博舍

人工智能之自动驾驶系列(一):概要 人工智能自动驾驶属于什么技术

人工智能之自动驾驶系列(一):概要

人工智能之自动驾驶系列(一):概要

版权声明:本文系个人经多处资料学习、吸收、整理而得,如需转载,请注明出处:作者名+链接。

内容说明:本系列内容大致包括自动驾驶概念、前沿动态、市场分析、应用场景、国家政策、技术框架、研究现状、典型方案、未来趋势与个人思考、动手实践简易版L3自动驾驶汽车等。

关键词:人工智能,自动驾驶,机器学习,深度学习,创新创业,前沿

一、自动驾驶背景

随着深度学习技术的崛起、人工智能的备受关注,自动驾驶,作为AI中备受关注的重要落脚点,也被炒的火热,更让人充满了幻想。

1.1自动驾驶的概念

自动驾驶,也常被人称作无人驾驶、无人车等,但这几个词的表述其实是有所区别的,英文里常见的表述有autopilot,automaticdriving,self-driving,driveless等,这里不作科普。关于自动驾驶,在概念上业界有着明确的等级划分,主要有两套标准:一套是NHSTAB(美国高速公路安全管理局)制定的,一套是SAEInternational(国际汽车工程师协会)制定的。现在主要统一采用SAE分类标准。以下附上专业分级定义:

0级&

详述人工智能在自动驾驶中的应用

↑↑↑关注后"星标"Datawhale

每日干货 & 每月组队学习,不错过

 Datawhale干货 

来源:智车科技,编辑:Datawhale

随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。

自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。

本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。

人工智能是一门起步晚却发展快速的科学。20世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。

1955年Newell和Simon的LogicTheorist证明了《数学原理》中前52个定理中的38个。Simon断言他们已经解决了物质构成的系统如何获得心灵性质的问题(这种论断在后来的哲学领域被称为“强人工智能”),认为机器具有像人一样逻辑思维的能力。1956年,“人工智能”(AI)由美国的JohnMcCarthy提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。

五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。

人工智能在自动驾驶技术中的应用概述

人工智能发展六十年,几起几落,如今迎来又一次热潮,深度学习、计算机视觉和自然语言理解等各方面的突破,使得许多曾是天方夜谭的应用成为可能,无人驾驶汽车就是其中之一。作为人工智能等技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。目前,人工智能在汽车自动驾驶技术中也有了广泛应用。

自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,它是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术,是典型的高新技术综合体。

这种汽车能和人一样会“思考”、“判断”、“行走”,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。 按照SAE(美国汽车工程师协会)的分级,共分为:驾驶员辅助、部分自动驾驶、有条件自动驾驶、高度自动驾驶、完全自动驾驶五个层级。

第一阶段:驾驶员辅助 目的是为驾驶者提供协助,包括提供重要或有益的驾驶相关信息,以及在形势开始变得危急的时候发出明确而简洁的警告。现阶段大部分ADAS主动安全辅助系统,让车辆能够实现感知和干预操作。例如防抱死制动系统(ABS)、电子稳定性控制(ESC)、车道偏离警告系统、正面碰撞警告系统、盲点信息系统等等,此时车辆是能够通过摄像头、雷达传感器获知周围交通状况,进而做出警示和干预。

第二阶段:部分自动驾驶 车辆通过摄像头、雷达传感器、激光传感器等等设备获取道路以及周边交通信息,车辆会自行对方向盘和加减速中的多项操作提供驾驶支援,在驾驶者收到警告却未能及时采取相应行动时能够自动进行干预,其他操作交由驾驶员,实现人机共驾,但车辆不允许驾驶员的双手脱离方向盘。例如自适应巡航控制(ACC)、车道保持辅助系统(LKA)、自动紧急制动(AEB)系统、车道偏离预警(LDW)等。

