缺乏同理心,他在小时候就很难对父母产生依恋,很难和其他小朋友玩到一起;在长大以后,会对社交常情缺乏理解,对他人情绪缺乏反应,不能根据社交场合调整自己的行为,有可能做出反社会的行为。假设我们的未来是由一台台没有共情的机器所组建的“自闭症”式的社会,这个社会还能有文明吗?这个社会还能有发展吗?所以,人工智能的奠基人之一马文·李·明斯基说过这么一句话:“现在的问题不是一个智能的机器是否拥有情感,而是不拥有情感的机器是否能拥有智能。”在马文·李·明斯基看来,情感是智能的基础,得先有情感才有智能。
又如在好莱坞电影里,美国的黑手党跑去找一个店家说:“你这个蛋糕店看上去真不错,如果意外发生火灾烧掉那就太可惜了。”请问这个黑手党的话是什么意思?A:请店家做好消防工作,别烧掉了店铺,那样太可惜了。B:请店家交保护费,要不然就要烧掉店铺。对我们而言,答案显而易见是B,是黑手党在威胁并勒索店家。但是对于机器来说,它还很难理解这话背后隐藏的推理和因果。正如古希腊哲学家德谟克利特所言:“我宁可找到一个因果的解释,也不愿成为波斯人的王。”对人而言,我们认为万事万物都是有因果的,而正是这种对因果的执着使我们能够推理,能够把零散的万世万物联系在一起,构成一个个故事。
其实笛卡尔四百多年前就说过:“即使机器可能在某些方面做得和我们一样好,甚至更好,但它们在其他方面不可避免地会失败。这是因为它们不是通过理解而只是根据预设来行动。”这一点,到现在还没有发生本质的改变。
所以,虽然目前人工智能取得了很高的成就,但是和人的智能仍然存在巨大差距,依然没有达到类人智能。那么未来如何实现类人智能呢?我认为,关键点就在于脑科学+人工智能。
举个简单的例子:线虫是一个非常简单的生物,只有302个神经元。但是,麻省理工学院的研究者模仿了其中19个神经元,就完成了自动驾驶这个任务,其参数比传统的大模型足足低三个数量级,只有75000个参数,而这个仿生的人工神经网络对不同道路具有非常高的通用性和可解释性,以及非常强的鲁棒性。仅仅模仿来自简单生物的19个神经元,就可以完成自动驾驶的初步任务,这是因为生物不是靠神经元的数量取胜,而是靠32亿年进化形成的智慧取胜,这项研究模仿的其实是32亿年进化形成的智慧。从这个角度讲,人类的大脑是目前世界上最聪明的大脑,有860亿个神经元,平均每个神经元有3000个连接,它代表着宇宙中在智力上所能达到的最高成就。那么,人工智能为什么不能向人脑学习,以人脑为模板、以人脑为借鉴,来发展出更好的人工智能呢?
对线虫神经元的模仿,只是一个开始,下一步也许我们会去模仿神经元数量百万级的果蝇、更高量级的斑马鱼,甚至小鼠、大鼠、猕猴,最后是人类。仅仅从神经元的数量上来讲,这就是一个巨大的挑战,因为神经元的数量足足差了9个数量级,而还有更多更大的挑战来自机制和算法,以及更多的未知。但是我坚信,脑科学加上人工智能,有一天也许能够造出一个媲美人脑的数字大脑。
小结
莎士比亚说:“所谓过往,皆为序章。”我们的现在是过去的未来,已经写定,但我们的此刻绝对不是未来的过去,因为我们的未来是未定的,取决于我们现在如何做出选择。
人类发明了人工智能,在今天随着算力的增加、技术的进步,它开始有了超越人类的可能。我们现在需要对具有一切可能的未来做出选择。
在我看来,未来大约有三种可能。第一种,人工智能像科幻电影《星球大战》里的R2-D2一样,是人类忠实的伙伴,成为人类非常好的朋友,帮助人类变得更强大。第二种可能,我们构建出一个数字大脑,它的能力可能比现在人类的大脑更强,这时可以实现人机合二为一,把我们的意识、记忆、情感上传到这个数字大脑里,如果CPU坏了就换一块CPU,内存需要扩大一点就加点内存,这样人就可以获得精神上的“永生”。未来学家库兹韦尔在《奇点来临》这本书中认为大约在2045年,这一刻就会到来。第三种可能,就是科幻电影《终结者》里所展示的,人类文明消失。
未来会怎么样,最终取决于我们现在做什么。这很重要,因为我们今天站在了这个进化的节点之上。
《光明日报》(2022年12月24日 10版)
[责编:孙宗鹤]