第三阶段:有条件自动驾驶 由自动驾驶系统完成驾驶操作,根据路况条件所限,必要时发出系统请求,必须交由驾驶员驾驶。

第四阶段:高度自动驾驶 由自动驾驶系统完成所有驾驶操作,根据系统请求,驾驶员可以不接管车辆。车辆已经可以完成自动驾驶,一旦出现自动驾驶系统无法招架的情形,车辆也可以自行调整完成自动驾驶,驾驶员不需要干涉。

第五阶段:完全自动驾驶 自动驾驶的理想形态,乘客只需提供目的地,无论任何路况,任何天气,车辆均能够实现自动驾驶。这种自动化水平允许乘客从事计算机工作、休息和睡眠以及其他娱乐等活动,在任何时候都不需要对车辆进行监控。

自动驾驶的实现

车辆实现自动驾驶,必须经由三大环节:

第一,感知。也就是让车辆获取,不同的系统需要由不同类型的车用感测器,包含毫米波雷达、超声波雷达、红外雷达、雷射雷达、CCDCMOS影像感测器及轮速感测器等来收集整车的工作状态及其参数变化情形。

第二,处理。也就是大脑将感测器所收集到的资讯进行分析处理,然后再向控制的装置输出控制讯号。

第三,执行。依据ECU输出的讯号,让汽车完成动作执行。其中每一个环节都离不开人工智能技术的基础。

人工智能在自动驾驶定位技术中的应用

定位技术是自动驾驶车辆行驶的基础。目前常用的技术包括线导航、磁导航、无线导航、视觉导航、导航、激光导航等。

其中磁导航是目前最成熟可靠的方案,现有大多数应用均采用这种导航技术。磁导航技术通过在车道上埋设磁性标志来给车辆提供车道的边界信息,磁性材料具有好的环境适应性,它对雨天,冰雪覆盖,光照不足甚至无光照的情况都可适应,不足之处是需要对现行的道路设施作出较大的改动,成本较高。同时磁性导航技术无法预知车道前方的障碍,因而不可能单独使用。

视觉导航对基础设施的要求较低,被认为是最有前景的导航方法。在高速路和城市环境中视觉方法受到了较大的关注。

人工智能在自动驾驶图像识别与感知中的应用

无人驾驶汽车感知依靠传感器。目前传感器性能越来越高、体积越来越小、功耗越来越低,其飞速发展是无人驾驶热潮的重要推手。反过来,无人驾驶又对车载传感器提出了更高的要求,又促进了其发展。

用于无人驾驶的传感器可以分为四类:

雷达传感器

主要用来探测一定范围内障碍物(比如车辆、行人、路肩等)的方位、距离及移动速度,常用车载雷达种类有激光雷达、毫米波雷达和超声波雷达。激光雷达精度高、探测范围广,但成本高,比如Google无人车顶上的64线激光雷达成本高达70多万元人民币;毫米波雷达成本相对较低,探测距离较远,被车企广泛使用,但与激光雷达比精度稍低、可视角度偏小;超声波雷达成本最低,但探测距离近、精度低,可用于低速下碰撞预警。

视觉传感器

主要用来识别车道线、停止线、交通信号灯、交通标志牌、行人、车辆等。常用的有单目摄像头、双目摄像头、红外摄像头。视觉传感器成本低,相关研究与产品非常多,但视觉算法易受光照、阴影、污损、遮挡影响,准确性、鲁棒性有待提高。所以,作为人工智能技术广泛应用的领域之一的图像识别,也是无人驾驶汽车领域的一个研究热点。

定位及位姿传感器

主要用来实时高精度定位以及位姿感知,比如获取经纬度坐标、速度、加速度、航向角等,一般包括全球卫星定位系统(GNSS)、惯性设备、轮速计、里程计等。现在国内常用的高精度定位方法是使用差分定位设备,如RTK-GPS,但需要额外架设固定差分基站,应用距离受限,而且易受建筑物、树木遮挡影响。近年来很多省市的测绘部门都架设了相当于固定差分基站的连续运行参考站系统(CORS),比如辽宁、湖北、上海等,实现了定位信号的大范围覆盖,这种基础设施建设为智能驾驶提供了有力的技术支撑。定位技术是无人驾驶的核心技术,因为有了位置信息就可以利用丰富的地理、地图等先验知识,可以使用基于位置的服务。

车身传感器

来自车辆本身,通过整车网络接口获取诸如车速、轮速、档位等车辆本身的信息。

人工智能在自动驾驶深度学习中的应用

驾驶员认知靠大脑,无人驾驶汽车的“大脑”则是计算机。无人车里的计算机与我们常用的台式机、笔记本略有不同,因为车辆在行驶的时候会遇到颠簸、震动、粉尘甚至高温的情况,一般计算机无法长时间运行在这些环境中。所以无人车一般选用工业环境下的计算机——工控机。

工控机上运行着操作系统,操作系统中运行着无人驾驶软件。如图1所示为某无人驾驶车软件系统架构。操作系统之上是支撑模块(这里模块指的是计算机程序),对上层软件模块提供基础服务。

支撑模块包括:虚拟交换模块,用于模块间通信;日志管理模块,用于日志记录、检索以及回放;进程监控模块,负责监视整个系统的运行状态,如果某个模块运行不正常则提示操作人员并自动采取相应措施;交互调试模块,负责开发人员与无人驾驶系统交互。

图:某无人驾驶车软件系统架构

除了对外界进行认知之外,机器还必须要能够进行学习。深度学习是无人驾驶技术成功地基础,深度学习是源于人工神经网络的一种高效的机器学习方法。深度学习可以提高汽车识别道路、行人、障碍物等的时间效率,并保障了识别的正确率。通过大量数据的训练之后,汽车可以将收集到的图形,电磁波等信息转换为可用的数据,利用深度学习算法实现无人驾驶。

在无人驾驶汽车通过雷达等收集到数据时,对于原始的训练数据要首先进行数据的预处理化。计算均值并对数据的均值做均值标准化、对原始数据做主成分分析、使用PCA白化或ZCA白化。例如:将激光传感器收集到的时间数据转换为车与物体之间的距离;将车载摄像头拍摄到的照片信息转换为对路障的判断,对红绿灯的判断,对行人的判断等;雷达探测到的数据转换为各个物体之间的距离。

将深度学习应用于无人驾驶汽车中,主要包含以下步骤:

1.准备数据,对数据进行预处理再选用合适的数据结构存储训练数据和测试元组;

2.输入大量数据对第一层进行无监督学习;

3.通过第一层对数据进行聚类,将相近的数据划分为同一类,随机进行判断;

4.运用监督学习调整第二层中各个节点的阀值,提高第二层数据输入的正确性;

5.用大量的数据对每一层网络进行无监督学习,并且每次用无监督学习只训练一层,将其训练结果作为其更高一层的输入。

6.输入之后用监督学习去调整所有层。

人工智能在自动驾驶信息共享中的应用

首先,利用无线网络进行车与车之间的信息共享。通过专用通道,一辆汽车可以把自己的位置、路况实时分享给队里的其它汽车,以便其它车辆的自动驾驶系统,在收到信息后做出相应调整。

其次,是3D路况感应,车辆将结合超声波传感器、摄像机、雷达和激光测距等技术,检测出汽车前方约5米内地形地貌,判断前方是柏油路还是碎石、草地、沙滩等路面,根据地形自动改变汽车设置。

另外,汽车还将能进行自动变速,一旦探测到地形发生改变,可以自动减速,路面恢复正常后,再回到原先状态。

汽车信息共享所收集到的交通信息量将非常巨大,如果不对这些数据进行有效处理和利用,就会迅速被信息所湮没。因此需要采用数据挖掘、人工智能等方式提取有效信息,同时过滤掉无用信息。考虑到车辆行驶过程中需要依赖的信息具有很大的时间和空间关联性,因此有些信息的处理需要非常及时。

人工智能应用于自动驾驶技术中的优势

人工智能算法更侧重于学习功能,其他算法更侧重于计算功能。学习是智能的重要体现,学习功能是人工智能的重要特征,现阶段大多人工智能技术还处在学的阶段。如前文所说,无人驾驶实际上是类人驾驶,是智能车向人类驾驶员学习如何感知交通环境,如何利用已有的知识和驾驶经验进行决策和规划,如何熟练地控制方向盘、油门和刹车。

从感知、认知、行为三个方面看,感知部分难度最大,人工智能技术应用最多。感知技术依赖于传感器,比如摄像头,由于其成本低,在产业界倍受青睐。以色列一家名叫Mobileye的公司在交通图像识别领域做得非常好,它通过一个摄像头可以完成交通标线识别、交通信号灯识别、行人检测,甚至可以区别前方是自行车、汽车还是卡车。

人工智能技术在图像识别领域的成功应用莫过于深度学习,近几年研究人员通过卷积神经网络和其它深度学习模型对图像样本进行训练,大大提高了识别准确率。Mobileye目前取得的成果,正是得益于该公司很早就将深度学习当作一项核心技术进行研究。认知与控制方面,主要使用人工智能领域中的传统机器学习技术,通过学习人类驾驶员的驾驶行为建立驾驶员模型,学习人的方式驾驶汽车。

无人驾驶技术所面临的挑战和展望

在目前交通出行状况越来越恶劣的背景下,“无人驾驶”汽车的商业化前景,还受很多因素制约。

主要有:

1.法规障碍

2.不同品牌车型间建立共同协议,行业缺少规范和标准

3.基础道路状况,标识和信息准确性,信息网络的安全性

4.难以承受的高昂成本

此外,“无人驾驶”汽车的一个最大特点,就是车辆网络化、信息化程度极高,而这也对电脑系统的安全问题形成极大挑战。一旦遇到电脑程序错乱或者信息网络被入侵的情况,如何继续保证自身车辆以及周围其他车辆的行驶安全,这同样是未来急需解决的问题。虽然无人驾驶技术还存在着很多挑战,但是无人驾驶难在感知,重在“学习”,无人驾驶的技术水平迟早会超过人类,因为稳、准、快是机器的先天优势,人类无法与之比拟。

驾驶有时并不是负担,相反是一种乐趣,体现了人类拓展自身极限的能力。笔者相信,完全的无人驾驶也许有些遥远,但随着机器学习算法的提升和应用的挖掘,更接地气人机和谐共驾指日可待。不管在自动驾驶这条路上有多少困难,但我相信总有它出现在城市道路上的一天,技术的发展充满激情与动力。在不久的将来,也许自动驾驶会成为主流。

“整理不易,点赞三连↓

汽车自动驾驶是人工智能吗,自动驾驶是人工智能

无人驾驶技术与人工智能有关系吗?

有关系,无人驾驶就是依靠人工智能技术实现的。

自动驾驶汽车也是属于人工智能领域吗?

当然属于人工智能领域,你好,人工智能十大领域涵盖领域涉及,

视觉计算、营销智能、基础软硬件、普惠金融、视频感知、智能供应链、图像感知、安全大脑、智慧教育、智能家居十大方面。汽车自动驾驶是人工智能吗,自动驾驶是人工智能–木剑广告

智能驾驶和自动驾驶到底是什么关系

智能驾驶本质上涉及注意力吸引和注意力分散的认知工程学,主要包括网络导航、自主驾驶和人工干预三个环节。智能驾驶的前提条件是,选用的车辆满足行车的动力学要求,车上的传感器能获得相关视听觉信号和信息,并通过认知计算控制相应的随动系统。

特斯拉自动驾驶系统:小发猫

 

人工智能技术与自动驾驶应用有?

环境感知方面。自动驾驶汽车所要面临的环境感知包括:路面路缘检测、车道线检测、护栏检测、交通标志检测、交通信号灯检测,以及行人检测、车路检测等。

决策与规划方面。行为决策与路径规划是人工智能在自动驾驶汽车领域中的另一个重要应用。目前越来越多的研发机构将强化学习应用到自动驾驶的行为与决策中。

智能汽车与自动驾驶汽车的区别是什么?

智能车辆就是在一般车辆上增加了先进的传感器(如雷达、摄像头等)、控制器、执行器等装置,通过车载环境感知系统和信息终端,实现与人、车、路等的信息交换,使车辆具备智能环境感知能力,能够自动分析车辆行驶的安全及危险状态,并使车辆按照人的意愿到达目的地,最终实现替代人来操作的目的的汽车。

自动驾驶汽车(Autonomousvehicles;Self-drivingautomobile)又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种通过电脑系统实现无人驾驶的智能汽车。在20世纪已有数十年的历史,21世纪初呈现出接近实用化的趋势。

自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。

安全性

自动驾驶汽车一直配备了驾驶员。我们训练有素的驾驶员会一直跟随汽车,他们可以像解除巡航控制一样轻松地接管汽车。此外,我们也有训练有素的软件操作人员坐在乘客座位上,监控软件运行状况。在所有测试进行之前,我们都会派出驾驶员,驾驶普通汽车了解路线和路况。通过加入道路标记和交通标志等功能,车载软件能够提前熟悉周围环境及特殊之处。在工作之前也提前告知当地警方。

能源消耗

自动驾驶汽车能够促使人们拼车,极大的减少汽车的使用,创造“高速公路火车”。这些高速公路火车能减少能源消耗,增加主要道路的运力。在节约时间方面,美国交通运输部估计,每一工作日,人们平均花费52分钟在上下班路上。未来,人们可以以更有效率的方式使用这些时间。

AI数据对自动驾驶的意义是什么?

在自动驾驶的过程中,汽车本身需要具备感知、策划、决策、控制等一些列能力,而数据则是培养自动驾驶AI能力的重要因素,数据标注存在的意义是让机器理解并认识世界。与其他人工智能应用场景相比,智能驾驶的落地场景相对复杂,想要让汽车本身的算法做到处理更多、更复杂的场景,背后就需要有海量的真实道路场景数据做支撑。

为解决自动驾驶技术场景化落地的AI数据问题,国内AI数据服务头部企业云测数据,通过提供一站式场景化的AI数据解决方案,来满足自动驾驶领域高标准的数据需求。在为智能驾驶相关企业提供大规模感知数据的能力同时,可大幅提升数据标注效率,降低AI模型训练成本,极大地加速智能驾驶相关应用的落地迭代周期,节省大量研发时间和成本。

无人驾驶汽车属于人工智能吗

无人驾驶和人工智能是两个概念,但是人工智能里面一定包含了无人驾驶这项技术。说一下我理解的观点,希望可以给你有所启发。1.无人驾驶是汽车科技的一种技术提升。汽车工业发展到现在一百多年历史,从最早的工业革命开始至今各种品牌百花齐放,无论在车身结构和驾驶体验都得到了质的飞跃,但是越来越多的竞争和市场也让各大汽车企业有效科技创新,从ESP车身稳定系统、四驱、自动大灯延迟、导航、无钥匙进入、车道偏离防碰撞安全系统等等,再到现在汽车中控都装备了智能触摸显示屏,都说明了汽车科技进步和发展是日新月异,智能汽车也将是以后的趋势。

2.无人驾驶是汽车科技的一种人为需求。无人驾驶按照现在分级别的话其实是自动驾驶的最高等级,看过一篇文章是这样分类的:目前我们在市场上所能见到的自动驾驶主要有5个级别,分别是从L0-L5。首先,所谓的L0级自动驾驶也就是没有任何自动化技术,车辆驾驶完全靠驾驶员自己操作。而L1级驾驶又被叫做辅助驾驶,其中包括定速巡航,自动泊车以及车道保持等基本功能。这些功能可以让驾驶员在驾驶汽车的过程当中避免一些疲劳驾驶,不用耗费过多的精力。L2级驾驶也就是半自动驾驶,是目前市面上最常见的,在大多数的车型中我们都能够看到,其中包括自动辅助驾驶,危险预判刹车等功能,在安全性能方面还是比较可靠的(比如沃尔沃)。L3级驾驶又被称为有条件自动驾驶,与L2级相比,它可以在正常的路段下实现完全自动化驾驶,但是在一些紧急情况发生时,还是需要人工来进行辅助制动(比如特斯拉的自动驾驶技术)。L4级驾驶属于高度自动驾驶,汽车的整体制动性能以及反应能力已经达到了一个比较高的水准,驾驶员坐在汽车内部不用自己操控,而且汽车行驶比较平稳顺畅(这个在某些高端车型上已经实现,但技术还不完善)。最后一个级别就是L5级自动驾驶,它可以实现无条件的全自动驾驶技术。也就是不管在任何情况下,都不用担心路况以及天气,只需要坐在车里面休息就可以了,这才是真正的无人驾驶。

3.要实现无人驾驶必须和人工智能相结合。只有开发了相关电子程序,运用到汽车上,才能完成真正的无人驾驶,目前也是趋势。其实在某些科幻电影中,已经预示着汽车今后的变化,将会更快更科技,交通事故更少。当然,进步空间还非常大。

最后,个人觉得,无人驾驶如果普及了实现了,再好,也不要过度依赖,驾驶感受毕竟是人的一种体验和感觉;人工智能再先进,也需要人来控制,毕竟只是智能系统。人,才是关键,你说是吗?

事故频出的自动驾驶,到底是解放双手还是结束?

事故频出的自动驾驶,科学技术的进步使我们进入了一个未知的世界。促进了人类社会的进步。随着科学技术的飞速发展,人工智能(AI)成为主导因素,第四次工业革命将带来破坏工业发展的方式,人类将进入人工智能时代。在此之前,人与机器将建立新的关系。

那些严重依赖技术成就的人开始变得肥胖,身体虚弱。技术革命的驱动力是满足人类发展不断变化的需求,但是当技术剥夺人类行为时,技术真的会为人类发展带来曙光吗?记住高小松在《奇葩说》程序中所说的话。技术的发展和进步正在割裂人类的灵魂。这代表了人们身心的感受和某些行动的本能。当这些人类能力与技术发展负相关时,应该考虑如何处理人工智能和人工智能之间的关系。

如今,人工智能最普遍的应用是飞机的自动驾驶仪。当飞机飞行到一定高度时,自动驾驶系统将打开,这时飞行员的手将被释放,这将导致此时许多驾驶员休息。英国民航飞行员协会在2013年进行的一项调查发现,有56%的机长打瞌睡,29%的机长醒了,其他机长都睡了。如果在自动驾驶仪上发生故障,驾驶员可以及时做出反应吗?根据国庆节《中国机长》期间发布的真实事件,在一部影片中制作了教科书式的飞行指南,这证明了在危机情况下人比机器更可靠。

更紧急的是,控制台被强风撕裂,报告了仪表板上的所有警报,并且常规工具隐藏在未知的危险中。危机发生时,刘传建机长保持清醒状态,直接控制了飞机,以挽救全体机组人员。这也被称为世界级民航史上的奇迹。

自动驾驶和无人驾驶有何区别

自动驾驶和无人驾驶认知主体不一样,要是决定驾驶行为的是人,那就是自动驾驶。无人驾驶比自动驾驶高一个级别,就是将开车这活儿完全交给机器,也叫自主驾驶。

自动驾驶汽车(Autonomousvehicles;Self-drivingautomobile)又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种通过电脑系统实现无人驾驶的智能汽车。在20世纪已有数十年的历史,21世纪初呈现出接近实用化的趋势。

自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目的。

据汤森路透知识产权与科技最新报告显示,2010年到2015年间,与汽车无人驾驶技术相关的发明专利超过22,000件,并且在此过程中,部分企业已崭露头角,成为该领域的行业领导者。

2019年9月,由百度和一汽联手打造的中国首批量产L4级自动驾驶乘用车–红旗EV,获得5张北京市自动驾驶道路测试牌照。

9月22日,国家智能网联汽车(武汉)测试示范区正式揭牌,百度、海梁科技、深兰科技等企业获得全球首张自动驾驶车辆商用牌照。2019年9月26日,百度在长沙宣布,自动驾驶出租车队Robotaxi试运营正式开启。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